Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

Current indices of relative abundance for bigeye and yellow in in the EPO from standardized longline data, and their potential problems Carolina Minte-Vera

> WORKSHOP TO IMPROVE THE LONGLINE INDICES OF ABUNDANCE OF BIGEYE AND YELLOWFIN TUNAS IN THE EASTERN PACIFIC OCEAN La Jolla, CA, Feb 11-14, 2019

Outline

- How are the indices obtained
- Current indices of abundance
 - YFT
 - BET
- Potential problems
- Opportunities

Integrated stock assessment framework: Stock synthesis How are the indices obtained

INTER-AMERICAN TROPICAL TUNA COMMISSION COMISIÓN INTERAMERICANA DEL ATÚN TROPICAL

WORKING GROUP TO REVIEW STOCK ASSESSMENTS

7[™] MEETING

LA JOLLA, CALIFORNIA (USA) 15-19 MAY 2006

DOCUMENT SAR-7-07

STANDARDIZATION OF YELLOWFIN AND BIGEYE CPUE DATA FROM JAPANESE LONGLINERS, 1975-2004

by

Simon D. Hoyle and Mark N. Maunder

How are they computed

Input data

- Japanese fleet data
- Catch in numbers per hook
- Aggregated by:
 - year-quarter
 - 5 degrees latitude X 5 degrees of longitude
 - Hooks between floats category

Standardization model

- Delta lognormal approach:
- Two components:
 - Probability of encounter with a binomial model
 - Positive values with a lognormal model
 - Both models include the factors: year_quarter, lat_lon and hbf

- Delta GLM approach
- Binomial distribution (probability of zero catches)

 Lognormal distribuition for the positive values

 Index as the backtransformed least
squared means for the two model
components Data were analyzed with a delta GLM with a binomial distribution for the probability w of catch being zero and a probability distribution f(y) for non-zero catches, as in Equation (1) (E.J. Dick, NOAA Santa Cruz, personal communication; see Stefansson (1996) for a description of the method). Analyses were carried out to estimate an index for each year, which was the product of the back-transformed least-squares means for the two model components, $(1-w) \cdot E(y|y \neq 0)$. The variance of the likelihood function was weighted by effort.

 $\Pr(Y = y) = \begin{cases} w, & y = 0, \\ (1 - w)f(y) & \text{otherwise} \end{cases}$ (1)

The following combinations of explanatory variables were examined as categorical variables: latitude*longitude interaction, HBF. In the delta component, effort was also examined, since the probability of zero catch is likely to be affected by effort. Time was included as a categorical variable in all models.

w = g(Year*quarter, latitude*longitude, HBF, effort)

f(y) = h(Year*quarter, latitude*longitude, HBF)

Two distributions, gamma and lognormal, were examined for the non-zero data.

Hoyle and Maunder 2006, SAR 7 - 07

Hooks between floats

https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/MFR/mfr494/mfr4949.pdf

TABLE 1. Akaike Information Criterion (AIC) values for alternative model configurations. Model configuration is represented by the factors yrqtr (time effect), latlong (latitude-longitude interaction), and hbf (hooks between floats).

Fishery	Model	Distribution	AIC binomial	AIC positive	AIC total	Rank
BET N	yrqtr.latlong.hbf	lognormal	932.5	32961.1	33893.5	1
BET N	yrqtr.latlong	lognormal	925.6	33085.7	34011.3	2
BET N	yrqtr.hbf	lognormal	2009.0	37964.4	39973.4	3
BET S	yrqtr.latlong.hbf	lognormal	5330.8	210615.3	215946.1	1
BET S	yrqtr.latlong	lognormal	5361.0	211401.6	216762.6	2
BET S	yrqtr.hbf	lognormal	7321.4	222199.5	229520.8	3
BET S	yrqtr.latlong.hbf	gamma	5330.8	305207.1	310537.9	4
YFT N	yrqtr.latlong.hbf	lognormal	4064.8	13623.0	17687.8	1
YFT N	yrqtr.latlong.	lognormal	4071.0	13646.6	17717.6	2
YFT N	yrqtr.hbf	lognormal	4335.2	14590.0	18925.1	3
YFT N	yrqtr.latlong.hbf	gamma	4064.8	32368.0	36432.8	4
YFT S	yrqtr.latlong.hbf	lognormal	16200.5	157953.4	174153.9	1
YFT S	yrqtr.latlong	lognormal	16244.2	158246.1	174490.3	2
YFT S	yrqtr.hbf	lognormal	20478.9	186610.9	207089.7	3
YFT S	yrqtr.latlong.hbf	gamma	16200.5	294736.9	310937.4	4

