Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

C

IATTC

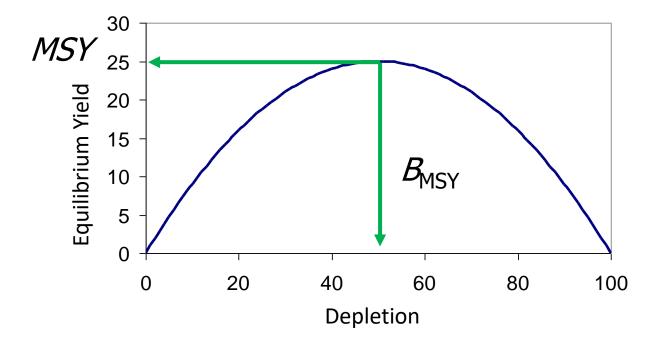
Reference Points

3rd IATTC Tropical Tuna MSE Workshop, *by videoconference*, December 08-09, 2022

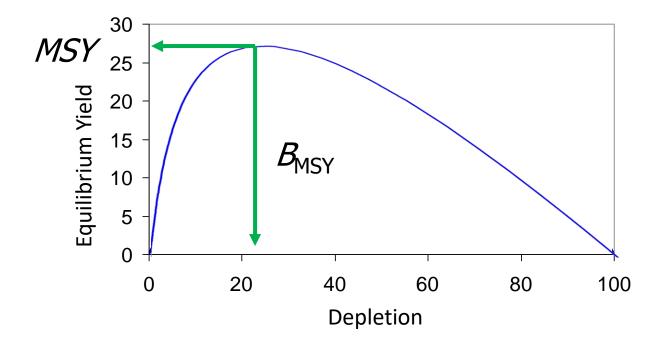
Outline

- Reference Points (RP)
 - Biomass, Mortality, Empirical
 - Target, Threshold, Limit, Rebuilding target
- Limit Reference Points, considerations
- RP for tuna and billfish stocks
- Summary
- Discussion on alternative reference points to consider

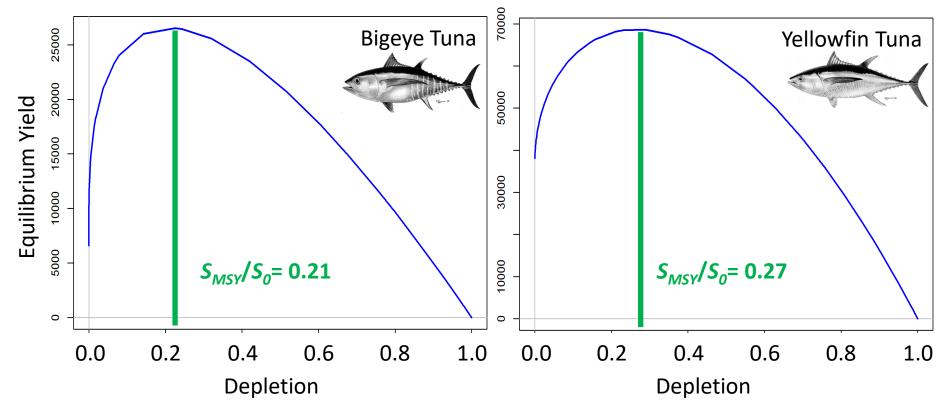
- Guidelines for management
 - Benchmarks against which the abundance of the stock, the fishing mortality rate or economic and social indicators can be measured to determine its status.
 - May or may not be part of a Harvest Control Rule

