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What 1s close-kin mark-recapture (CKMR)?

* Genetics-based method for estimating absolute adult abundance and
other population parameters

* Modified version of mark-recapture that relies on probabilities of
kinship rather than individual recapture

* Similar to genetic mark-recapture (MR), the “marks” are genotypes in CKMR
* However, the “close-kin” distinction differentiates CKMR from genetic MR

* Highly tlexible framework

* Can technically make use of any type of relative as long as the relatives can be
identified and an associated kinship probability can be defined



Close-Kin Mark-Recapture (Cl ) uses probability of kinship to estimate
population abundance
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Cl can use parent-offspring or half-sibling kinship probabilities to

estimate adult abundance

P{Ki,j — MPOP} — . . x< .(yj—ci).
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Equations from Bravington et. al. (2016)
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CKMR strengths

* No need for individual recapture
* No issues with tag loss or tag reporting
* No need to observe adults at all

* Costs and effort to maintain a CKMR program are reasonable following
inittal project setup



CKMR limitations

* Substantial initial investment needed
* Fundamentally can only inform on the adults
* Requires substantial biological knowledge to apply propetly

* In most cases requires age data or, at a minimum, a reliable age-length
curve
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Major considerations for CKMR projects

Sampling design
4 )
* Numbers ¢ Locations
* Ages * Preservation
\. ‘ J
Demographics and popdy Genotyping method Covariate data to collect
e N\ Vs N\ Vo ~N

en'There’s a lot to considet!

\ ~7 A ~7 ) .
2

Types of kin paits to model\

hture

e POPs
e HSPs
e Other




» -

\q‘

Steps to enact a CK‘MR

. ai— w




»

Steps to enacta C K:MK OLC
53 _,.%‘:—-n‘

i

r

1. Devise a sampling plan

~

J

S




r

Steps to enact a CKMR roject
- “"%m =

1. Devise a sampling plan

~

J

2. Collect samples

N

[_L'I‘ .-l,

-
gL
(]



L]
m,

2

Steps to enac:taCK‘MRpmt

—_ - - -
.
-l e — —— —_——
! . = .
5 - o - A

3. Develop a genetic panel

e T M
T » = iy
' Build CKIMR model Y]

+ Conduct bulk of sampli
* Early stages

development i
* Fit CKMR model to sequence data generate

* Generate baseline parameter estimates (b

* Establish sample to kin pair ratio (worst case)

4 h
1. Devise a sampling plan
_ J
N
2. Collect samples
J

......



Steps to enact a CK‘MR 1C
ks »%’J‘ﬂ‘

3. Develop a genetic panel

5. Continued me
* Precision will improve

* Less costly to maintain

( h
1. Devise a sampling plan
A _ y
v
" )
2. Collect samples
J

| Apply

| genetic panel

4. Pilot study/baseline

estimates




( h
Steps to enact a

CKMR project

1. Devise a sampling plan

¥

2. Collect samples

ﬁ

Apply

| genetic panel

\. J

4 )

3. Develop a genetic panel

Assess feasibility
and conduct
design study to
determine sample
needs before
starting

. J

(

5. Continued
monitoring/improvements

. \.

4. Pilot study/baseline
estimates




Road map

1. Background
* What is close-kin mark-recapture?
* How does it work?
* Strengths?

* Limitations?
Major considerations and steps involved
Examples and pittalls

Primary costs

A [

Cetacean biology and close-kin mark-recapture



White sharks

* Used SNPs and half-sibling CKMR

* Estimated juvenile survival from acoustic
data

* Combined acoustic tag data, CKMR, and
alternative data sources on fecundity and
YOY survival to estimate total population
abundance
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Hillary et al. 2018
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SpeartOOth Shal‘ks Rapid assessment of adult abundance and

demographic connectivity from juvenile kin pairs in a
critically endangered species

Toby A. Patterson't¥, Richard M. Hillary't, Peter M. Kyne?, Richard D. Pillans?,
Rasanthi M. Gunasekera1, James R. Marthick®, Grant J. Johnson®, Pierre Feutry'
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CKMR
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Challenging applications

* Trenkel et al. (2022) applied CKMR to the
thornback ray (Raja clavata).

