#### Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission



#### BIGEYE TUNA IN THE EASTERN PACIFIC OCEAN, 2019: benchmark assessment

Haikun Xu, Mark N. Maunder, Carolina Minte-Vera, Juan L. Valero, Cleridy Lennert-Cody, and Alexandre Aires-da-Silva

11<sup>TH</sup> MEETING SCIENTIFIC ADVISORY COMMITTEE San Diego, California (USA) 11-15 May 2020 Postponed until a later date to be determined

# Issues with EPO tropical tuna stock assessments

- Management advice based on a "best assessment" approach
- *F* multiplier from the YFT and BET base case assessments used to determine the duration of the seasonal closure
- 2018: BET assessment model not reliable enough to determine closure (SAC-09 INF)
  - Assessment overly sensitive to new data (mainly for the indices of abundance from the longline fishery)
  - Other issues
- 2019: same conclusion extended to YFT assessment (SAC-10 INF-F)



#### 2018-2020: Workplan to improve the stock assessments of tropical tuna

- Included <u>external reviews</u> of the YFT and BET assessments
- Both external reviews suggested a <u>variety of alternative models</u> rather than a replacement for base case
- Change from "best assessment" to a <u>risk analysis approach</u> which considers multiple models and explicitly deals with stock assessment uncertainty



# The staff's pragmatic risk analysis approach

#### Described in Maunder et al. 2020 (SAC-11- INF-F):

- **1.** Identify alternative hypotheses ('states of nature') about the population dynamics of the stock that address the main issues in the assessments
  - YFT: SAC-11-J; BET: SAC-11 INF-F
- 2. Implement stock assessment models representing alternative hypotheses
  - YFT: SAC-11-07; BET: SAC-11-06
- 3. Assign relative weights to each hypothesis (model)
  - YFT: SAC-11 INF-J; BET: SAC-11 INF-F
- 4. Compute combined probability distributions for management quantities using model relative weights
  - SAC-11-08



## List of models *retained* in the risk analysis

| Model name | Number | Description                   | <i>h</i> =0.7 | <i>h</i> =0.8 | <i>h</i> =0.9 | <i>h</i> =1.0 |
|------------|--------|-------------------------------|---------------|---------------|---------------|---------------|
| Env-Fix    | 1      | Environment, Fixed            |               |               |               |               |
| Env-Gro    | 2      | Environment, Estimate growth  |               |               |               |               |
| Env-Sel    | 3      | Environment, Dome selectivity |               |               |               |               |
| Env-Mrt    | 4      | Environment, Adult mortality  |               |               |               |               |
| Srt-Fix    | 5      | Short-term, Fixed             |               |               |               |               |
| Srt-Gro    | 6      | Short-term, Estimate growth   | 48 model runs |               |               |               |
| Srt-Sel    | 7      | Short-term, Dome selectivity  |               |               |               |               |
| Srt-Mrt    | 8      | Short-term, Adult mortality   |               |               |               |               |
| Mov        | 9      | Pre-adult movement            |               |               |               |               |
| Gro        | 11     | Estimate growth               |               |               |               |               |
| Sel        | 11     | Dome selectivity              |               |               |               |               |
| Mrt        | 12     | Adult mortality               |               |               |               |               |





- Fleet definition fisheries and "surveys"
- Data catch, index of abundance, and size composition
- Model assumptions growth, natural mortality, recruitment, and selectivity
- The differences among the twelve models
- Model results



## **Fisheries**

| Fleet     | Gear | Set type | Years                      | Area | Catch data                    |  |  |
|-----------|------|----------|----------------------------|------|-------------------------------|--|--|
| FISHERIES |      |          |                            |      |                               |  |  |
| 1         |      |          | 1979-present               | 1    |                               |  |  |
| 2         |      |          | 1979-1993;                 | 2    |                               |  |  |
| 3         |      |          |                            | 3    | Detained established (1,000)  |  |  |
| 4         | LL   | -        |                            | 4    | Retained catch only (1,000)   |  |  |
| 5         |      |          | 1994-present               | 5    |                               |  |  |
| 6         |      |          |                            | 6    |                               |  |  |
| 7         |      |          | 1979-present               | 1    |                               |  |  |
| 8         |      |          | 1979-1993;<br>1994-present | 2    |                               |  |  |
| 9         | - LL | -        |                            | 3    | Retained catch only (tons)    |  |  |
| 10        |      |          |                            | 4    |                               |  |  |
| 11        |      |          |                            | 5    |                               |  |  |
| 12        |      |          |                            | 6    |                               |  |  |
| 13        |      | ОВЈ      | 1979-present               | 2    |                               |  |  |
| 14        |      |          |                            | 3    | Retained catch only (tons)    |  |  |
| 15        | PS   |          |                            | 4    |                               |  |  |
| 16        |      |          |                            | 5    |                               |  |  |
| 17        |      |          |                            | 6    |                               |  |  |
| 18        | PS   | OBJ      | 1979-present               | 2-6  | Discards of small fish (tons) |  |  |
| 19        |      |          |                            | 2    |                               |  |  |
| 20        |      | NOA+DEL  | 1979-present               | 3    |                               |  |  |
| 21        | PS   |          |                            | 4    | Retained catch only (tons)    |  |  |
| 22        |      |          |                            | 5    |                               |  |  |
| 23        |      |          |                            | 6    |                               |  |  |

