INTER-AMERICAN TROPICAL TUNA COMMISSION

2nd REVIEW OF THE STOCK ASSESSMENT OF BIGEYE TUNA IN THE EASTERN PACIFIC OCEAN

La Jolla, California (USA) 11-15 March 2019

DOCUMENT WSBET-02-03

DATA FROM LONGLINE FISHERIES

Carolina Minte-Vera, Haikun Xu, Nickolas W. Vogel, Joanne E. Boster, Cleridy Lennert-Cody, Mark N. Maunder, Alexandre Aires-da-Silva

CONTENTS

1.	Introduction	
2.	Catches	 1
	Discards	
	CPUE	
5.	Size-composition data	
	Other data	

1. INTRODUCTION

The longline fisheries for bigeye tuna historically had the highest catches until the expansion of the purseseine fisheries in the mid-nineties. Currently, the indices of abundance used in the stock assessment are derived from standardized catch per unit effort (CPUE) data from the longline fisheries, and provide the stock assessment model of bigeye tuna with the best available information on changes in relative abundance over time (Xu *et al.* 2018). Both the index of abundance and the size composition data used to represent all longline fleets exploiting bigeye tuna in the eastern Pacific Ocean are derived from data submitted by Japan.

In this document we describe the data from longline fisheries that fish for bigeye tuna in the eastern Pacific Ocean as well as the methodology for calculation of the longline catches by stock assessment strata. For a comprehensive metadata description of the longline data held by the IATTC see Griffiths and Duffy (SAC-08-07b).

2. CATCHES

2.1. Data provided by countries

2.1.1. Annual submission

The availability of catch data from the longline fisheries varies among the countries. Data on the spatial and temporal distributions of the catches in the EPO by the distant-water longline fleets of China, Chinese Taipei, French Polynesia, Japan, and the Republic of Korea, by the coastal nations fleets such as Mexico and the United States, and other nations are maintained in databases of the IATTC.

IATTC Resolution C-03-05 establish the data reporting requirements for the longline fleets. Level-3 catch and effort data as a minimum requirement (data on the resolution of 5° latitude by 5° of longitude –month, Box 1). Whenever possible, more detailed Levels 2 and 1 catch and effort data and length-frequency data should be submitted. The data should be provided by species and fishing gear, and the deadline for the

annual submission is June 30 of every year. Catch data not provided in the above format are usually obtained aggregated over a year and are provided by countries, or obtained from official websites or reports. These catch data may include catch from methods other than longline, but excludes purse-seine catch by the observer and logbook programs. More detailed data are also provided to the IATTC by member countries on an *ad hoc* basis. The availability of the Level-3 catch and effort data by 5°x5° is shown in Table 1. Some of the catch is reported in numbers of fish, some in weight, and some in both.

Box 1 –IATTC Resolution C-03-05

IATTC resolution C-03-05 on Data Provision established that "the data be provided, by species and fishing gear, where practical, via vessel logbooks and unloading records, and otherwise in aggregated form as in the following table, with Level 3 catch and effort data as a minimum requirement, and, whenever possible, Levels 2 and 1 catch and effort data and length-frequency data."

Category	Level	Resolution	Data
	1	Set-by-set, logbook data with infor-	Tatalastak in muchana and
	L	mation on gear configuration and target species	Total catch in numbers, and weight if available; fishing effor
Catch and effort	2	1°x1°-month, with information on gear configuration and target species	
	3	5°x5°-month, with information on gear configuration and target species	
	1	Set position, start or end of set	Length or weight of individual
Length frequency	2	Grid position, best possible spatial- tem- poral resolution of area of capture	fish

The following exceptions shall apply to the immediate entry into force of this resolution:

- a. For vessels of less than 24 meters in length overall, the requirements of this resolution shall not enter into force until 1 January 2007. However, each member shall make its best efforts to provide as much data as possible for these vessels.
- b. Catch data from artisanal vessels may be reported as total annual catches, without data on fishing effort.
- c. Catch data from recreational fishing vessels may be reported as total annual catches, without data on fishing effort.

Eighteen CPCs¹ have reported at least one year of bigeye annual catch on longline or other non-purse seine gears to the IATTC. Of those, nine had reported level 3 gridded 5°x5°–month data for four years or more (Table 1). When annual data (in weight) and level 3 data are both available, we computed the coverage of the level 3 data by assuming the annual data is the total catch of bigeye tuna for the CPCs in the EPO.

Japan reported the Level 3 data exclusively in numbers (Appendix I). The numbers transformed into weight using the average weight reported by Matsumoto and Bayliff (2008) indicate that the coverage of the Level 3 data is most likely 100% (Figure 1).

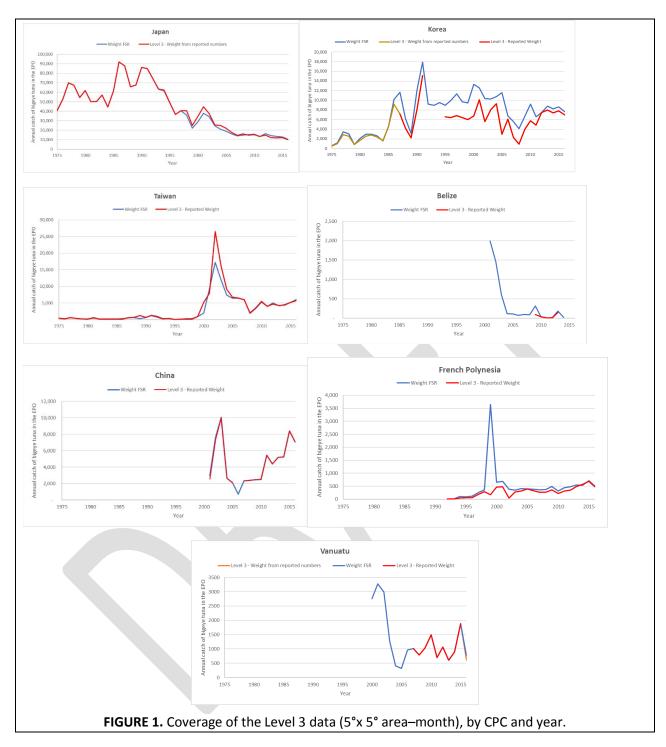
Korea.reported Level 3 data in numbers from 1975 to 1986 (Appendix I). For the other year when Korea reported level 3 data, both numbers and weight were reported, except for 2003-2005, for which only weight was reported. For most of the series, the Level 3 data has less than full coverage (Figure 1) and needs to be raised.

¹ Members and Cooperating non-Members

Chinese Taipei level 3 data reported was in both numbers and weight for the whole period (Appendix I). In several years from the mid 90's to the mid 2000's, the level 3 weight data reported summed, for the EPO on an annual basis was larger than the data used in the FSR (Figure 1).

United States of America also reports exclusively numbers (Appendix I). There is no average weight available, the coverage Level 3 data is 100% according to the meta-data information submitted by USA.

Vanuatu has reported catches since 2000, but only in 2007 did it start to report level 3 data in both numbers and in weight (Appendix I). Only for 2016 was the data reported only in numbers. Those values were transformed to weight using the average weight for the series. It is likely that the coverage of the level 3 data is 100% (Figure 1).


Belize has reported catches since 2001, and for 2009 -2013 reported level 3 data in both numbers and in weight (Table 7). The level 3 data available has less than full coverage (Figure 1).