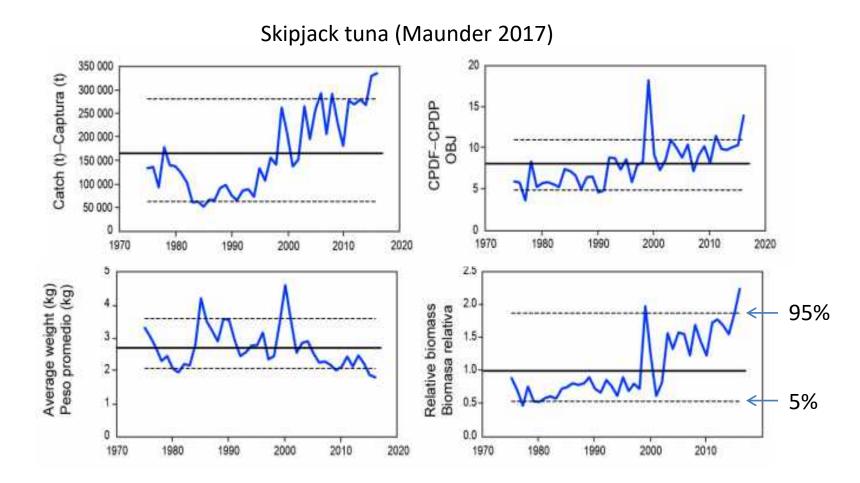

- May be based on model estimates (exploitation rates, biomass)
- May be based on empirical data (CPUE, effort, fish size)
- F_{MSY} and B_{MSY} dependent on stock-recruit relationships
- *B*_{MEY} based on **economics**
- F_{max} , $F_{0.1}$, $F_{35\%}$, $F_{40\%}$ based on **per-recruit** (assumes recruits independent of stock size)

Spawner Biomass-per-Recruit Reference Points


- SPR rates refer to the fishing mortality rate that corresponds to levels that would reduce the *unfished* Spawner biomass Per Recruit to a %
 - e.g, if you have 100 recruits, how many survive to spawn, how much they weigh or how many eggs they produce?
 - Depends on: gear selectivity, growth, fecundity at age, natural mortality rate

Spawner Biomass-per-Recruit Reference Points

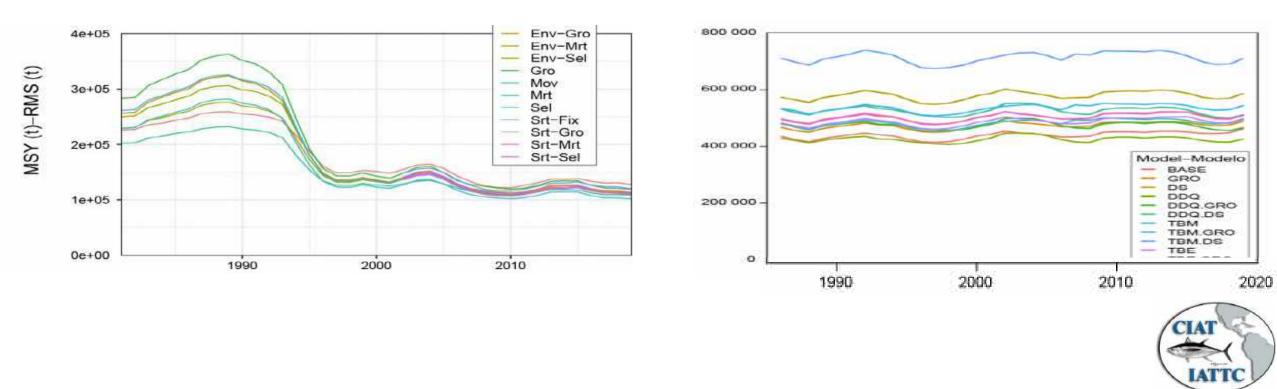

- *B*_{MSY}: biomass at which Maximum Sustainable Yield *MSY* is achieved.
- Shape depends on model: e.g. Schaefer

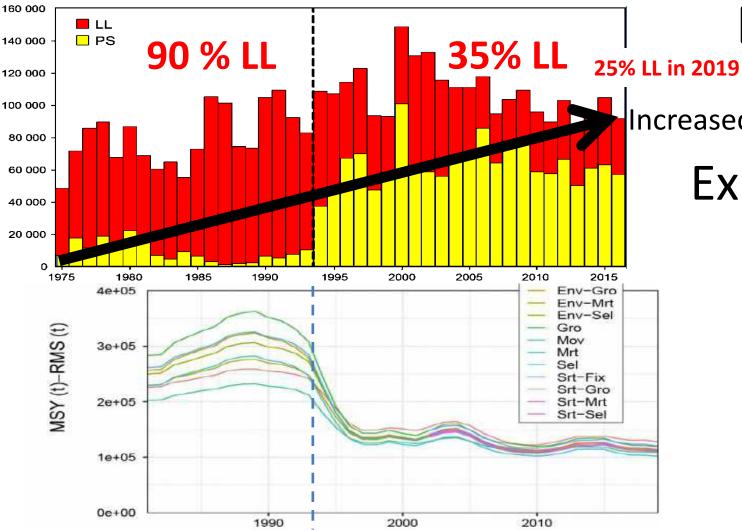

- *B*_{MSY}: biomass at which Maximum Sustainable Yield *MSY* is achieved.
- Shape depends on model: e.g. (Integrated age-structured model, SS)

