Towards a Tropical Tuna Buoy-derived Abundance Index (TT-BAI)

J. Santiago, J. Lopez, G. Moreno, I. Quincoces, M. Soto and H. Murua

LA JOLLA, 05/25/2016

5/15/2016 1

- Conventional fishery-independent surveys are not practicable for highly migratory widely distributed tuna stocks;
- CPUE is the standard abundance index used to guide the assessment of tuna stocks;
- PS-CPUE data are notoriously problematic;
- Catchability (q) is rarely constant and depends on a number of different components;
- Fishing efficiency and dynamics of the fleet are evolving very rapidly due to the fast technological development and the sharp increase of the use of FADs.

CPUE ~ q x Biomasa

competitors oceanography Type and size of preys Habitat disponibility size specie maturity age Habitat preference **Vessels characteristics** catsat skipper echo-sounder location time Depth of the set azti day

Bird radar

sonar

DFADs

5/15/2016

- One of the most important technological developments: satellite linked echo-sounder buoys.
- rapidly spread between all the purse seine fleets worldwide since mid-2000's.
- causing rapid changes in the fishing strategy and fleet behavior
- potential of being a privileged observation platform to evaluate abundances of tunas and accompanying species using catch-independent data.

CPUE ~ q x Biomasa

competitors oceanography Type and size of preys Habitat disponibility size specie maturity age Habitat preference **Vessels characteristics** catsat skipper echo-sounder location time Depth of the set azti day

Bird radar

sonar

DFADs

5/15/2016

BAI ~ λ x Biomasa

competitorsoceanographyType and size of preysHabitat disponibilitysizespeciematurityageHabitat preference

echo-sounder

location

time

 Initial examination of some of the features of the information potentially available from satellite tracking echo-sounder buoys used and provided by the Spanish TT PS and associated fleet to ultimately develop a "fishery semi-independent" abundance index.

TT-BAI MATERIAL & METHODS

- **1 month** : March 2011 (AO & PO) & October 2011 (IO)
- 38 vessels / 11,705 buoys / 4,196 with echo-sounder
- > 1,200,000 records [position] /568,000 echo-sounder records

TT-BAI MATERIAL & METHODS

3 types of buoys

	Brand A	Brand B	Brand C	
Operating frequency (kHz)	50	190.5	120	
Range (m)	150	115	100	
Number of layers	50	10		
Energy source	Solar panels	Battery	Solar panels	

TT-BAI MATERIAL & METHODS

	BRAND A		BRAND B		BRAND C		ALL	
	All	EPO	All	EPO	All	EPO	All	EPO
Vessels	-	-	38	17	31	14	38	17
Buoys	1,634	186	5,522	1,339	4,549	475	11,705	2,000
Buoys with echo-sounder	1,634	186	2,271	558	291	0	4,196	744
% Buoys with echo-sounder	100	100	41,1	41.7	6,4	0	35,8	37%
Number of records	575,966	66,701	262,361	77,342	459,915	58,485	1,298,242	202,528
Acoustic records	486,109	56,864	28,528	10,409	53,368	0	568,005	67,273
Daily acoustic records	38,799	4,909	17,902	6,806	7,825	0	64,526	11,715
Daily positive records	23,443	3,683	14,247	5,638	6,792	-	44,482	9,321
% positives	60%	75%	80%	83%	87%	-	69%	80%

- Ways to integrate buoy information into a catchindependent abundance index for tropical tuna, including
 - filtering for acoustic data reductions and exclusions
 - identify factors that should be considered in the analysis, either because they may affect the assumption that the acoustic records are proportional to tropical tuna abundance or may influence the coefficient of proportionality (φ).

BAI = Buoy-derived Abundance Index

$$BAI_t = \varphi \cdot B_t$$

- standardization of nominal measurements of the echosounders using a Generalized Linear Mixed Modelling approach.
- Delta method, estimating the predicted abundances as the result of two processes:
 - i. the probability of encounter tropical tuna in the acoustic observations (proportion of positives) and,
 - ii. the mean relative abundance given that a positive observation has been realized.

TT-BAI RESULTS

5/15/2016 13

TT-BAI RESULTS

Number of acoustic records

Longitude

TT-BAI RESULTS

SKJ

IATTC catch data

Considerations for the exclusion of records

- Time after deployment (or fishing event) [<5 days]
- Vertical range of the buoy [<25 m non target spp]
- Time of the day [sunrise?]
- Bottom depth [<200 m]</p>
- Speed of the buoy [>3 kn]

Variables to be considered in the standardization apart from year, month, area:

- Soak time
- Buoy type
- Depth of the acoustic layers
- Bearing and speed
- Density of FADs
- Environmental variables
- Species composition underneath the FAD

- Work in progress;
- Very valuable information to build "Fishery Independent" Biomass Index for use in the stock assessment
- But also to investigate the effect of dFADs on Tuna populations and ecosystem;
- Long term project which will use acoustic discrimination of species/sizes;
- Collaborative project between scientist and vessel owners.