China has reported total annual catches as well as level 3 data since 2001, except for 2006 when no level 3 data was reported. For 2001 to 2005 (and 2007) only weight was reported. Both numbers and weight level 3 data have been reported since 2008 (Appendix I). The level 3 data available has 100% coverage for the whole series, with exception of 2001 (Figure 1). To compute the distribution of catches in space and quarter for 2006, the FSR data will have to be split assuming the same ratio as in previous years.

French Polynesia has reported total annual catches as well as level 2 data since 1992. For most of the series, except for recent years (2014-2016), the level 3 data has less than full coverage. A notable year is 1999, when the level 3 weight data was only 5% of the FSR catches. That year's catches were much larger that the preceding and subsequent ones (Appendix I, Table I.8).

	1.00 -0.			
Flag	Numbers of years	Catch ra	nge FSR (t)	Number of years
	FSR	Min	Max	Level-3 data
JPN	42	10,427	91,981	42
KOR	42	606	17,883	39
TWN	42	77	17,253	42
USA	31	1	3,050	25
PYF	25	7	3,652	25
CRI	24	1	28	*
CHL	18	1	37	*
ECU	17	5	852	*
VUT	17	318	3,277	10
CHN	16	709	10,066	15
BLZ	15	0	1,987	6
PAN	10	6	364	*
ESP	9	5	196	*
MEX	6	0	42	4
SLV	6	2	11	*
PER	5	1	154	*
PRT	4	2	8	*
HND	1	9	9	*

TABLE 1. Availability in IATTC databases of longline catch data (used for the Fisheries Status Report, Table A-3e) and Level-3 data (aggregated to 5° x 5°area–month resolution) for bigeye, 1975-2016.

2.1.2. Monthly reports

CPCs whose annual longline bigeye catches have exceeded 500 t are required to provide monthly catch reports. The current annual limits are established in IATTC Resolution C-17-02:

Metric tons	2018-2020
China	2,507
Japan	32,372
Korea	11,947

Chinese Taipei	7,555
United States	750

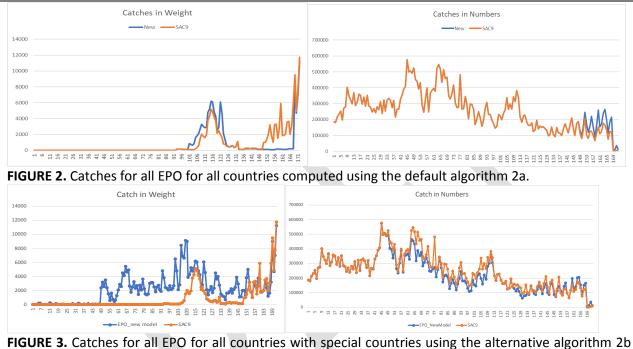
The resolution also states that the above CPCs may make a single transfer of a portion of its bigeye tuna catch limit each year to any other CPCs in the above list. The CPCs above are likely to report monthly catches. The other CPCs can only fish 500 metric tons or less (their respective catches of bigeye tuna in 2001), and will not provide monthly reports.

2.1.3. Estimation of total catches by area

To conduct the current stock assessment of bigeye tuna (Xu *et al.* 2018), the catch data in the IATTC databases are stratified according to fishery definitions based on gear, area, and time (quarter). Some CPCs report catch in numbers and others in weight. For each area two fisheries are defined, one in numbers and one in weight, so that average weight used to convert between numbers and weight is calculated internally in the assessment model. The detailed longline catch data are missing for some nations. For recent years the monthly reports are used where available. For catch data that is either not spatially or temporally detailed, assumptions need to be made about how to distribute the catch between the fisheries and among quarters within a year. For data that are available from monthly reports the catch is assigned to the fisheries based on the distributions in recent years. For catch data that are aggregated at the annual level, it is split evenly among the quarters and assigned to one of the fisheries. This procedure was made manually and several decisions on data substitution had to be made, which resulted in a timeconsuming process. For the spatial model in development, the catches also need to be distributed on space and time, with different potential spatial configurations.

An algorithm was developed to compute the catches in a timely and standardized way.

To calculate the longline catches two types of data are used:


- a. Total catch from the Task I data by year compiled for the Fisheries Status Report ("FSR" data) in Tb3_AnnualCatchBET_LL&otherGears) plus any monthly report for the current year.
- b. Catch in 5°x 5°–month resolution, with information on gear configuration and target species Level 3 data from Resolution C-03-05 ("gridded" data).

The catches by area are calculated as follows. The algorithm was coded in R (Appendix II) and checked in Excel. The pseudo-code is as follows:

- I. If catch numbers are available in the gridded data, we use it and assume 100% coverage.
- II. If only weight is available in the gridded data, we:
 - a. Default algorithm: compare the total catch in weight on a year from the gridded data to the aggregated FSR data, if it is less, split the FSR by area and quarter using the ratio from the weight in the gridded data set, if it is more, use the gridded weight directly.
 - b. Alternative algorithm: for special countries for which there is previous knowledge that the gridded data set has less than 100% coverage (KOR, TWN):
 - i. If both numbers and weight are available in the gridded data, compare total weight on a year to the FSR data, if it is less, split the FSR by area and quarter using the ratio from the weight in the gridded data set, if it is more, use the gridded number directly.
 - ii. If only weight is available in the gridded data, compare total weight on a year to the FSR data, if it is less, split the FSR by area and quarter using the ratio from the weight in the gridded data set, if it is more, use the gridded weight directly.
- III. If there are no weight or numbers in the gridded data for a year, split the FSR using the closest year of gridded data available, prefer the data in weight, if it is not available, use numbers.
- IV. If there is only FSR data, and it is a coastal country, allocate the catches to the country's EEZ.
- V. If there is only FSR data, and it is not a coastal country, use expert knowledge/best judgement (*e.g.* country reports).

VI. For the current year in the series, if the countries had not yet sent the information, assume the catch is the same as the previous year.

Figures 2 and 3 show the catches computed for the spatial model using the algorithm described above with those catches computed for the SAC9 stock assessment using either all countries with the default algorithm 2a or applying the special algorithm 2b for the countries that underreport the level 3 data. The catches in Figure 2 should be used in the spatial model as the algorithm is applied consistently for all years and corrects for underreporting.

FIGURE 3. Catches for all EPO for all countries with special countries using the alternative algorithm 2b (*i.e.* for Korea and Chinese Taipei the annual catch is distributed in space and by quarter using the proportions in weight from the level 3 data in weight) and the rest using the default algorithm.

