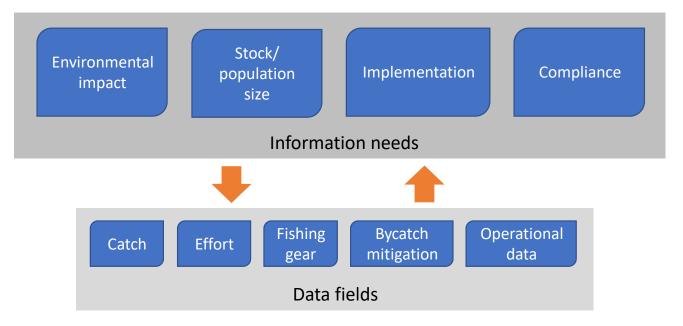


How much is enough?

Review optimization methods to deliver best value from electronic monitoring of commercial fisheries

J. Pierre, A. Dunn, A. Snedeker, M. Wealti



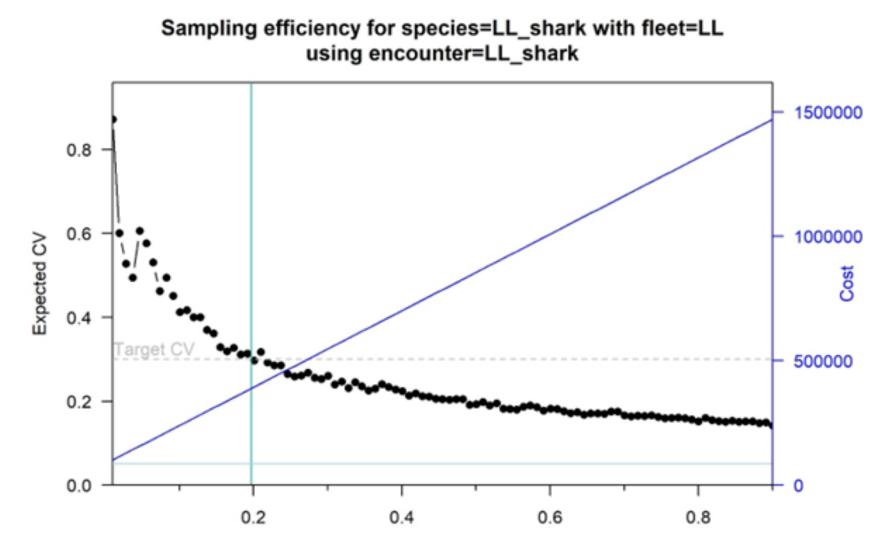
Ocean Environmental Marine research and data science

What did we do?

- Considered fisheries management data needs that EM can support
 - Review and case studies
- Developed *EMoptim,* a prototype simulation tool, to explore:
 - minimum EM review rates for single monitoring objectives
 - optimised EM review rates for more than one monitoring objective
 - effects of accuracy criteria on review rates
 - review costs
- Looked at other ways to reduce cost of EM review

Catch	Effort	Gear	Bycatch mitigation	Operational data
Catch composition: Target species, fish bycatch, ETP, megafauna • Landed • Discarded • Released • Life status	Start/end of set Start/end of haul Hooks per set Net length per set Searching time	Gear attributes, e.g., hooks/basket, floats, light sticks Use of FADs FAD type Net characteristics	 Bycatch mitigation: Use of mitigation measures Bycatch handling practices 	Location of fishing FAD deployments, maintenance Compliance Misc. (e.g. offal discharge, waste disposal – may be opportunistic)

Case studies


Program	Mgmt body	Method	Main monitoring objectives										
			Target species		Non-target species		Life			Bycatch			
				Catch	Length	Catch	Length	status	Discards	ETP	handling	Mitigation	Compliance
WCPO	WCPFC + Pacific EEZs	Longline	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark				
AGAC Pacific Indian Atlantic	IOTC ICCAT WCPFC IATTC	Purse seine							\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Chile	SERNAPESCA SUBPESCA	Trawl, purse seine, longline	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Atlantic USA	ICCAT	Longline	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
Alaska USA	NPFMC	Longline, pots	\checkmark		\checkmark			\checkmark				\checkmark	

