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1. Summary

Skipjack tuna (SKJ,  Katsuwonus pelamis) in Eastern Pacific Ocean (EPO) lacks a reliable index of
relative  abundance  and  age-composition  data,  challenging  its  assessment  and  thus  sustainable
management.  A  spatiotemporal  population  model  utilizing available  tagging  data  might  allow
estimating the population size, distribution and sustainable harvest levels for SKJ in the EPO. This
model estimates the movement of SKJ as an advection-diffusion process and mortality rates based on
tagging data and catch and effort data. The advection process can be based on a spatiotemporal habitat
preference function dependent on environmental layers, such as temperature or bathymetry maps, as
described by Thorson et al. (2021). Movement and distribution probabilities can then be estimated by
means of the matrix exponential of instantaneous rates (Thorson et al., 2021) or based on the extended
Kalman filter (Harvey, 1990). Results indicate that SKJ in the EPO prefers intermediate sea surface
temperatures around 25-26°C and exhibits stronger undirected movement with higher temperatures.
Further, the model estimates fishing mortality in space and time and a natural mortality rate of 3.85
year-1. 
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2. Introduction

The lack  of  a  reliable  index of  relative  abundance  and age-composition  data  are  among the  main
reasons for the lack of a formal stock assessment for skipjack tuna (SKJ) in the Eastern Pacific Ocean
(EPO),  thus challenging its sustainable exploitation.  On the other hand, available information from
multiple tagging events might serve as the basis for a spatiotemporal population model that allows
estimating the abundance and exploitation rates of SKJ. A core part of this model is the spatiotemporal
tagging  model  that  based  on the  recovered  (and  non-recovered)  tags  describes  the  most  probable
movement patterns of SKJ in the EPO. Here, we describe the approach used for the spatiotemporal
tagging model to estimate the movement and mortality rates of SKJ in the EPO.

3. Data

The  spatiotemporal  tagging  and  population  model  requires  information  from recovered  (and  non-
recovered) conventional tags, archival tags, environmental data, as well as catch and effort data.

3.1 Tagging data

Tagging data from four tagging events are available for SKJ in the EPO. In this analysis, we utilized the
conventional tags from the last two events that took place from 2000-2006 and 2019-2022 but excluded
the data from the other two tagging events that took place from 1955 to 1964 and from 1979 to 1981.
While the six tuna tagging cruises in 2000 to 2006 targeted bigeye tuna, 3517 SKJ were tagged and
released with plastic dart tags, of which 565 tags were recovered. By contrast, the IATTC multi-year
Regional  Tuna Tagging Program (RTTP-EPO 2019-2022,  Project  E.4.a)  that  was initiated  in  2019
focused on SKJ. The RTTP included three tagging cruises in 2019, 2020, and 2022. A total of 6259 SKJ
were tagged with plastic dart tags during the cruises of which  1619  were recovered at the time of
writing this report. After applying a speed filter and data processing, a total of 9741 tags remained, of
which the 2252 recovered tags were used for the analysis presented here (Figure 1).  Although most
tagged fish were released around the equator and 95°W, the recaptured fish span a wide region from
150°W to the coast of Peru and from 22°S to 20°N (Figure 1). 
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Figure 1: Release and recapture locations of the 2152 recovered conventional tags from the 2000 and
2019 tagging programs. Release locations are indicated by a blue circle and recapture locations by
arrow heads.

In addition to the conventional tags, 35 archival tags from the 2019-2022 RTTP were processed and
used  for  the  analysis  (Figure  2).  The  archival  tags  were  recovered  after  2  days  to  8  months  and
travelled up to 15000 km. The most probable track was estimated with the unscented Kalman filter
described in Lam et al. (2008).
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Figure 2: Tracks of the 35 archival tags used in this analysis, where blue points indicate the release
location and orange squares the recapture locations. 

The spatial domain of the model was defined by the Western management boundary at 150°W and the
coastline of North and South America in the East as well as the 30°S and 35°N (darker blue area in
Figure  3).  An  additional  buffer  zone  of  5°  around  the  model  region  was  considered  for  the
implementation of absorptive or reflective boundary conditions (lighter blue area in Figure 3).
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Figure 3: Spatial domain of the EPO considered for the tagging and abundance model (dark blue),
with a buffer 5° buffer zone (in light blue).