3. DISCARDS

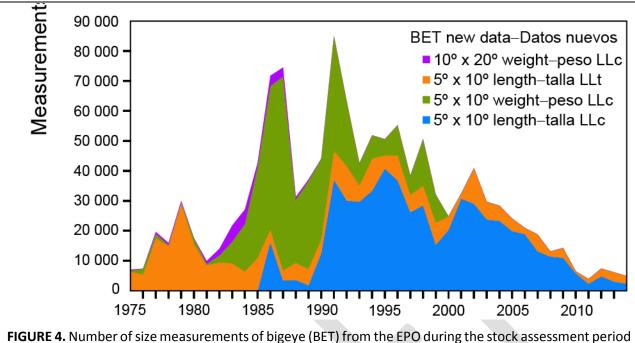
No information is available on discards from the longline fisheries. It is assumed that bigeye tuna are not discarded from longline fisheries

4. CPUE

The longline CPUE data, catch per hook, are standardized, using a delta-lognormal general linear model in which the explanatory variables are latitude, longitude, and hooks per basket following Hoyle and Maunder (2006, <u>SAR-7-07</u>). Only Japanese longline data are used in these analyses because the detailed data from the Japanese fleet covers a greater number of years. Hooks per basket information is available only for the Japanese and USA fisheries. The fishing depth of the longline gear has changed over time as the fishery has targeted bigeye tuna. The fishing depth of the gear is related to the number of hooks per basket. When there are more hooks between a float, some of the hooks will fish much deeper than when less hooks between floats are used. However, other factors such as hook line length, currents, and setting speed also impact the fishing depth of the longline. Details about the Japanese longline fleet are provided in a series of IATTC bulletins (*e.g.* Matsumoto and Bayliff 2008). A collaboration between the scientists from CPCs and the staff was recommended to examine potential effects on CPUE of changes in fishing practice, and between scientists from Japan and the staff to analyze operational level catch and effort data (<u>BET-01 Meeting report</u>).

Considerable progress has been made in that regard, culminating in project <u>H.1d, "Improve indices of abundance based on longline CPUE data</u>" of the <u>Strategic Science Plan</u> being partially funded by the IATTC and the four main distant-water fleets granting the staff access to their operational level catch and effort data for research related to the project.

5. SIZE-COMPOSITION DATA


Size-composition data are currently available from two longline fleets (Japan and Chinese Taipei). There is uncertainty regarding the quality of the Chinese Taipei data in the Pacific Ocean and in other oceans (*e.g.* <u>Report of the Nineteenth North Pacific Albacore Workshop</u>, Geehan and Hoyle, 2013), and until this is resolved, these data are have not been used to assess the tropical tuna stocks in the EPO. The main source of information for size composition of the longline fleets are the data provided by Japan. It was recommended that a detailed examination of the Japanese length-frequency data was undertaken (<u>BET-01-Meerting report</u>), as an increase in the median length since 1990 was noted and there was no simple explanation at the time why such a change may have occurred. The problem was addressed right after the review by splitting the longline fisheries into "early" and "late" and allowing for different selectivities for the two periods.

In 2016, collaborative investigations of the Japanese length-frequency data were undertaken. The main findings were (Satoh *et al.* 2016 <u>SAC 07-03d</u>):

- 1. Data from two types of vessels was available, commercial and training vessels. The data from training vessels showed length-frequencies skewed towards smaller sizes than data from the commercial vessels. When data was reported to the IATTC the type of vessel was not mentioned.
- 2. Data from commercial vessels was measured in weight or in length, with predominance of the data in weight from early 1980s to early 1990s. The data was always submitted in length to the IATTC, the weight data was converted into length by the National Research Institute of Far Seas Fisheries (NRIFSF) of Japan before submission. Whether the original measurement was length or weight was not reported.
- 3. Data provided in two latitude-longitude resolutions 5°x5° and 10°x 20° over the years.

Satoh *et al.* (2016) also noted that (1) does not seem to be the explanation for the shift in size: "although the average size of fish caught by the commercial vessels was larger than those of the training vessels in many cases, the ratio of sample size by vessel type was similar between the two periods (prior- and post 1990)." The authors also noted that (2) solely does not seem to explain the shift: "The average fish lengths converted from the weight group were smaller than those of the length group in many cases, which indicated that the weight-length conversion caused an underestimation of fish size. The number of length measurements increased after 1990 for both species, and exceeded, or was equal to, the number of weight measurements in 1991, and since then the length measurements have predominated. However, the changes of the average weight for both species did not present a clear shift in 1990. This indicates that the shift in size composition in 1990 for both species is unlikely to represent a real change in fish size." However, as explained below, the conversion factor from processed weight to whole weight (and then to length) is likely the cause of the lower lengths in the early period.

Following this collaborative work, Japan replaced all the data from 1975 on with data in the $5^{\circ}x5^{\circ}$ resolution (Figure 4), with indication on the type of vessels and in the original measurement. The IATTC retained some of the data in the $10^{\circ}x 20^{\circ}$ resolution that was not contained in the new submission. Most of the data in the $10^{\circ}x 20^{\circ}$ resolution was replaced by data in the $5^{\circ}x5^{\circ}$ resolution. Since 2011, Japan has submitted data collected by the on-board observers. For some years data recorded by the fishers and by the observers were both submitted, but since 2015, only observer data has been submitted.

(1975-2014), by type of vessel (LLc: commercial longline vessel; LLt: longline training vessel), spatial resolution (10° x 20° or 5° x 10°), and measurement type (weight: gilled-and-gutted weight; length: fork length) Source: Minte-Vera *et al.* <u>SAC 07-04a</u>.

The effects of the new submission in the stock assessment was investigated (Minte-Vera *et al.* 2016 <u>SAC</u> <u>07-04a</u>, Minte-Vera *et al.* 2017). The data was entered as the original measurement (length or weight) in the stock assessment, so that any conversion between weight and length was done within the assessment models. The time blocks were removed.

In the SS3 models, a size-transition matrix is produced to compute the expected whole weight from the length-at-age model and the variability of length-at-age and the length-weight relationship. The length-weight relationship used in the stock assessment model for bigeye (Aires-da-Silva and Maunder 2010) is from Nakamura and Uchiyama (1966):

$$w = 3.661 \times 10^{-5} I^{2.90182}$$

The weight data submitted by Japan is gilled and gutted weight (GGw). There are no conversion factors for gilled-and-gutted weight specific to the EPO at this time. The conversion factors developed by Langley *et al.* (2006) for the entire Pacific were used to convert GGw to weight (w) prior to include in the model:

where *w* is whole weight, in kilograms, and *GGw* is the weight of the gilled-and-gutted fish in the ultralow-temperature (ULT) freezer vessels. Processing the fish prior to ULT freezing included removing the operculum and the tail, which were retained when the fish were merely chilled (Langley *et al.* 2006). The ULT freezer vessels were introduced in the Japanese fleet in 1966, and by 1980 all Japanese distant-water vessels were UTL vessels (Langley *et al.* 2006). About 10% of the data used to derive the conversion factor was from the tropical EPO, the rest comes from the Australian Exclusive Economic Zone

In order to avoid "sawtooth" distributions (large peaks followed by troughs at regular size intervals) in the converted data, caused by applying the conversion to low-resolution data (Langley *et al.* 2006), each 1-kg raw gilled-and-gutted weight class was divided into into 10 equally-spaced intervals. The conversion factor was then applied to each interval, and 10% of the frequency of the original weight class was added to the

converted weight class. In SS3 the weight classes had to be adjusted so that each weight class corresponds roughly to each length class.

The converted weight-frequency data was not compatible with the length-frequency data for the same fisheries and was recommended not to be used in a base-case assessment model (Minte-Vera *et al.* 2016). The average weight from the weight-frequency data tends to be lower than expected by the models that also incorporate length-frequency data and assume the same selectivity for both data types, indicating that there may be a bias caused by the conversion factor. Removing the weight data from the analysis eliminated the pattern in residuals of the fit to the length composition data without the need for a time block in selectivity. A conversion factor specific for the EPO should be developed.