EMoptim: A prototype simulation tool

- Operating model:
 - Spatially explicit
 - Customizable: region, fishery, fleet, etc.
- Evaluation model:
 - Explores P(event detection), uncertainty, bias
 - Calculates relative cost
- Optimization framework:
 - 2+ monitoring objectives
 - Provides review rate for best dataset
 - Specified confidence requirements, minimum review cost
- Inputs: fishery data, published information, expert opinion, etc.
- Stratified random sampling structures review effort

What does *EMoptim* produce?

Sampling rate

What did we find?

- Western and Central Pacific Ocean (WCPFC Convention Area)
- Longline, purse seine fisheries

		Statistical	Target	Longline fishe	ry review %	Purse seine fishery review %		
Catch element	Example species/group	characteristics of capture events	Target CV	No stratification	25°x30° stratification	No stratification	25°x30° stratification	
Target species	Yellowfin tuna	Lognormal	0.3	7.8	~1.0	3.8	~1.0	
	Thunnus albacares	p0 = 0	0.1	25.8	4.4	10.8	2.1	
Other retained	Porbeagle	Zif Poisson	0.3	9.4 - 11.7	3.2 - 4.2			
species	Lamna nasus	p0 = 0.40 - 0.80	0.1	37.9 - 90.1	10.8 - 26.9			
ETP species	Oceanic whitetip shark	Zif Poisson	0.3	11.1 - 47.4	3.8 - 18.3			
	Carcharhinus longimanus	p0 = 0.75 – 0.90						
		Zif Poisson	0.1	12.3 - 73.0	4.8 - 44.6			
		p0 = 0.75 – 0.90						
		Zif Poisson	0.3			~99.0	~99.0	
		p0 = 0.99	0.1					
	Silky shark	Zif Poisson	0.3			34.2	18.7	
	C. falciformis	p0 = 0.99	0.1			95.1	32.4	
	Black-footed albatross	Zif Poisson	0.3	~99.0	91.2			
	Phoebastria nigripes	p0 = 0.99	0.1	~99.0	95.1			
	Whale shark	Zif Poisson	0.3			~99.0	95.1	
	Rhincodon typus	p0 = 0.99	0.1			~99.0	~99.0	
ETP species	Seabirds	Zif Poisson	0.3	~99.0	18.4			
groups		p0 = 0.95	0.1	~99.0	~99.0			
	Turtles	Zif Poisson	0.3	76.4 - ~99.0	9.3 - 95.1	95.1 - ~99.0	8.4 - 87.2	
		p0 = 0.90 – 0.95	0.1	95.1 - ~99.0	84.1 - ~99.0	~99.0	80.4 - 91.2	
	Marine mammals	Zif Poisson	0.3	92.1	87.2	87.2	51.3	
		p0 = 0.99	0.1	~99.0	91.2	~99.0	~99.0	

*p0=proportion of zero catch sets

Optimization

		No stratification	Optimized stratification		No stratification	Optimized stratification			
Species	Target CV	% review	% review	Achieved CV	% review	% review			
- P	8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Longline						
Yellowfin p0 = 0	0.1	25.8	~1.0	0.05	25.8	~2.0			
Porbeagle p0 = 0.4	0.3	9.5	~2.0	0.22					
Purse seine									
Yellowfin p0 = 0	0.1	9.7	~1.1	0.09	~99.0	~99.0			
Oceanic whitetip shark p0 = 0.99	0.3	~99	~99	1.07					