- *B*_{MSY}: biomass at which Maximum Sustainable Yield *MSY* is achieved.
- Shape depends on model and biology (M, h, growth) and selectivity

Empirical Reference Points

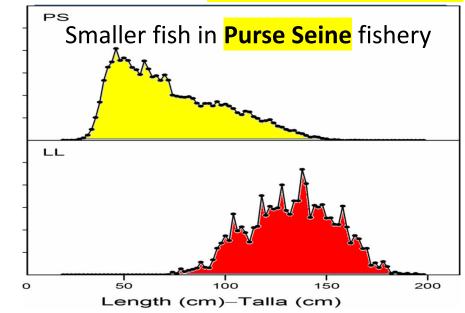
- PROS: Easier to compute, understand and communicate.
- CONS: Not commonly used, potential confounding of fishery and population processes, not clear if they are robust. Need evaluation


IATTC Target and Limit Reference Points


- IATTC adopted interim target and limit reference points in 2014.
- Target (TRP):
 - Biomass (B) and Fishing mortality rate (F) corresponding to maximum sustainable yield (B_{MSY} and F_{MSY})
- Limit (LRP):
 - *B* and *F* associated with a 50% reduction in unfished recruitment ($50\% R_0$) using a conservative stock-recruitment relationship (steepness, or h = 0.75).

IATTC Target Reference Point

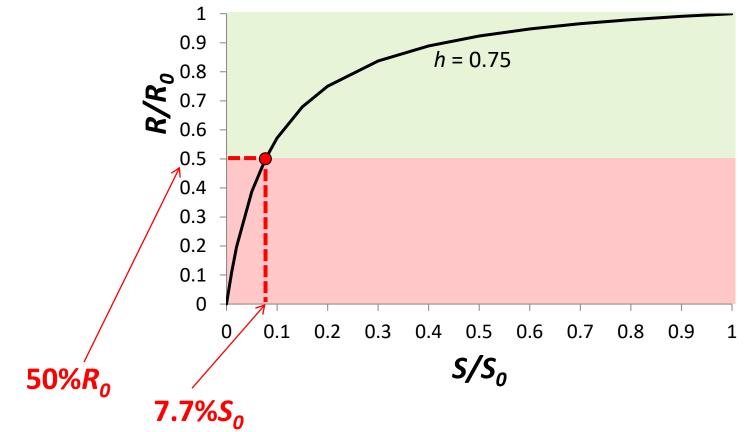
- Target:
 - Biomass (B) and Fishing mortality rate (F) corresponding to maximum sustainable yield (B_{MSY} and F_{MSY})
 - MSY varies with selectivity of different gears and changes in catch by gear



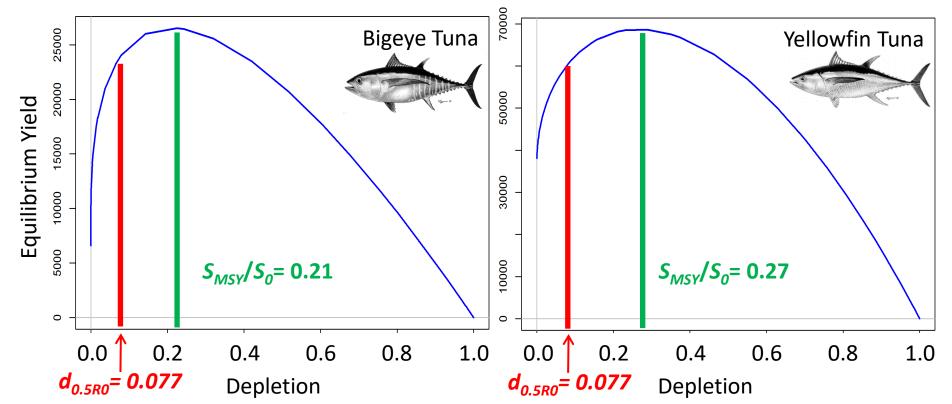
Decrease in Longline (Bigeye tuna)