Because the training-vessel length-frequency data may not represent the commercial data but may still have information about the dynamics of the population (*e.g.* recruitment), this data was included in the model as coming from a "survey" (in SS3 terminology), that is a fishery for which there are no catches associated but a selectivity may be estimated.

The current base case model (Xu *et al.* 2018) fits to the training vessel length-composition data representing "survey", to the commercial length-composition to represent the commercial fleets and to the weightfrequency data as "surveys" as well.

The inclusion of the revised data somewhat improved the "recruitment shift", described as a prominent pattern in the stock assessment of bigeye tuna in the EPO, but fail to solve it. The recruitment shift was larger when both length and weight data were used than when only length data was used. This may also be an indication of a potential bias in the conversion factors, as described above.

6. OTHER DATA

6.1. Vessel registry

Resolution C-18-06, which amends and replaces C-14-01 (Regional Vessel Register), established that the CPCs shall notify the Director by 30 June each year of their vessels on the Regional Vessel Register flying their flag that were actively fishing in the IATTC Convention Area for species covered by the Convention from 1 January to 31 December of the previous year.

6.2. On-board observers

Resolution C-11-08 requires that at least 5% of the fishing effort (defined as days fishing) by longline vessels over 20 m length overall (LOA) carry a scientific observer, and that each CPC should report annually about the observer program to the IATTC. Only in 2019 are the CPCs starting to report the raw data taken by the observers. The staff prepared guidelines for minimum data requirements (<u>Wiley *et al.* 2017</u>).

REFERENCES

- Hoyle, S., and Maunder, M.N. 2006. <u>Standardization of yellowfin and bigeye CPUE data from Japanese</u> <u>longliners, 1975-2004</u>. Inter-Amer. Trop. Tuna Comm. Working Group to Review Stock Assessments Document SAR-7-07
- Kume, S., and T. Shiohama. 1964. On the conversion between length and weight of bigeye tuna landings in the Pacific Ocean (preliminary report). Report of Nakai Regional Fisheries Research Laboratory 20: 59-67.
- Langley, A., H. Okamoto, P. Williams, N. Miyabe, and K. Bigelow. 2006. A summary of the data available for the estimation of conversion factors (processed to whole fish weights) for yellowfin and bigeye tuna. Western and Central Pacific Fisheries Commission. WCPFC-SC2-2006/ME IP-3.
- McKechnie, S. 2014. Analysis of longline size frequency data for bigeye and yellowfin tunas in the WCPO. Western and Central Pacific Fisheries Commission. WCPFC-SC10-2014/SA-IP-04.
- Minte-Vera, C.V. Aires-da-Silva, A., Satoh, K., and Maunder, M.N. 2016. Changes in longline size-frequency data and their effects on the stock assessment models for yellowfin and bigeye tunas. Inter-Amer. Trop. Tuna Comm., 7th Scient. Adv. Com. Meeting. <u>SAC-07-04a</u>.
- Minte-Vera, C.V, Maunder. M.A. Aires-da-Silva, A.M., Satoh, K. Uosak, K. 2017. Get the biology right, or use size-composition data at your own risk. Fish. Res. 192: 114-125 http://dx.doi.org/10.1016/j.fishres.2017.01.014
- Morita, Y. 1973. Conversion factors for estimating live weight from gilled-and-gutted weight of bigeye tuna and yellowfin tuna. Bull. Far Seas Fish. Res. Lab. 9: 109-121.
- Nakamura, E.L., and J.H. Uchiyama. 1966. Length-weight relations of Pacific tunas. In Manar, T.A. (editor), Proc., Governor's [Hawaii] Conf. Cent. Pacif. Fish. Resources: 197-201.
- Okamoto,H. 2014. <u>Overview of size data for bigeye tuna caught by Japanese longline fisheries in the Pa-</u> <u>cific Ocean</u>. Inter-Amer. Trop. Tuna Comm. Scientific Advisory Committee Fifth Meeting. SAC-05 INF-D
- Satoh, K., C.V. Minte-Vera, N.W. Vogel, A. Aires-da-Silva, C.E. Lennert-Cody, M.N. Maunder, H. Okamoto, K. Uosaki, T. Matsumoto, Y. Semba, and T. Ito. 2016. An exploration into Japanese size data of tropical tuna species because of a prominent size-frequency residual pattern in the stock assessment model. Inter-Amer. Trop. Tuna Comm., 7th Scient. Adv. Com. Meeting. SAC-07-03d.
- Wiley, B., Griffiths, S., Hall, M., Aires-da-Silva, A., Lennert-Cody, C.E., Clarke, S.C., Maunder, M.N., Duffy,
 L. 2017. Establishing minimum data standards and reporting requirements for longline observer programs under resolution C-11-08. Inter-Amer. Trop. Tuna Comm., 8th Scient. Adv. Com. Meeting. SAC-08-07e.

APPENDIX I. Comparison of the annual aggregated data of bigeye tuna used in the IATTC Fisheries Status Report (FSR) and the Level 3 data submitted by CPCs (data extraction from 07 July 2018, except for Vanuatu which was updated to the IATTC on 25 September 2018)

	FSR data	FSR data Level 3 data (5°x5°–month; Resolution C-03-05)					
BLZ	Weight (t)	Reported numbers	Reported weight (t)	Average weight (t)	Weight from numbers	Weight from 5°x5°	Level 3 data (weight from 5°x5°/FSR weight)
2001	1,987	*	*	*	*	*	*
2002	1,459	*	*	*	*	*	*
2003	604	*	*	*	*	*	*
2004	120	*	*	*	*	*	*
2005	112	*	*	*	*	*	*
2006	75	*	*	*	*	*	*
2007	93	*	*	*	*	*	*
2008	89	*	*	*	*	*	*
2009	315	2,046	93	0.0456	*	*	0.30
2010	34	648	33	0.0516	*	*	0.98
2011	6	272	6	0.0203	*	*	0.99
2012	12	175	9	0.0516	*	*	0.74
2013	182	3,205	148	0.0462	*	*	0.81
2014	24	*	*	*	*	*	*
2015	*	*	*	*	*	*	*
2016	0	-	-	-	-	-	-

Та	ble	1.1	_	Be	lize
	NIC				120

Table I.2- China

	FSR data	Level	Coverage of				
CHN	Weight (t)	Reported numbers	Reported weight (t)	Average weight (t)	Weight from numbers	Weight from 5°x5°	Level 3 data (weight from 5°x5°/FSR weight)
2001	2,939	*	2,550	*	*	*	0.87
2002	7,614	*	7,351	*	*	*	0.97
2003	10,066	*	9,973	*	*	*	0.99
2004	2,645	*	2,645	*	*	*	1.00
2005	2,104	*	2,104	*	*	*	1.00
2006	709	*	*	*	*	*	*
2007	2,324	*	2,324	*	*	*	1.00
2008	2,379	57,136	2,360	0.04131	*	*	0.99
2009	2,481	58,224	2,497	0.04289	*	*	1.01
2010	2,490	54,504	2,490	0.04569	*	*	1.00
2011	5,450	127,587	5,450	0.04272	*	*	1.00
2012	4,386	99,648	4,385	0.04401	*	*	1.00
2013	5,199	128,445	5,199	0.04048	*	*	1.00
2014	5,253	130,698	5,253	0.04019	*	*	1.00
2015	8,401	220,790	8,400	0.03804	*	*	1.00
2016	7,052	189,515	7,052	0.03721	*	*	1.00