Some tagged fish were recaptured close to the release location and within a short time after the release
(even within the same day), these tags are not likely to contain a lot of information about the movement
of the fish and cannot be assumed to be well mixed within the population. Thus, any tag that was
recaptured within 14 days after the release, was removed from the analysis. Fourteen days were chosen
as  a  conservative  cut-off  as  the  residence  time  of  SKJ under  FADs is  likely  longer  (Dan Fuller,
personal communication).

3.2 Environmental data

The SKJ tagging model requires environmental data to inform the habitat preference of SKJ. A range
of potential environmental covariates could be relevant for informing the habitat preference and thus
movement  of  SKJ  in  the  EPO.  We considered  sea  surface  temperature  (SST),  mixed  layer  depth
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(MLD), chlorophyll-a, kinetic energy, and an indicator of primary production as potential covariates
informing the habitat preference and diffusion of SKJ. The environmental data is aggregated to 1°x1°,
2.5°x2.5°, and 5°x5° grid cells and weekly and monthly time steps for the period from 2000 to 2022.
Supplementary figures S1 and S2 show SST and MLD, respectively, for a  2.5°x2.5° grid and with a
monthly resolution for 2021.

3.3 Catch and effort data

Catch and effort information was available from 2000 to 2021 as number of sets and catch in metric
tons per 1° grid cell, day, and fleet. The three different purse seine fleets are differentiated based on the
type of sets between dolphin associated sets (dph), unassociated sets (sch), and fishing aggregation
device (FAD) associated sets (log).

Figure 4: Annual effort in number of sets per 1° grid cell for 2021 for the three purse seine fleets: dph
= dolphin associated sets, sch = unassociated sets, and log = FAD-associated sets. 
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Figure 5: Annual catch in metric tons per 1° grid cell for 2021 for the three purse seine fleets: dph =
dolphin associated sets, sch = unassociated sets, and log = FAD associated sets.

4. Movement model

The movement model describes an advection-diffusion process that utilizes environmental fields and
smooth functions to inform advection and diffusion rates  (Thorson et al. 2021). Two approaches are
considered for the estimation of parameters: the matrix exponential and the extended Kalman filter.
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The matrix exponential  approach can be summarized by setting up the movement intensity  matrix,
which describes the intensity of moving from one cell i to another cell j. Note that this definition of M*
includes the fishing and natural mortality rates, which addressed in more detail in the next section.

     

The matrix  is constructed from a diffusion field D and an advection vector-field α. The fields are
defined by splines applied to the environmental fields. The vector-field for advection is defined as the
gradient of a habitat field h, which is defined as:

                     

Where S denotes spline functions and I denote environmental input fields. As such the advection field
is defined in each grid cell and the gradient is approximated by finite differences. The diffusion field is
similarly but more directly defined as: 

                            

As the environmental input fields are defined only at a discrete grid, then the advection and diffusion
fields are also restricted to a discrete grid. This matches well with the conventional tags, which are
observed to move from one specific cell (i) to another (j) and possibly with a hidden Markov model
approach to the archival tags (Pedersen, 2010). The discrete definition of the advection and diffusion
fields does not match well a more continuous approach to modelling the tags. For such approaches to
work we need the advection and diffusion fields to be defined – and be differentiable – in all points in
our study area.  If we imagine that we could find a differentiable  representation of each field (e.g.
replace  𝐼1 with  ~𝐼1),  then  the  fields  for  advection  and  diffusion  would  also  be  continuous  and
differentiable defined everywhere.

Two approaches were used to represent the environmental field in a differentiable way. First a neural
network with 3 inputs (lon, lat, and ‘1’ (representing an intercept)), 15 hidden nodes, and one output
(the corresponding environmental value) was set up. Such a neural network has 60 model parameters
and after they have been estimated, then the environmental field can be approximated by evaluation the
network at any (lon, lat)-point. The network representation is continuous and differentiable, so it can be
used as basis for more continuously defined movement models.
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Figure 6: Raw temperature field (left), smooth neural network representation (middle), and compared
contours (right). 