Increased TOTAL catch

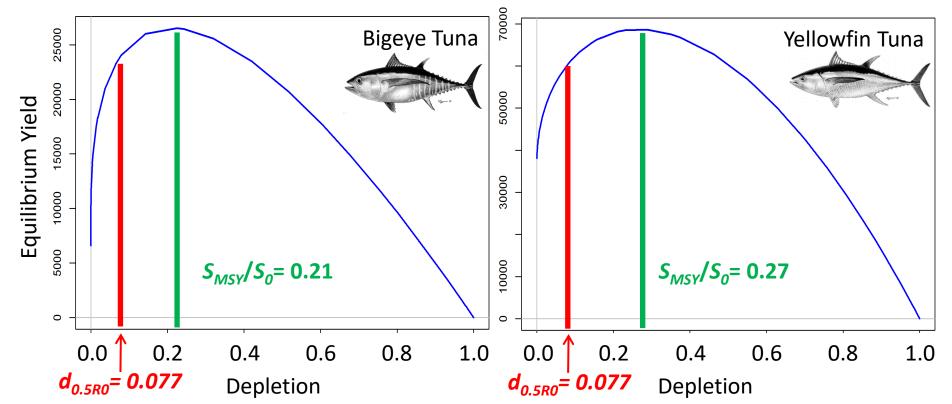
Expansion of **Purse Seine**

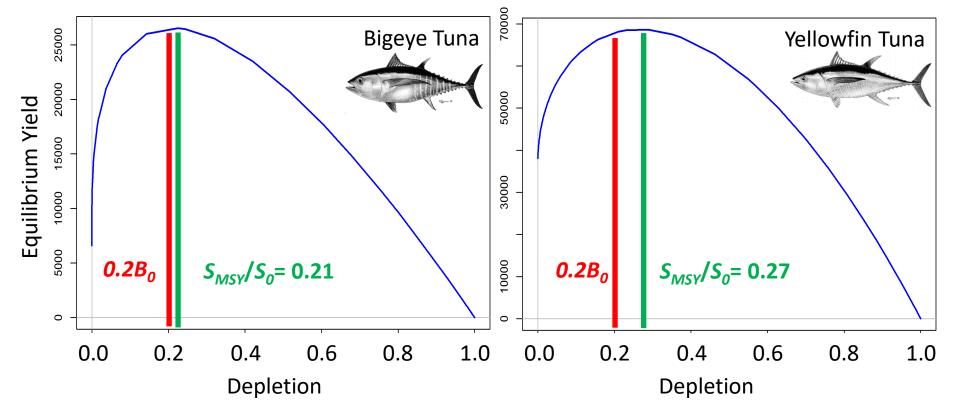


IATTC Limit Reference Point


• Limit (LRP):

- *B* and *F* associated with a 50% reduction in unfished recruitment ($50\% R_0$) using a conservative stock-recruitment relationship (steepness, or h = 0.75).


- B_{MSY}: Biomass at which Maximum Sustainable Yield, *MSY*, is achieved.
- Shape depends on model and biology (M, h, growth) and selectivity


Other Limit Reference Points

- 20%B₀ e.g. consider no policy with greater than 10% probability of dropping below 20% B₀ over a 20-year projection period.
- 20%B₀ commonly used LRP based on work by Beddington and Cooke (1983); Francis (1992) and Myers *et al.* (1994).
- However, $20\%B_0$ produces very close to MSY for most fish stocks. Thorson *et al.* (2011) found that B_{MSY} ranged from 26–46% B_0 for 147 fish stocks
- Problems with approaches based on a fixed proportion of B_0 : arbitrary, too cautious for some species, not cautious enough for other species.

