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Think of a number

There is an unknown integer between 0 and 100. What is it?

Kelly told me the number was between 5 and 15

Jim told me the number was between 3 and 14

Angela told me the number was between 9 and 17

Kevin told me the number was between 8 and 14

Dwight told me the number was between 3 and 12

Pam told me the number was between 12 and 18
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Think of a number example

We are interested in the some variable y that is informed by m
models with xi being the ith model.

Initially we know y is between

0 and 100, i.e,

p(y) ∼ unif{0, 100}

and after Kelly's information

p(y |xKelly) ∼ unif{5, 15}

and after Jim's information

p(y |xKelly, xJim) ∼ unif{5, 14}

and so on...
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Average (possibly weighted)

The estimate of the truth ỹ is

ỹ =
m∑
i=1

wixi ,

where
∑m

i=1 wi = 1.

If

E (xi ) = y

then

lim
m→∞

ỹ = y .
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Average (possibly weighted) � example

Unweighted example: wi =
1
6
for all i ,

Taking each persons

expectation

10+ 8.5+ 13+ 11+ 7.5+ 15

6
= 10

5

6

Weighted example: weighted by the precision of the estimate,

wi ∝ 12
r2i −1

for all i , Taking each persons expectation and ri to be

the range then the estimate is 11.68636.
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Average (possibly weighted)

Why would this be true?

Model can be

�tted to the same data

built with same knowledge

have similar processes

�tted by similar or sometimes the same people
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Weighted model

One of the models is right (e.g. Bayesian model averaging), implies

p(y) =
m∑
i=1

wip(y |xi ),

where
∑m

i=1 wi = 1.
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Weighted model � example equally weighted
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Weighted model � example equally weighted � after Angela
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Weighted models � adding an m + 1 model

With m models we asked,
One of these m models is the truth, which one?

and then when we have m + 1 models we ask,
One of these m + 1 models is the truth, which one?
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Adding to our knowledge

Ensemble modelling is using all of the information at once.

That is

p(y |x1, . . . , xm) =
p(y)p(x1, . . . , xm|y)

p(x1, . . . , xm)

=
p(y)p(x1|y)p(x2|y , x1) . . . p(xm|y , x1, . . . , xm−1)

p(x1)p(x2|x1) . . . p(xm|x1, . . . , xm−1)
.

What if we added an m + 1 model? Then,

p(y |x1, . . . , xm+1) =
p(y |x1, . . . , xm)p(xm+1|y , x1, . . . , xm)

p(xm+1|x1, . . . , xm)
.

Hence we need to know

p(xm+1|y , x1, . . . , xm).
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What does a model say?

We know that

xi = y + δi ,

where δi is the discrepancy.
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What time is it?
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What does a model say?

We know that

xi = y + δi ,

where δi is the discrepancy.

The Roman numeral clock has

E (δ1) = 1 hour

and

var(δ1) = 0.

The decimal clock has

E (δ2) = 0

and

var(δ2) = 12,

with

δ2 ∼ U[−6,6].
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Discrepancy example
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Modelling discrepancy

We know

xi ,t = yt + δi ,t .

Lets say

xi ,t = yt + νi + ζi ,t

with

ζi ,t = ρiζi ,t−1 + ϵi ,t

and

ϵi ,t ∼ N(0, σ2i ).
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Modelling discrepancy
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Modelling discrepancy

Look again at the equation

xi = y + δi

+ ϵi ,

where ϵi is model speci�c error (e.g. parameter uncertainty). We

could say

xi = y + ν + ηi + ϵi

with E (ηi ) = 0 and var(ηi ) = σ2η.

Ensemble modelling can be mixed e�ects modelling
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Summary

Averages and weighting models comes with some strong

assumptions

These incorrect assuptions can lead to increase uncertainty

with more knowledge

Examining discrepancies can utilise information

Ensemble modelling is a regression problem e.g. random

e�ects model
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EcoEnsemble
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Subjective beliefs - example prePam

The beliefs after Dwight were

p(y |xKelly, . . . , xDwight) =

{
1
4

if y = 9, 10, 11 or 12

0 otherwise.

with Pam being

p(y |xPam) =
p(y)p(xPam|y)∑100
z=0 p(z)p(xPam|z)

=

{
1
7

if y = 12, 13, 14, 15, 16, 17 or 18

0 otherwise.

= p(xPam|y)
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Subjective beliefs - example including Pam

Adding Pam's information, we get

p(y |xKelly, . . . , xDwight, xPam) =
p(y |xKelly, . . . , xDwight)p(xPam|y)∑100
z=0 p(z |xKelly, . . . , xDwight)p(xPam|z)

=

{
1 if y = 12

0 otherwise.
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Weighted model � example weighted
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Adding to our knowledge

What if the m + 1 model was the same as the �rst, and we knew

that?

Then,

p(xm+1|y , x1, . . . , xm) = p(xm+1|x1).

and so

p(y |x1, . . . , xm+1) = p(y |x1, . . . , xm).

We learnt nothing.
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What time is it?
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