	S - Japan FSR data	Level	3 data (5°x5	°–month; Re	solution C-03-	05)	Coverage of
JPN	Weight (t)	Reported numbers	Reported weight (t)	Average weight ¹ (t)	Weight from numbers ²	Weight from 5°x5°	Level 3 data (weight from 5°x5°/FSR weight)
1975	40,726	792,340	*	0.0513	40,647	*	1.00
1976	52,827	974,674	*	0.0541	52,730	*	1.00
1977	70,024	1,296,738	*	0.054	70,024	*	1.00
1978	67,214	1,261,057	*	0.0533	67,214	*	1.00
1979	54,377	1,250,050	*	0.0435	54,377	*	1.00
1980	61,951	1,122,300	*	0.0552	61,951	*	1.00
1981	49,970	981,717	*	0.0509	49,969	*	1.00
1982	50,199	1,061,288	*	0.0473	50,199	*	1.00
1983	57,185	1,193,849	*	0.0479	57,185	*	1.00
1984	44,587	1,027,301	*	0.0434	44,585	*	1.00
1985	61,627	1,378,671	*	0.0447	61,627	*	1.00
1986	91,981	1,865,733	*	0.0493	91,981	*	1.00
1987	87,913	1,619,020	*	0.0543	87,913	*	1.00
1988	66,015	1,187,317	*	0.0555	65,896	*	1.00
1989	67,514	1,321,219	*	0.0511	67,514	*	1.00
1990	86,148	1,604,247	*	0.0537	86,148	*	1.00
1991	85,011	1,496,669	*	0.0568	85,011	*	1.00
1992	74,466	1,304,131	*	0.0571	74,466	*	1.00
1993	63,190	1,062,018	*	0.0596	63,296	*	1.00
1994	61,471	1,069,057	*	0.0584	62,433	*	1.02
1995	49,016	876,856	*	0.056	49,104	*	1.00
1996	36,685	686,986	*	0.0534	36,685	*	1.00
1997	40,571	631,947	*	0.0642	40,571	*	1.00
1998	35,752	762,470	*	0.0531	40,487	*	1.13
1999	22,224	503,942	*	0.0498	25,096	*	1.13
2000	28,746	628,987	*	0.0548	34,468	*	1.20
2001	38,048	751,799	*	0.0594	44,657	*	1.17
2002	34,193	620,768	*	0.0604	37,494	*	1.10
2003	24,888	472,716	*	0.0541	25,574	*	1.03
2004	21,236	444,333	*	*	25,043	*	1.18
2005	19,113	393,459	*	*	22,175	*	1.16
2006	16,235	313,229	*	*	17,654	*	1.09
2007	13,977	256,548	*	*	14,459	*	1.03
2008	14,909	285,699	*	*	16,102	*	1.08
2009	15,490	261,979	*	*	14,765	*	0.95
2010	15,847	273,340	*	*	15,405	*	0.97
2011	13,399	242,220	*	*	13,652	*	1.02
2012	16,323	262,144	*	*	14,774	*	0.91
2013	14,258	214,743	*	*	12,103	*	0.85
2014	13,634	211,121	*	*	11,899	*	0.87
2015	13,097	216,817	*	*	12,220	*	0.93
2016	10,427	178,996	*	*	10,088	*	0.97

Table I.3 - Japan

¹ From Matsumoto and Bayliff. 2008. IATTC Bull. 24(1), Table 3, pg. 140. ² For 2004 on, the average weight from 1994-2003 was used

	FSR data	Level 3 data (5°x5°-month; Resolution C-03-05)				Coverage of	
KOR	Weight (t)	Reported numbers	Reported weight (t)	Average weight (t)	Weight from numbers	Weight from 5°x5°	Level 3 data (weight from 5°x5°/FSR weight)
1975	606	11,796	*	*	526	526	0.87
1976	1,195	22,040	*	*	982	982	0.82
1977	3,467	64,203	*	*	2,861	2,861	0.83
1978	3,040	57,039	*	*	2,542	2,542	0.84
1979	824	18,948	*	*	844	844	1.02
1980	2,189	39,653	*	*	1,767	1,767	0.81
1981	2,966	58,259	*	*	2,597	2,597	0.88
1982	2,969	62,767	*	*	2,797	2,797	0.94
1983	2,614	54,582	*	*	2,433	2,433	0.93
1984	1,613	37,175	*	*	1,657	1,657	1.03
1985	4,510	100,895	*	*	4,497	4,497	1.00
1986	10,187	206,622	*	*	9,209	9,209	0.90
1987	11,681	177,835	7,181	0.0404	7,926	7,181	0.61
1988	6,151	101,643	4,218	0.0415	4,530	4,218	0.69
1989	3,138	54,593	2,198	0.0403	2,433	2,198	0.70
1990	12,127	225,055	8,121	0.0361	10,031	8,121	0.67
1991	17,883	400,646	15,089	0.0377	17,856	15,089	0.84
1992	9,202	*	*	*	*	*	*
1993	8,924	*	*	*	*	*	*
1994	9,522	*	*	*	*	*	*
1995	8,992	212,492	6,591	0.0310	9,471	6,591	0.73
1996	9,983	187,014	6,422	0.0343	8,335	6,422	0.64
1997	11,376	180,693	6,795	0.0376	8,053	6,795	0.60
1998	9,731	187,533	6,441	0.0343	8,358	6,441	0.66
1999	9,431	167,009	6,004	0.0359	7,443	6,004	0.64
2000	13,280	171,241	6,756	0.0395	7,632	6,756	0.51
2001	12,576	241,060	10,110	0.0419	10,744	10,110	0.80
2002	10,358	131,004	5,605	0.0428	5,839	5,605	0.54
2003	10,272	*	8,065	*	*	8,065	0.79
2004	10,729	*	9,264	*	*	9,264	0.86
2005	11,580	*	2,938	*	*	2,938	0.25
2006	6,732	128,182	6,109	0.0477	5,713	6,109	0.91
2007	5,611	43,709	2,301	0.0526	1,948	2,301	0.41
2008	4,150	18,090	941	0.0520	806	941	0.23
2009	6,758	77,488	4,032	0.0520	3,454	4,032	0.60
2010	9,244	114,679	5,733	0.0500	5,111	5,733	0.62
2011	6,617	88,532	4,865	0.0549	3,946	4,865	0.74
2012	7,450	108,752	7,449	0.0685	4,847	7,449	1.00
2013	8,822	160,669	8,006	0.0498	7,161	8,006	0.91
2014	8,203	144,630	7,445	0.0515	6,446	7,445	0.91
2015	8,635	154,933	7,836	0.0506	6,905	7,836	0.91
2016	7,692	149,553	6,981	0.0467	6,665	6,981	0.91