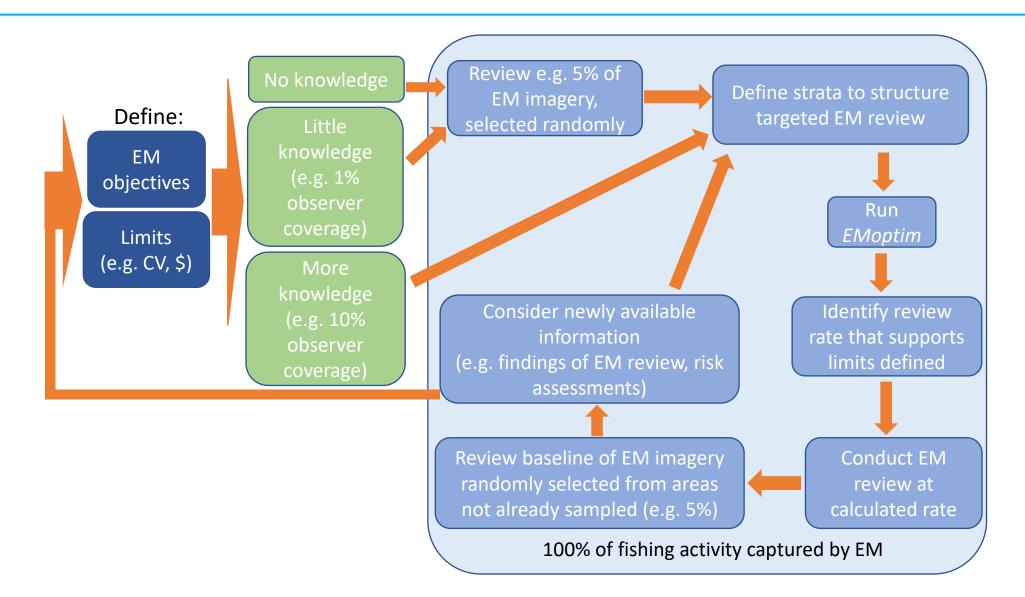
*p0=proportion of zero catch sets

How much review is enough?

Very broadly generalising review rates at moderate CVs to estimate catch composition:

- Commonly caught species 5-10%
- Less commonly caught species 10-50%
- Rarely caught species 50-85%
- Very rarely caught species 85-100%

- Stratified review can reduce required review rates
 - Less effective for rare, geographically widespread capture events
- More review -> higher confidence
- Statistical characteristics of capture events are critical determinants of review rates
- Best to use set-level data


Can review be optimized?

- The least commonly caught species drive optimized review rates
 - e.g. 1: Choose a review level and understand the accuracy associated with that.
 - e.g. 2: Accept that if the monitoring objectives include commonly and rarely caught species, commonly caught species will be oversampled if a single optimized review rate is used for all taxa.

http://www.seychellesnewsagency.com/articles/5768/Seychelles+takes+the+lead+with+electronic+monitoring+system+on+fishing+vessels

What if the budget for review is limited?

How to secure best value?

- Best practice remains 100% capture of fishing activity
 - Different levels of review are possible for different monitoring objectives (with scaling costs)
 - Closer management of 'cost per datum' is possible
- Support review efficiency through all EM program stages
 - Design phase (e.g. clear objectives, data definitions)
 - Onboard data capture (e.g. catch handling, camera views)
 - Review processes (e.g. hotkeys, AI assistance)
- Build on what others have already learned, to progress faster and at lower cost

https://mote.org/research/program/fisheries-ecology-and-enhancement/electronic-monitoring-project

Thank you

- A. Barney, K. Bigelow, J. Calahan, G. Campbell, I. Canive, L. Cocas, C. Heberer, J. Ferdinand, M.A. Herrera, G. Hurry, J. Keaton, G. Legorburu, J. López, B. McHale, M. Michelin, I. Miller, J. Morón, I. Moniz, JT Mudge, N. Munro, C. Paiva, J. Ruiz, J. Stahl, E. Torgerson, R. Toro, J. Tucker, H. Walton
- The Pew Charitable Trusts

Report:

Pierre, J.P., Dunn, A., Snedeker, A. and Wealti, M. 2022. How much is enough? Review optimization methods to deliver best value from electronic monitoring of commercial fisheries. <u>https://em4.fish/our-library/how-much-is-enough-review-optimization-methods-to-deliver-best-value-from-electronic-monitoring-of-commercial-fisheries/</u>

Contact: johanna@jpec.co.nz