Effect of the number of hooks between floats and the CPUE (Japanese fisheries in the EPO)

"The catch rate increased with HBF for bigeye, as expected given that bigeye forage at depth, and average hook depth tends to increase with HBF. Catch rate of yellowfin declined with HBF"

FIGURE 12: Relationship between the number of HBF and CPUE for yellowfin in the north southern fisheries.

FIGURE 11: Relationship between the HBF and CPUE for bigeye in the northern and southern fisheries.

Hoyle and Maunder 2006, SAR 7 - 07

16

18

20

Ratio of the CPUE standardized by all factors to CPUE standardized by time only

FIGURE 8: Ratio of CPUE standardized by all factors to CPUE standardized by time only for yellowfin tuna in the southern fishery

FIGURE 9: Ratio of CPUE standardized by all factors to CPUE standardized by time only for bigeye tuna in the southern fishery.

Indices by component

Proportion of positives

Lognormal - YFT

BET - Central

Binomial

Yellowfin tuna stock assessment

 purse-seine (PS) fishery (~ 96-98% of the catch in weight) and longline (LL) fishery (~2-4%)

Length comp data, aggregated across time by fleet

YFT fishery definitions and indices

IATT

Year-Año

In recent years the index for YFT tuna has been decreasing more than those from the PS fisheries, and is lower than predicted by the stock assessment model, while most of the PS indices are larger than the stock assessment model predictions

CIAT

Fit to length compositions SAC8 YFT

The size composition used for the catches are also used to correspond to the indices:

The length-frequency data for the JPN LL fleet is showing shifts towards larger sizes although the population seems to be stable

The sizes are larger than expected by the stock assessment model (positive residuals)

Year-Ano

length comps, whole catch, F12-LL_S

Bigeye tuna stock assessment

• Sources: purse-seine (PS) fishery and longline (LL) fishery

Indices in the bigeye tuna stock assessment

- Area-as-fleet approach: 11 PS fleets and 8 LL fleets
- Fit to size-composition data for PS and LL fisheries (downweighted)
- Fit to two indices of relative abundance derived from the longline fleet

Model fit to JPN longline CPUE (base case)

Retraction of the Japanese fleet in the EPO

Effort of the Japanese fleet in the EPO (total number of hooks by year)

Effort distribution (numbers of hooks) of the Japanese fleet in the EPO by year

Effort distribution (numbers of hooks) of the Japanese fleet in the EPO:

Confounding of abundance with changes in gear

Latitude

Changes of JPN LL fishery in EPO: targeting effects?

Changes of JPN LL fishery in EPO: targeting effects?

Figure 2. Geographical distribution by year of mean albacore ratio: albacore / (albacore + bigeye + yellowfin + swordfish + marlins)

Figure 56 in Hoyle et al 2010

WCPFC-SC6-2010/SA-WP-02

Lennert-Cody et al, 2012, SAC-04-05B

Ratios of standardized year-quarter effect estimated coefficients, by area, from NB GLM models, with and without vessel call sign effects

Potential problems:

- Mismatch between the index form LL for YFT and the indices from PS
- Length composition data is not standardized to represent the indices of abundance
- Retraction of the effort of the Japanese fleets: smaller sample sizes, nonrandom distribution of the fleet "preferential sampling"
- CV=0.15 for BET and CV=0.20 for YFT imply a strong weight of the indices in both assessments
- Increase uncertainty in the index not reflected in the stock assessment, the uncertainty is underestimated
- Possible changes in target species: recent years an increased emphasis in swordfish and albacore in certain areas of the EPO.
- Increase in vessel efficiency not taken into account

Opportunities:

- New stock assessment for bigeye tuna: revise the spatial definitions
- Potential inclusion of data for other fleets in the standardization
- Use of spatial- temporal models
- Analyze operational level data

Thank you!