* Planned to use both HSPs and POPs, but had to
abandon HSPs for abundance estimates

 Still used HSPs to define metapopulation structure

* FPound unexpected metapopulation structure, so
had to generate multiple abundance estimates

* Estimates of population growth were imprecise

* No clear example (that I’'m aware of) of
successtul estimation of population growth
rate.

Mature individuals (thousands)
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Other applications

* Bluefin tuna (Bravington et al. 20106)

* Trout (Marcy-Quay et al., 2020, Ruzzante et al. 2019)
* Salmon (Wacker et al. 2021)

* Northern river shark (Bravington et al. 2018)

* Grey nurse shark (Bradford et al. 2018)

* Blue skate (Delaval et al. 2023)

* Arctic grayling (Prystupa et al. 2021)

* Christmas Island flying fox (LLloyd-Jones et al. 2023)

Microsatellites

SN Ps
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Primary costs

* Project design (Personnel)
* Perhaps 6 months (full time) to 1 year (part time) of personnel costs

* Sampling (Supplies)
* Most expensive supply (other than boat time) 1s disposable biopsy, if used (~$2 per sample)
* Reusable biopsy also available, but would require cleaning between samples

* Labwork/genotyping (Supplies/Services)
* Most expensive part other than personnel
* Includes:

* Initial sequencing of subset of samples and development of a genetic panel
* High-throughput sequencing of remaining samples (with genetic panel)

* There are options ...



Primary costs

No. loci genotyped

Approximate cost per sample ($US)?
Ease of library preparation®
Constrained to RAD tags
Approximate panel development cost®
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Sample throughput
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turnaround®

Initial sequencing
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RADseq
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Moderate, ~1 week
Yes

MNot applicable
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Complex pedigree reconstruction

Low

No
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No. loci genotyped

Approximate cost per sample ($US)?
Ease of library preparation®
Constrained to RAD tags
Approximate panel development cost®
Approximate panel development time®©
DNA quality required®

Bioinformatics expertise required

Utility for relatedness analysis’

Sample throughput

Potential for rapid (<2 week)
turnaround®

Initial sequencing

A

Panel options

A

RADseq Rapture GTseq

~20,000 500-10,000 ~500/panel
$30.00 $15.00 $6.00

Moderate, ~1 week Moderate, ~1 week Simple, 2 days

Yes Yes No

Not applicable $4,000 $13,000-$15,000¢
Mot applicable 4 months 4 months
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Intermediate/advanced

Complex pedigree reconstruction

Low

No

Beginner/Intermediate

Complex pedigree reconstruction

Medium
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High
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Meek and Larson 2019
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Considerations for application to cetaceans

* Sampling bias
* Probability of sampling a parent should not be correlated with the probability of sampling its

otfspring
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ROUGH sample size estimator

Rough sample size (S) requirements for 100 HSPs and 50 POPs

* Buckland et al. (20106) 23000
estimated that, based o
on an abundance of 200001
1.3 million offshore 19000
spotted dolphins, ::EEEE
tissue samples from 16000 {
~17,000 dolphins oo .
W()uld be needed for 13000 POP
conventional MR :‘:EEE
10000
* For PO CKMR, they e,
estimated 9,000 7000
samples oo
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Thank youl

Photo sources:

https://www.animalia.bio /atlantic-spotted-dolphin

https:/ /www.pexels.com/photo/dolphins-swimming-underwater-9638689

https:/ /www.pickpik.com/dolphin-ocean-sea-marine-mammals-meeresbewohnetr-animals-42213# 9000
od-vodoi-sineva-ryby-delfin.html

https:/ /commons.wikimedia.or


https://www.animalia.bio/atlantic-spotted-dolphin
https://www.pexels.com/photo/dolphins-swimming-underwater-9638689/
https://www.pickpik.com/dolphin-ocean-sea-marine-mammals-meeresbewohner-animals-42213#google_vignette
https://www.goodfon.com/animals/wallpaper-more-voda-pod-vodoi-sineva-ryby-delfin.html
https://commons.wikimedia.org/
https://www.flickr.com/photos/virtualwolf/6155634372