While the neural network approach does work and gives a parametric approximation of the field it uses
a relatively high number of parameters and could possibly be poorly defined outside the data area. The
second approach to represent the environmental field in a differentiable way uses local interpolation.
The locally interpolated field is defined in any position (lon, lat) by a weighted average of the input
field values from a radius ‘R’ around the position. The distance-weighting of the local points is defined
by an iterated cosine function to ensure differentiability (to a high enough order) when observation
points  are  smoothly added or excluded from the average,  as the position changes.  If  the radius  is
defined  to  be  exactly  equal  to  the  distance  between  neighboring  positions,  then  the  value  of  the
differentiable representation evaluated at an actual observation position will be exactly equal to the
observed value (because exactly one observation is included), and at any other position the value will
be a smooth weighted average of neighboring points.

The advection field is defined as the gradient to the habitat field, and it is possible (easy) to evaluate the
gradient of the local interpolation calculations. That gradient is, however, not what we want. If the
radius  is  defined to  be equal  to  the distance  between neighboring points,  then the gradient  of  the
smooth representation will be zero if evaluated at the position of an observation (because exactly at
such a point the calculation only involves taking the average of one point). To get useful gradient fields
(one in the longitude direction and one in the latitude direction) the input fields for delta-longitude and
delta-latitude were computed from each of the environmental fields and then the local interpolation
method applied to get smooth versions. Hence each discretely given environmental field I is converted
into 3 smooth fields (~𝐼❑ , ~𝐼𝑑𝑥 , and ~𝐼𝑑𝑦 ). Once these are defined, the gradient of the habitat field itself
can  be  computed  and  that  is  what  is  needed  to  define  advection  and  diffusion  everywhere  in  a
differentiable way.  

With the advection and diffusion fields defined it is possible to formulate (and estimate) movement
models, which are not defined on a grid. For the archival tag observations, the model becomes: 
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Here 𝜓represents the true unobserved position, o is the observed position with observation noise Σ𝑜.
Starting from the known release position the model likelihood is computed via a classic Kalman filter
(Harvey, 1990). 

For the conventional tags only the release and recapture positions are known. In order to better capture
the nonlinearities in the spatial fields and the temporally changing environmental fields a number of
intermediate time points are inserted between release and recapture time. The likelihood contribution of
each conventional tag is ten computed exactly at for the archival tags. Starting from the release location
a Kalman filter is used to step from each timepoint and to the next (updating the distribution of the true
unobserved position) and finally evaluating the likelihood of the recapture position. The only difference
is that no observations are available at all the intermediate timesteps.             

As multiple recovered tags are linked to the same release locations (but various recovery times), the
computations are optimized for computation speed and memory allocation by estimating the movement
matrices dependent on the unique release locations.

5. Estimation of mortality rates

The recovery of a tag at a given location and time does not only depend on the movement from the
release to recapture location, but also the probability of the survival of the fish until being recaptured
and the probability of capture at the recapture location by fleet f. Defining the instantaneous fishing
mortality Fg,t,f in grid cell g at time t of fleet f proportional to the effort of that fleet (𝐹𝑔 ,𝑡 , 𝑓=𝜆𝑓 𝐸𝑔 ,𝑡 , 𝑓 )
and the instantaneous natural mortality rate M as a constant rate in space and time, allows to calculate
the likelihood of recapture of tag h at time m as:

On the other hand, a conventional tag that was not recovered, is either lost with the death of the fish
due to natural causes or still attached to the living fish. Note, that this assumes that the tag would have
been reported if it was caught by any fleet (non-reporting=0). Thus, the likelihood of a non-recaptured
tag h with assumed maximum age A:
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Similar to the environmental fields, the effort must be defined in a continuous differentiable space for
the Kalman filter approach. Therefore, we used the same local interpolation approach described above
for the interpolation of the effort.

6. Population model

A rough estimate of the population biomass in space and time and based on information from the
different  fleets  (Br

g,t,f)  can  be  calculated  from observed  catches  and  estimated  fishing  and  natural
mortality rates corresponding to fleet f by means of the Baranov catch equation:

     

However, this biomass is likely an underestimation of the population biomass as it is only defined for
grid cells where the effort and catch are larger than 0. A spatio-temporal model can be used to intra-
and extrapolate to those grid cells and areas and derive a smoother estimate of the population biomass
in space and time (Bs

g,t). This model can be defined as a state-space model with the biomass in space
and time as  the random effect.  The random effect  biomass  can be described by an autocorrelated
process in time where the residual spatio-temporal variation in abundance corresponds to a Gaussian
Markov random field:

                                                   

                                             

The  spatiotemporal  tagging  and abundance  model  is  implemented  in  the  Template  Model  Builder
(TMB; Kristensen et al. 2016) and parameter optimization is done in R 4.0.2 (R Core Team 2020).

