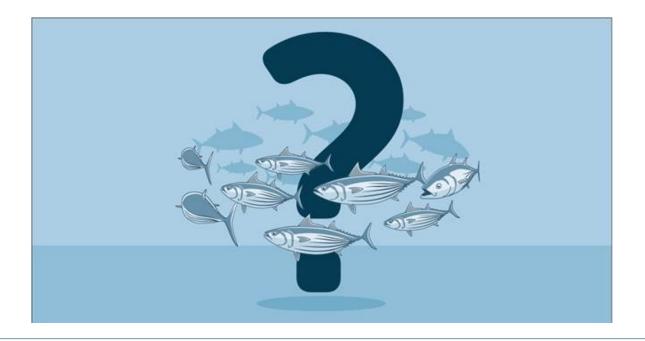


Toward true FAD deployment limits in the t-RFMOs

Doc. No. J-T-RFMO FAD WG 2019_Gershman_S:04


Dave Gershman, Grantly Galland, Glen Holmes

2nd Joint FAD Working Group Meeting

pewtrusts.org

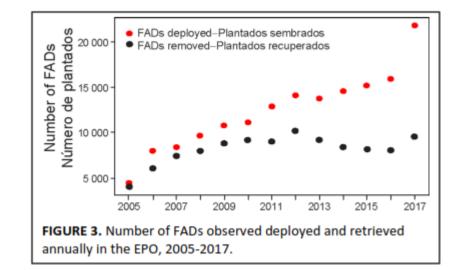
Outline

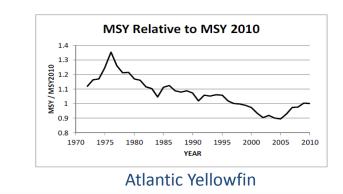
- Adjust buoy limits by adopting management objectives
- Consider legal, socio-economic and other priorities
- Ensure overall limit calculated at an RFMO scale

Growing numbers, globally

Just how many FADs are out there?

- EU 2014 report
 - 91,000
- Pew 2015 report
 - 121,000 new FADs every year
 - Conservative estimate
 - Significant increase in 2 years


An updated analysis of the number of fish aggregating devices deployed in the ocean



FADs – a problem?

Impacts of FAD deployments:

- Entanglement of marine life, ghost fishing
- Unrecovered devices become marine pollution, impacts on coastal resources
- Potential reduction in CPUE in areas of great FAD density, incentivizing FAD setting to detriment of juvenile/small yellowfin and bigeye stocks

RFMO FAD limitations

RFMO	Year	Most recent provision	Limit	In use according to
	adopted			literature reviewed
IATTC	2017	Res. C-17-02, Para 8	Class 6 purse seiner (1,200 m ³ and greater): 450	Very few made more
			active FADs	than 400 deployments in
			Class 6 (< 1,200 m ³): 300 active FADs	2016 (Hall and Roman,
			Class 4-5: 120 active FADs	2018)
			Class 1-3: 70 active FADs	
ICCAT	2015	Rec. 16-01, Para 16	500 FADs with or without instrumented buoys	200 FADs – daily average
			active at any one time	(Fonteneau et al., 2014)
				429 - average per year
				(Delgado et al., 2014)
IOTC	2016	Res. 18/08, Para 3	350 active instrumented buoys at any one time;	
			no more than 700 acquired annually for each	
			purse seine vessel	
WCPFC	2017	CMM 2018-01, Para 23	350 FADs with activated instrumented buoys	Few to no vessels have
			deployed at sea	more than 350 active
				FADs (Escalle et al., 2018)

- Despite some improvements, RFMO data collection insufficient to monitor FAD use
- Existing literature, however, indicates these limitations are not restrictive at the RFMO or fleet level

The need for objectives

- Develop management objectives for the buoy limitations
 - Establishes agreed-upon purposes and measuring sticks to assess success
 - Provides a basis to negotiate quantitative limits
- Candidate objectives could include:
 - Avoid adverse impacts to tropical tunas (such as via measurement of CPUE)
 - Limit impacts to habitats from FADs
 - Avoid further increase in number of FADs deployed
- RFMO members may articulate a range of socio-economic, legal and other priorities

Identify trade-offs

- Scientific analysis can help identify trade-offs between levels of FAD use and the objectives
- Consider the availability, or lack thereof, of complementary strategies:
 - Are FADs recovered?
 - Are biodegradable materials used?

Agree to RFMO cap

- A FAD deployment limit should be agreed on an RFMO basis
 - If number of vessels is not limited, the limit needs to be applied RFMO-wide
- Options for apportionment
 - Assigned to States, fleets, vessels
 - RFMO, regional-entity ownership
 - Trading among pooling participants

FAD Tracking to Track Use

- RFMOs and States should collaborate to collect electronic data from FAD buoys for science, management, and compliance
 - Information transmitted to industry on FAD location could be shared with RFMOs or science organizations at no additional cost
 - This has already proven successful in the WCPO through a project by the Parties to the Nauru Agreement and in the AO and IO through a collaboration between French industry and government scientists
 - Data can be displayed on a map to show drifts, locations, and potential fates of FADs
 - Analysis useful to refine management measures and develop more targeted interventions

In summary ...

- **1.** RFMO buoy limitations should be made restrictive
- 2. Develop management objectives to clarify the purpose and measure success
- 3. Limits should be applied as an RFMO-wide cap