Table I.4 - Korea

Table	1.5 –	Chinese	Taipei
-------	-------	---------	--------

	FSR data	Level 3 data (5°x5°-month; Resolution C-03-05)			Coverage of		
TWN	Weight (t)	Reported numbers	Reported weight (t)	Average weight (t)	Weight from numbers	Weight from 5°x5°	Level 3 data (weight from 5°x5°/FSR weight)
1975	401	9,114	456	0.0500	*	456	1.14
1976	268	4,285	211	0.0492	*	211	0.79
1977	595	11,703	596	0.0510	*	596	1.00
1978	405	7,938	403	0.0508	*	403	1.00
1979	234	5,272	234	0.0443	*	234	1.00
1980	195	2,192	108	0.0491	*	108	0.55
1981	480	12,621	640	0.0507	*	640	1.33
1982	197	3,191	144	0.0451	*	144	0.73
1983	244	2,687	163	0.0606	*	163	0.67
1984	194	2,500	153	0.0611	*	153	0.79
1985	188	2,650	126	0.0475	*	126	0.67
1986	257	2,810	146	0.0518	*	146	0.57
1987	526	10,531	606	0.0575	*	606	1.15
1988	591	10,622	665	0.0626	*	665	1.13
1989	311	23,548	1,246	0.0529	*	1,246	4.01
1990	596	13,333	715	0.0536	*	715	1.20
1991	1,291	25,423	1,265	0.0497	*	1,265	0.98
1992	1,032	15,157	727	0.0480	*	727	0.70
1993	297	4,595	237	0.0515	*	237	0.80
1994	255	7,755	367	0.0473	*	367	1.44
1995	77	1,550	67	0.0435	*	67	0.88
1996	95	1,948	103	0.0529	*	103	1.09
1997	256	4,250	131	0.0308	*	131	0.51
1998	314	5,238	149	0.0284	*	149	0.47
1999	890	26,607	910	0.0342	*	910	1.02
2000	1,916	99,794	5,194	0.0521	*	5,194	2.71
2001	9,285	151,466	7,953	0.0525	*	7,953	0.86
2002	17,253	621,061	26,539	0.0427	*	26,539	1.54
2003	12,016	363,163	16,263	0.0448	*	16,263	1.35
2004	7,384	226,910	9,108	0.0401	*	9,108	1.23
2005	6,441	170,739	6,775	0.0397	*	6,775	1.05
2006	6,412	150,176	6,497	0.0433	*	6,497	1.01
2007	6,057	138,219	5,988	0.0433	*	5,988	0.99
2008	1,852	42,522	1,991	0.0468	*	1,991	1.07
2009	3,396	66,812	3,493	0.0523	*	3,493	1.03
2010	5,276	112,133	5,481	0.0489	*	5,481	1.04
2011	3,957	84,473	3,987	0.0472	*	3,987	1.01
2012	4,999	92,789	4,710	0.0508	*	4,710	0.94
2013	4,162	81,147	4,195	0.0517	*	4,195	1.01
2014	4,511	86,233	4,379	0.0508	*	4,379	0.97
2015	5,181	98,097	5,157	0.0526	*	5,157	1.00
2016	6,054	107,752	5,693	0.0528	*	5,693	0.94

	FSR data	Level 3 data (5°x5°–month; Resolution C-03-05)					Coverage of
USA	Weight (t)	Reported numbers	Reported weight (t)	Average weight (t)	Weight from numbers	Weight from 5°x5°	Level 3 data (weight from 5°x5°/FSR weight)
1985	3	*	*	*	*	*	*
1986	9	*	*	*	*	*	*
1987	7	*	*	*	*	*	*
1988	6	*	*	*	*	*	*
1989	*	*	*	*	*	*	*
1990	1	*	*	*	*	*	*
1991	12	160	*	*	*	*	*
1992	93	2,408	*	*	*	*	*
1993	55	1,395	*	*	*	*	*
1994	9	228	*	*	*	*	*
1995	75	3,571	*	*	*	*	*
1996	85	1,348	*	*	*	*	*
1997	123	1,629	*	*	*	*	*
1998	195	2,891	*	*	*	*	*
1999	230	4,369	*	*	*	*	*
2000	164	1,887	*	*	*	*	*
2001	147	3,077	*	*	*	*	*
2002	132	3,914	*	*	*	*	*
2003	238	4,012	*	*	*	*	*
2004	149	4,308	*	*	*	*	*
2005	536	11,992	*	*	*	*	*
2006	89	1,124	*	*	*	*	*
2007	424	9,099	*	*	*	*	*
2008	1,277	28,101	*	*	*	*	*
2009	730	18,708	*	*	*	*	*
2010	1,356	31,970	*	*	*	*	*
2011	1,050	25,034	*	*	*	*	*
2012	875	20,792	*	*	*	*	*
2013	2,054	*	*	*	*	*	*
2014	2,081	54,028	*	*	*	*	*
2015	3,050	69,945	*	*	*	*	*
2016	2,088	51,240	*	*	*	*	*

Table I.6 – United States of America

	FSR data Level 3 data (5°x5°–month; Resolution C-03-05)					05)	Coverage of
VUT	Weight (t)	Reported numbers	Reported weight (t)	Average weight (t)	Weight from numbers	Weight from 5°x5°	Level 3 data (weight from 5°x5°/FSR weight)
2000	2,754	*	*	*	*	*	*
2001	3,277	*	*	*	*	*	*
2002	2,995	*	*	*	*	*	*
2003	1,258	*	*	*	*	*	*
2004	407	*	*	*	*	*	*
2005	318	*	*	*	*	*	*
2006	960	*	*	*	*	*	*
2007	1,013	28,390	1,012	0.035633	*	1,012	1.00
2008	790	21,416	789	0.036857	*	789	1.00
2009	1,032	29,199	1,032	0.035356	*	1,032	1.00
2010	1,496	38 <i>,</i> 665	1,500	0.038785	*	1,500	1.00
2011	694	18,537	695	0.03748	*	695	1.00
2012	1,063	27,010	1,062	0.039327	*	1,062	1.00
2013	604	14,045	604	0.043028	*	604	1.00
2014	897	21,286	897	0.042161	*	897	1.00
2015	1,888	42,449	1,888	0.044479	*	1,888	1.00
2016	762	13,565	*	*	*	*	*
2017	757	*	*	*	*	*	*

Table I.7 – Vanuatu

	FSR data Level 2 data (1°x1°–month; Resolution C-03-05)					05)	Coverage of
PYF	Weight (t)	Reported numbers	Reported weight (t)	Average weight (t)	Weight from numbers	Weight from 1°x1°	Level 2 data (weight from 1°x1°/FSR weight)
1992	7	202	7	0.036782	*	7	0.99
1993	7	211	7	0.031659	*	7	0.99
1994	102	1,626	47	0.029164	*	47	0.47
1995	97	1,976	53	0.027039	*	53	0.55
1996	113	2,329	62	0.026466	*	62	0.55
1997	250	6,828	183	0.026829	*	183	0.73
1998	359	11,653	292	0.025019	*	292	0.81
1999	3,652	6,965	168	0.024154	*	168	0.05
2000	653	19,658	472	0.023997	*	472	0.72
2001	684	16,785	479	0.028514	*	479	0.70
2002	388	1,650	47	0.028242	*	47	0.12
2003	346	11,299	273	0.024192	*	273	0.79
2004	405	14,036	312	0.022194	*	312	0.77
2005	398	15,412	398	0.025829	*	398	1.00
2006	388	12,864	331	0.025755	*	331	0.85
2007	361	10,040	263	0.026217	*	263	0.73
2008	367	10,509	268	0.025521	*	268	0.73
2009	484	12,260	360	0.029369	*	360	0.74
2010	314	8,001	226	0.028198	*	226	0.72
2011	445	11,951	315	0.026374	*	315	0.71
2012	472	10,898	343	0.031515	*	343	0.73
2013	543	13,690	493	0.036009	*	493	0.91
2014	541	19,419	568	0.029231	*	568	1.05
2015	712	24,350	692	0.028402	*	692	0.97
2016	497	16,198	477	0.029462	*	477	0.96