11



7. Results

Among tested environmental fields, such as mixed layer depth, primary productivity, or kinetic energy,
(sea surface) sea temperature showed the strongest signal in terms of the habitat preference of SKJ in
the EPO. Results indicate that SKJ might prefer SST around 25-26°C and have a lower preference for
lower and higher temperatures (left panel in Fig. 7).  At the same time, the results suggest that the
undirected movement (diffusion) increases with increasing temperature (right panel in Fig. 7).

Figure 7: Estimated preference and diffusion as a function of sea surface temperature. The black dots
indicate the locations of the 3 knots and the rugs on the x axis indicate “observed” temperature (I.e.
temperature values in grid cells were SKJ was released or recaptured).

These temperature preferences and diffusion equate to preferred areas around and south of the equator
and around 15° N over a wide range of longitudes (left panel in Fig. 8).  Areas with high diffusion are
along the coastline of Mexico and Central America, along 10°N and at 10° S at the western boundary
of  the  spatial  domain.  Note,  that  Figure  8,  shows an  annual  average  and  as  temperature  changes
seasonally (Supplementary Fig. S1), so do the preferred habitats. 
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Figure 8: Estimated mean annual habitat preference and diffusion in 2021 based on the Kalman filter
model with a 2.5°x 2.5° grid, 12 time steps per year, and natural splines with 3 knots based on sea
surface temperature.

These  estimate  habitat  preferences  imply  stronge  r  movement  directed  away  from  high  latitudes
towards lower latitudes and away from the coastline (left panel Fig. 9). While the directed movement
between 20°N and 20°S is lower, the undirected movement is larger in these areas (Fig. 9).
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Figure 9: Estimated mean annual advection and diffusion in 2021 based on the Kalman filter model
with a 2.5°x 2.5° grid, 12 time steps per year, and natural splines with 3 knots based on sea surface
temperature. The length of the arrows indicates the strength of the directed movement (advection),
while the size of the circles indicates the square root of the diffusion.

These results are consistent over a range of different assumptions regarding the splines, such as the
location  and number  of  knots,  as  well  as  the  size  of  the  temperature  grid.  The estimated  natural
mortality rate is 3.85 year-1 (Table 1).

Table 1: Estimated model parameters of the movement model with estimated standard error (SE) and
lower and upper 95% confidence intervals (CI).

Parameter Estimate SE Lower CI Upper CI

𝛼1 31.2 0.447 30.3 32

𝛼2 17.9 0.814 16.3 19.5

𝛽1 4.42 0.0202 4.38 4.46

𝛽2 5.53 0.042 5.45 5.61

𝜎𝑂𝑏𝑠 0.396 0.018 0.383 0.411

𝜆 h𝑑𝑝 0.000883 0.578 0.000284 0.00274

𝜆 h𝑠𝑐 0.00217 0.289 0.00123 0.00383

𝜆𝑙𝑜𝑔 0.141 0.0318 0.133 0.15

M 3.85 0.0229 3.68 4.03
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Results  of  the  biomass  estimation  will  be  presented  at  the  meeting  but  are  too  preliminary  to  be
included in the report.

8. Next steps

The next  steps include the development  of model  diagnostics  and further  sensitivity  testing of the
estimation of movement and mortality rates as well as the refinement of the population model. For
example, double-tagging and seeding experiments suggest that shedding, tagging-related mortality, and
non-reporting can amount to substantial  rates (Dan Fuller,  personal communication).  Instead of the
auto-correlated process and Gaussian Markov random field, the estimated movement should inform the
population  model  about  the  spatial  and  temporal  development  of  SKJ  in  the  EPO.  The  biomass-
aggregated or length-structured population model could then estimate biological reference points for
sustainable harvest.
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11. Supplementary information

Figure S1: Monthly sea surface temperature (SST) for the EPO in 2021 on a 2.5° grid.
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Figure S2: Monthly mixed layer depth (MLD) for the EPO in 2021 on a 2.5° grid.
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