This assessment uses the "areasas-fleets" approach



| Fleet     | Gear     | Set type | Years        | Area | Catch data  |  |  |
|-----------|----------|----------|--------------|------|-------------|--|--|
| "SURVEYS" |          |          |              |      |             |  |  |
| 24        | 24<br>25 | -        | 1979-1992    | 2-6  | Ne estables |  |  |
| 25        |          |          | 1995-present |      | No catches  |  |  |

- In Stock Synthesis: a "survey" is modeled as a fleet that has data, such as indices of abundance and age/length compositions, but no catch.
- Not real surveys: data for the two surveys are from the JPN commercial longline fleet
- No surveys in Area 1: indices of abundance from this area are likely not representative of the "core" region of the bigeye distribution





- Areas 2 and 3 are the main fishing grounds for both LL and OBJ fisheries
- Before 1993, catch (in metric tons) was primarily contributed by the LL fishery; after 1997, the OBJ fishery caught more bigeye than did the LL fishery



Note: longline catches are submitted in both number (Fisheries 1-6) and weight (Fisheries 7-12), but those submitted in number are converted to weight in this figure for comparison purpose

# Data - index of abundance



## New model and new data source for longline indices of abundance:

- Standardized using a spatiotemporal model (VAST)
- 1° cell x month x vessel catch and effort data from the JPN fleet

#### What's new in longline indices of abundance:

- The longline index is split into two indices: 1979-1992 (early) and 1995-2019 (late)
- **Different** catchabilities and selectivities for the two indices due to the change in HBF
- Use **time-varying** CV estimated by the spatiotemporal model
- **Different** average CVs for the two indices: estimated for the early index and fixed (0.15) for the late index



### Data - index of abundance

Contraction of the JPN longline fishery







Since 2010, the JPN longline fleet has decreasing fishing effort and spatial coverage in the EPO ->

Decreasing sample size and increasing unsampled area in the EPO ->

Increasingly more uncertain longline index ->

#### How to deal with the contraction of the JPN longline fishery?

Use time-varying index CV estimated by the spatiotemporal model -> the large CV in recent years means the index in those years is down-weighted in the stock assessment model



### Data – size composition



### Data – size composition

#### In the same area, LL fisheries catch larger bigeye than OBJ fisheries







Age at length data is available for the OBJ fishery (in Area 3) in the third quarter of 2002



- The age at length data is included in the three reference models that estimate the growth curve
- The data does not cover bigeye larger than 150 cm and older than 4 years



# Model (Env-Fix) assumptions - general

- Based on Stock Synthesis (v3.30.15), an integrated age-structured assessment model
- One stock of bigeye in the EPO
- Two sexes are included in the model only natural mortality is sex-specific
- Model 1979-2019 with a quarterly time step
- The maximum population age bin is 40 quarters
- The Francis method is used to weight composition data



# Model (Env-Fix) assumptions - growth



Estimated using an integrated approach that includes both age-at-length otolith data and length increment tagging data (Silva et al. 2015)

Issues with the estimation of growth curve:

- Very limited tagging data and no otolith data for large (old) bigeye: the estimated mean length at old ages are more uncertain
- Tagging data may not be representative of the EPO stock: limit in both space (tagged at 95°W) and time (tagged in 2000-2004)



Silva et al. (2015)

# Model (Env-Fix) assumptions - Natural mortality (M)

### age-specific vectors of natural mortality are assumed for bigeye





# Model (Env-Fix) assumptions - recruitment

- Beverton-Holt stock-recruit relationship
- Recruitment is quarterly: use the quarter-as-year approach
- Four steepness (*h*) are assumed: 1.0, 0.9, 0.8, 0.7
- No autocorrelation in recruit deviates
- Recruitment variability ( $\sigma_R$ ) = 0.6 (quarterly)
- Bias adjustment follows Methot and Taylor (2011)



# Model (Env-Fix) assumptions - selectivity



- Most fisheries have domeshaped selectivity
- A few fisheries have spline selectivity because there are more than one peaks in the aggregated length frequency
- One longline fishery has asymptotic selectivity



# Model (Env-Fix) assumptions - selectivity

Why choosing the longline fishery in Area 2 to have asymptotic selectivity? Period Mean length frequency Early Late factor(Area) 6 0.0 -50 100 150 Length (cm)



