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Objective
Evaluate the use of machine learning
techniques for estimation of bycatch

Photo: Michael Patrick
O’Neill/SWOT



Study system: shallow-set longline

* Hawaii shallow-set longline fishery has 100% observer coverage
* This allows us to estimate bycatch and compare estimates to true take

Photo: NOAA



Methods

Developed Ensemble Random Forest method using all 2005-2021 shallow-
set longline data (n=18,988 sets)

* Leave one out approach (16 years training, 1 test)

Focused on 5 protected species:
* Oceanic whitetips (n=667 sets with interaction)
* Laysan albatross (n=417)
* Black-footed albatross (n=354)
* Loggerheads (n=204)
* Leatherback (n=105)

Used a set of 26 environmental covariates derived from GPS coordinates of
longline set and retrieve locations

Environmental Covariates
Bathymetry SST Current Current Chl a front Wind Dist. to wind
(meridonal) | speed speed front
Lunar phase SST front | Current Current Dist. to chl a Wind Log(dist. to
flow vorticity front vorticity wind front)
Dist. to Dist. to Current Current Wind (zonal) Wind
seamount SST front | front divergence divergence
SLA Current Log(current | Log(chl a) Wind Wind
(zonal) front) (meridonal) direction




ERF framework
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Leave-one-out results
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Sequential addition

* Attempting to assess training data needs

* For 2010-2021: compared models that only
used previous years and those that used all data
e Examples:
* For 2010, used 2005-2009
* For 2017, used 2005-2016



Sequential addition results
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Takeaways

* Method works best for species above 2% interaction rates
* Whitetips, Laysan albatross, Black-footed albatross (sort of)

* Error-corrected results generally better, especially over the long term

* Training data needs vary, but approximately 7-12 years for most
species
* 7,000 - 12,000 sets



Comparing to ratio-based estimators

Can ERF method help reduce observer coverage needs?
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| Systematic sample
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Methods

For each test year (2005-2021),
we repeated this procedure for
each species at many coverage
levels

Compare estimates

HTE
Estimate
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Compared by 4 metrics

Photo: NOAA Fisheries



Mean Pearson Correlation: Estimate vs. Actual
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Summed Scaled Metrics (O to 1 scale)

What happens if you combine all of these metrics?

Oceanic Whitetip Laysan Albatross Black-footed Albatross

Loggerhead

Leatherback
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summary

S pias yariability

. o
* ERF framework can produce biased estimates
while ratio-based estimator is unbiased

* However, variability of bycatch estimates is
substantially reduced at low coverage levels

* Combining all metrics, ERF method preferable
for oceanic whitetips and Laysan albatross

* How much bias is acceptable if observer costs
and estimate variation can be reduced?
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Thank you for listening!