Table I.8 - French Polynesia

APPENDIX II – R code implementing the algorithm to compute the catches from longline fleets by stock assessment area

This code processes the raw LL catch data into the format for Stock Assessment ###### Version3: Include coastal countries in the allocation code ####### Version2: Increased flexibility for various species and spatial configuration ####### by specifying the number of areas and years
####### Haikun and Carolina, ###### 10/11/2018 ###### The procedure can be found in C:\Users\hkxu\OneDrive - IATTC\IATTC\stock assessment\LL Catch allocation\version2 # set working directory Dir <- "C:/Users/hkxu/OneDrive - IATTC/IATTC/stock assessment/Spatial Model/LL Catch/1/" setwd(Dir) source("C:/Users/hkxu/OneDrive - IATTC/IATTC/stock assessment/Spatial Model/LL Catch/Area_Code.R") library("tidyverse") # load both gridded data and FSR data Grid_Catch <- read.table(paste0(Dir,"Tb2c_CatchBET&YFT_AreasLL_newAreas.txt"), header = TRUE, sep = ",")
FSR_Catch <- read.table(paste0(Dir,"Tb3_AnnualCatchBET_LL&otherGears.txt"), header = TRUE, sep = ",")
Grid_Catch <- data.frame(Grid_Catch)</pre> FSR_Catch <- data.frame(FSR_Catch)
make sure area code starts from 1</pre> Grid_Catch\$NewAreas <- Areas(Grid_Catch\$Lat,Grid_Catch\$Lon,1)
data <- data.frame("Lat"=Grid_Catch\$Lat,"Lon"=Grid_Catch\$Lon,"Areas"=as.factor(Grid_Catch\$NewAreas))</pre> wmap <- map_data("world")</pre> qqplot() + geom_point(aes(x = Lon,y = Lat,color=Areas), data = data, size=6,shape=15) +
geom_polygon(data=wmap,aes(long, lat, group = group),fill = "black",colour = "white",alpha = 1,lwd=0.5) +
coord_quickmap(ylim = c(-40,40),xlim = c(-150,-70)) + theme_bw(8) ggsave(filename = "Areas.png", dpi = 300, width = 5, height = 5)
specify the countries to be analyzed in the LL catch allocation Countries <- as.character(unique(Grid_Catch\$FlagAbv))
Countries <- c("KOR")</pre> Special_Countires <- c("KOR","TWN") n_areas = length(unique(Grid_Catch\$NewAreas)) last year = 2017.75 Species <- "BET"
save_all <- matrix(0, nrow = 0, ncol = 1+n_areas*2) # save all the LL catch into this matrix
for (c in 1:length(Countries)) {# deal with the allocation by country</pre> # reformat the gridded and FSR data into quarterly and annual values
Grid_weight_quarterly <- Grid_Catch %>% filter(FlagAbv==Countries[c],SpeciesAbv==Species) %>%
mutate(YQ = Yrr + (Quarter-1)74) %>% group by (YQ,NewAreas) %>% summarise(Tot Weight Sum = sum(SumOfWeight,na.rm = TRUE)) %>%
spread(key = NewAreas, value = Tot_Weight_Sum, fill = 0) Grid_number_quarterly <- Grid_Catch %>% filter(FlagAbv==Countries[c],SpeciesAbv==Species) %>%
mutate(YQ = Yrr + (Quarter-1)74) %>%
group_by(YQ,NewAreas) %>% summarise(Tot_Number_Sum = sum(SumOfNumber,na.rm = TRUE)) %>%
spread(key = NewAreas, value = Tot_Number_Sum, fill = 0) Grid_number_annual <- Grid_Catch %>% filter(FlagAbv==Countries[c],SpeciesAbv==Species) %>% group by(Yrr,NewAreas) %>% summarise(Tot Number_Sum = sum(SumOfNumber,na.rm = TRUE)) %>%
group by(Yrr) %>% mutate(EPO = sum(Tot Number_Sum,na.rm = TRUE)) %>%
spread(key = NewAreas, value = Tot_Number_Sum, fill = 0) Grid_weight_annual <- Grid_Catch %>% filter(FlagAbv==Countries[c],SpeciesAbv==Species) %>%
group_by(Yrr,NewAreas) %>% summarise(Tot_Weight_Sum = sum(SumOfWeight,na.rm = TRUE)) %>%
group_by(Yrr) %>% mutate(EPO = sum(Tot_Weight_Sum,na.rm = TRUE)) %>%
spread(key = NewAreas, value = Tot_Weight_Sum, fill = 0) spread(key = NewAreas, value = Prop, fill = 0) %>% mutate(YQ = Yrr + (Quarter-1)/4) Grid_prop_num_quarterly <- Grid_Catch %>% filter(FlagAbv==Countries[c],SpeciesAbv==Species) %>% group_by(Trr,Quarter,NewAreas) %>% summarise(Tot_Number_Sum = sum(SumOfNumber,na.rm = TRUE)) %>% group_by(Yrr) %>% mutate(Prop = Tot_Number_Sum/sum(Tot_Number_Sum,na.rm = TRUE)) %>% select(Yrr,Quarter,NewAreas,Prop) %>%
spread(key = NewAreas, value = Prop, fill = 0) %>% mutate(YQ = Yrr + (Quarter-1)/4) # if the data do not include some areas for the entire period, add 0 catch to those areas # to make the format of the dataset consistent among countries if(ncol(Grid_number_annual)<(2+n_areas)) { for (a in 1:n_areas) { if(! toString(a) %in% names(Grid_number_annual)) { if(! toString(a) %in% names(Grid_number_ann Grid_number_quarterly[[toString(a)]] <- 0 Grid_number_quarterly[[toString(a)]] <- 0 Grid_weight_quarterly[[toString(a)]] <- 0 Grid_prop_quarterly[[toString(a)]] <- 0 Grid_prop_num_quarterly[[toString(a)]] <- 0</pre> # CHN has one PS catch data in 2001, assume it is LL catch