#### Differences are highlighted in red

| Model   | Years                   | R regime | Growth                | Natural mortality | F2 Selectivity | Auxiliary data |
|---------|-------------------------|----------|-----------------------|-------------------|----------------|----------------|
| Env-Fix |                         | Yes      | std (L <sub>1</sub> ) | Fix               | Asymptotic     |                |
|         |                         | Yes      | all six               | Fix               | Asymptotic     | age-at-length  |
| Env-Gro |                         |          |                       |                   |                |                |
|         |                         | Yes      | std (L <sub>1</sub> ) | Est (quarter 26)  | Asymptotic     |                |
| Env-Mrt |                         |          |                       |                   |                |                |
| Env-Sel |                         | Yes      | std (L <sub>1</sub> ) | Fix               | Dome-shape     |                |
|         | 1979-2019               | No       | all six               | Fix               | Asymptotic     | age-at-length  |
| Gro     |                         |          |                       |                   |                |                |
| Mov     |                         | No       | std (L <sub>1</sub> ) | Est (quarter 13)  | Asymptotic     |                |
| Mrt     |                         | No       | std (L <sub>1</sub> ) | Est (quarter 26)  | Asymptotic     |                |
| Sel     |                         | No       | std (L <sub>1</sub> ) | Fix               | Dome-shape     |                |
| Srt-Fix |                         | No       | std (L <sub>1</sub> ) | Fix               | Asymptotic     |                |
|         |                         | No       | all six               | Fix               | Asymptotic     | age-at-length  |
| Srt-Gro | <mark>2000</mark> -2019 |          |                       |                   |                |                |
|         | 2000 2015               | No       | std (L <sub>1</sub> ) | Est (quarter 26)  | Asymptotic     |                |
| Srt-Mrt |                         |          |                       |                   |                |                |
| Srt-Sel |                         | No       | std (L <sub>1</sub> ) | Fix               | Dome-shape     |                |

Years: which years are modelled

**R regime**: whether a recruitment regime parameter is estimated for 1979-1993

**Growth**: which growth parameters are estimated

**Natural mortality**: fixed or estimated for some ages

**F2 Selectivity**: the selectivity of Fishery 2 is asymptotic or dome-shape



Estimate growth (6 parameters):

The Richards growth curve

$$L(a) = L_{1} + (L_{2} - L_{1}) \left( \frac{1 - \exp(-K(a - a_{1}))}{1 - \exp(-K(a_{2} - a_{1}))} \right)^{1/b}$$

L<sub>1</sub>: mean length at age 0
L<sub>2</sub>: mean length at age 40 quarters
K: growth rate
b: shape parameter

standard deviation(L<sub>1</sub>)
standard deviation(L<sub>2</sub>)



# Reference models - Differences from model Env-Fix

Estimate pre-adult movement (1 parameter) The difference between male and female M is fixed





# Reference models - Differences from model Env-Fix

Estimate adult natural mortality (1 parameter) The difference between male and female M is fixed





# Model results - spawning biomass ratio



Spawning biomass ratio is sensitive to steepness in some, but not all, reference models



# Model results - spawning biomass ratio





The twelve reference models estimate a large range of spawning biomass ratio for 2019, from 0.1-0.4

The previous assessment model (SAC9) lies in the middle of the twelve reference models: six reference models are more optimistic and the other six are more pessimistic than the previous assessment model



# Model results - relative recruitment



Recruitment is not sensitive to steepness in all reference models



### Model results - relative recruitment

#### Regime shift is apparent in some, but not all, reference models





# Model results - annual fishing mortality

2000

2020



- Before 1993, the fishing mortality on adult bigeye was larger than that on juvenile bigeye
- Due to the expansion of the OBJ fishery, all models but Model Mov suggest that the fishing mortality on adult bigeye was smaller than that on juvenile bigeye since 2000
- All models suggest the fishing mortality on adult bigeye has been relatively stable since 2010 and that on juvenile bigeye continues to increase



# Model results – fishery impact plot



Blue: longline Purple: purse-seine Green: OBJ discard

Different models suggest different degrees of impact of the longline and purse-seine fishery, but in general:

- Discard had a small but noticeable impact
- The population before 1993 was primarily impacted by longline fisheries
- The population since 2000 was primarily impacted by purse-seine (i.e., OBJ) fisheries



Previous benchmark assessment:

- One base-case model with an assumed steepness of 1.0
- Management advice does not include probabilistic statements

This benchmark assessment:

- Explicitly considers model uncertainty
- Developed based on hierarchical hypotheses
- 4 assumed steepness (0.7, 0.8, 0.9, 1.0) X 12 models = 48 model runs



# Next step in the risk analysis approach

Described in Maunder et al. 2020 (SAC-11- INF-F):

- **1.** Identify alternative hypotheses ('states of nature') about the population dynamics of the stock that address the main issues in the assessments
  - YFT: SAC-11-J; BET: SAC-11 INF-F
- 2. Implement stock assessment models representing alternative hypotheses
  - YFT: SAC-11-07; BET: SAC-11-06
- 3. Assign relative weights to each hypothesis (model)
  - YFT: SAC-11 INF-J; BET: SAC-11 INF-F
- 4. Compute combined probability distributions for management quantities using model relative weights
  - SAC-11-08