- B_{MSY}: Biomass at which Maximum Sustainable Yield, *MSY*, is achieved.
- Shape depends on model and biology (M, h, growth) and selectivity

- B_{MSY}: Biomass at which Maximum Sustainable Yield, *MSY*, is achieved.
- Shape depends on model and biology (M, h, growth) and selectivity

Tropical tuna reference points, Harvest Control Rules, tuna RFMOs

RFM	O CCSBT	IATTC	ICCAT	ΙΟΤΟ	WCPFC
Element					
LRP	None	F _{0.5R0} and B _{0.5R0} with steepness of 0.75. Relates to a depletion of 0.077B0. (interim limits)	Pez espada N. Atlantico: 0.4 B _{RMS} (limite interino) Bluefin 40% of dynSSB _{MSY}	Atunas tropicales: 0.4 B_{RMS} (BET 0.5 B_{RMS}) y $1.4*F_{RMS}$ $1.3*F_{RMS}$ SKJ 0.2SSB ₀ y F $0.2*SSB_0$	Atunes tropicales y S. Pacific albacora: 0.2 $SB_{F=0}$ (0.2 B_0) evaluado usando niveles de reclutamiento recientes
TRP	Interim 30%TRO achieved with 50% probability by 2035	B _{MSY} and F _{MSY}	Cuadrante "Verde" de grafica de Kobe	Atunas tropicales, albacora B _{RMS} and F _{RMS}	Ninguno para BET ni YFT Skipjack 0.5 <i>B</i> _{F=0}
HCR	Empirical (gene-tagging, CPUE and Close-Kin Mark Recapture indices)	Model-based: Reduce F to F_{MSY} if it exceeds this value. Si 10% o mayor probabilidad de exceeder el limite	Empirica para Atlantic bluefin tuna	Modelo-basada para SKJ, BET	Ninguno

Summary

- Potential issues of specifying reference points that may not relate to specific life histories of stocks
- IATTC current TRP are model-based biomass and fishing mortality at MSY
 - MSY has changed over time, BET
 - $-F_{multiplier}$ for YFT with large increase in 2020
 - No model estimate of MSY quantities for SKJ
- LRP cannot be evaluated in isolation of other elements of strategy (TRP, HCR), harvest strategy
- Which LRPs are appropriate depends on management action to be applied if the limit is exceeded.

Questions for Discussion from previous Workshops

- **Dynamic & Equilibrium Reference Points**? Do we adjust for changes in recruitment history?
 - –Dynamic targets F_{MSY} and B_{MSY} (probability around them not defined, 50%?)
 - -Equilibrium limits for F and B (not to be exceeded, 10% probability)
 - Finding corresponding Probability values relative to risk but not so low that are difficult estimate appropriately
 - Relate interpretation of limits or triggers to the action to take
- Should we consider additional control points in addition to Target and Limit Reference points, for example to create precautionary buffers to scientific or implementation uncertainty?
 - -Should *F*_{MSY} only be considered a target? Limit? Buffer? Relationship between limit and recovery to target?
 - -Consider terminology such as HCR control parameters vs. RP
- Suggestions by the US to be emailed to Staff
- Control points of HCR vs Limit and Target reference points

Alternative Reference Points to consider for BET MSE

- Dynamic & Equilibrium Reference Points
 - –Dynamic targets F_{MSY} and B_{MSY} (probability around them not defined, 50%, 60%, 75%?)
 - -Equilibrium limits for F and B (not to be exceeded, 10% probability)
 - Finding corresponding Probability values relative to risk but not so low that are difficult estimate appropriately
- Should we consider additional control points in addition to Target and Limit Reference points, for example to create precautionary buffers to scientific or implementation uncertainty?

-Should F_{MSY} only be considered a target? Limit? Buffer? Relationship between limit and recovery to target?

• Control points of HCR vs Limit and Target reference points

-Consider terms such as HCR control parameters (defining management action) vs. RP (defining status)

• Suggestions by the US emailed to Staff

Proposed Reference Points

Based on submission by the USA delegation

Target RP	Threshold	Limit RP
F40 and F30 SSB _{40%} and SSB _{30%}		$F_{\rm MSY};$ $0.5*B_{\rm MSY}$
F40 and F30	SSB30% or SSB20%	$F_{\rm MSY};$ $0.5*B_{\rm MSY}$
F40 or F30	SSB30% or SSB20%	$F_{0.5R0}$ and $S_{0.5R0}$, where $h = 0.75$ ($S_{0.5R0}$ is equivalent to 7.7% SSB ₀)