flag = 0 (have gridded number data); 1 (gridded weight data < FSR, need to do allocation); # 2 (gridded weight data > FSR, use gridded weight data); 3 (no gridded number or weight data, need to do allowcation); allocation_flag <- rep(3,nrow(FSR_annual))
flag_id <- FSR_annual\$Year %in% Grid_number_annual\$Yrr
if(Countries[c] %in% Special_Countires) {</pre> allocation_flag[flag_id==TRUE] <- ifelse(Grid_number_annual\$EPO>0, Ifelse(Grid_weight_annual\$EPO>0&Grid_weight_annual\$EPO<FSR_annual[which(FSR_annual\$Year %in% Grid_weight_annual\$Yrr),"mt"],1,0), ifelse(Grid_weight_annual\$EPO>0, ifelse(Grid_weight_annual\$EPO<FSR_annual[which(FSR_annual\$Year %in%_Grid_weight_annual\$Yrr),"mt"],1,2),3))</pre> else { allocation_flag[flag_id==TRUE] <- ifelse(Grid_number_annual\$EPO>0,0, , # a quick look at the allocation flag vector # plot(FSR_annual\$Year,allocation_flag,main=Countries[c]) print(Countries[c]) print(allocation flag) # create a new data.frame to store the allocation values $\label{eq:YQ} \begin{array}{l} YQ = seq(FSR annual$Year[1], last_year, 0.25) \\ allocation <- \mbox{data.frame}("YQ" = rep(YQ), "Year" = floor(YQ), "Quarter" = rep(1:4, length(YQ)/4)) \end{array}$ allocation weight <- data.frame(matrix(NA,nrow = length(YQ), ncol = n areas)) anmes(allocation_weight) <- paste0("W",seq(1,n_areas))
allocation <- cbind(allocation,allocation weight)</pre> for (i in 1:length(FSR_annual\$Year)) { # do the allocation for each year year <- FSR_annual\$Year[i]</pre> # if FSR does not exist for last year, use the previous year's value if(is.na(as.numeric(FSR_annual[which(FSR_annual\$Year==year),"mt"]))==FALSE) FSR <- as.nu-meric(FSR annual[which(FSR annual\$Year==year),"mt"]) else FSR <- as.numeric(FSR_annual[which(FSR_annual\$Year==(year-1)),"mt"])</pre> if (allocation_flag[i]==1) # allocate using FSR and weight prop by quarter by area allocation[which(allocation\$Year==year),paste0("W",seq(1,n_areas))] <- FSR * Grid_prop_quarterly[which(alloca-tion\$Year==year),paste0("",seq(1,n_areas))] if (allocation flag[i]==2) { # use the gridded weight data directly
allocation[which(allocation\$Year==year),paste0("W",seq(1,n_areas))] <- Grid_weight_guarterly[which(floor(Grid_weight_guarterly\$YQ)==year),paste0("",seq(1,n_areas))]</pre> if (allocation_flag[i]==3) # allocate using FSR and weight prop by quarter by area from the nearest year that has data if(sum(Grid_prop_quarterly[paste0("",seq(1,n_areas))])>0) { # use the prop in weight for allocation for (year_diff in 1:40) { # this loop is used to find the reference year (year_new) for allocation break if((year+year_diff) %in% Grid_number_annual\$Yrr) { if(Grid_weight_annual[which(Grid_weight_annual\$Yrr==(year+year_diff)),"EPO"]>0) { year_new <- year+year_diff break prop <- Grid_prop_quarterly[which(Grid_prop_quarterly\$Yrr==year_new),c("Quarter",paste0("",seq(1,n_areas)))]</pre> prop final <- matrix(0, nrow=4, ncol=n areas)
for(q in 1:4) { # if no catch in some quarter, add 0 for those quarters to make dataset consistent among quarters
if(q %in% prop\$Quarter) prop_final[q,] <- data.matrix(prop[which(prop\$Quarter==q),2:(n_areas+1)])</pre> ,
print(year_new) allocation[which(allocation\$Year==year),paste0("W",seq(1,n_areas))] <- FSR * prop_final</pre> else { # use the prop in number for allocation for (year_diff in 1:40) { if((year-year_diff) %in% Grid_number_annual\$Yrr) { if(Grid_number_annual[which(Grid_number_annual\$Yrr==(year-year_diff)),"EPO"]>0) {
 year_new <- year-year_diff</pre> break if((year+year_diff) %in% Grid_number_annual\$Yrr) { if(Grid_number_annual[which(Grid_number_annual\$Yrr==(year+year_diff)),"EPO"]>0) {

FSR_annual <- FSR_Catch %>% filter(FlagAbv==Countries[c],SpeciesAbv==Species) %>%

group by (Year) %>% summarise (mt=sum(mt))

year_new <- year+year_diff break . prop_num <- Grid_prop_num_quarterly[which(Grid_prop_num_quarterly\$Yrr==year_new),c("Quarter",paste0("",seq(1,n_areas)))] prop_final <- matrix(0, nrow=4, ncol=n_areas)
for(q in 1:4) {</pre> if(q %in% prop_num\$Quarter) prop_final[q,] <- data.matrix(prop_num[which(prop_num\$Quarter==q),2:(n_areas+1)]) # print(year new) allocation[which(allocation\$Year==year),paste0("W",seq(1,n_areas))] <- FSR * prop_final } save <- right_join(Grid_number_quarterly[,c("YQ",paste0("",seq(1,n_areas)))],allocation[,c(1,seq(4,n_areas+3))])</pre> # if no data is available in the last year, copy the data in the previous year
if(sum(!is.na(save[seq(nrow(save)-3,nrow(save)),2:(1+2*n_areas)]))==0) { # print(Countries[c]) save[seq(nrow(save)-3,nrow(save)),2:(1+2*n_areas)] <- save[seq(nrow(save)-3-4,nrow(save)-4),2:(1+2*n_areas)]</pre> # remove those numbers where weight allocation exist (see rule#2 in the word file) save[,paste0("",seq(1,n_areas))] <- save[,paste0("",seq(1,n_areas))] * ifelse(is.na(save[,paste0("W",seq(1,n_areas))]),1,NA)</pre> write.csv(save,paste0(Countries[c],".csv"),row.names=FALSE) save_all <- rbind(save_all,data.matrix(save))</pre> colnames(save_all) <- c("YQ",paste0("N",seq(1,n_areas)),paste0("W",seq(1,n_areas)))</pre> write.csv(save_all,"save_all.csv",row.names=FALSE) LL_Catch <- data.frame(save_all) %>% gather(c(paste0("N",seq(1,n_areas)),paste0("W",seq(1,n_areas))), key = "term", value = "catch") %>% group by (YQ,term) %>% summarise(tot catch=sum(catch,na.rm=T)) %>% spread(key = term, value = tot catch) %>% filter(YO>=1975) Coastal_Countries <- as.character(unique(FSR_Catch\$FlagAbv))[!as.character(unique(FSR_Catch\$FlagAbv)) %in% Countries] Coastal_Countries <- sort(Coastal_Countries) Area_Flag <- c(6,3,3,4,3,3,6,4,3) Coastal Catch <- matrix(0,nrow=nrow(LL Catch),ncol=n areas) Coastal_Catch <- cbind(floor(LL_Catch\$YQ),Coastal_Catch)</pre> for (c in 1:length(Coastal_Countries)) { FSR_annual <- FSR_Catch %>% filter(FlagAbv==Coastal_Countries[c],SpeciesAbv==Species) %>%
group_by(Year) %>% summarise(mt=sum(mt)) for (y in 1:nrow(FSR_annual)) {
 Coastal_Catch[which(Coastal_Catch[,1]==FSR_annual\$Year[y]),Area_Flag[c]+1] < Coastal_Catch[which(Coastal_Catch[,1]==FSR_annual\$Year[y]),Area_Flag[c]+1] + FSR_annual\$mt[y]/4</pre> } if (sum (Coastal_Catch [(nrow (LL_Catch) -3) :nrow (LL_Catch), 2: (n_areas+1)]) ==0) {
 Coastal_Catch [(nrow (LL_Catch) -3) :nrow (LL_Catch), 2: (n_areas+1)] <- Coastal_Catch [(nrow (LL_Catch) -3-4) : (nrow (LL_Catch) </pre> 4),2:(n_areas+1)] write.csv(Coastal_Catch, "Coastal_Catch.csv", row.names=FALSE) # totla catch % Control Clearch(,paste0("W",seq(1,n_areas))] <- LL_Catch[,paste0("W",seq(1,n_areas))] + Coastal_Catch[,2:(n_areas+1)]</pre> write.csv(LL_Catch,"LL_Catch.csv",row.names=FALSE)