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1. SUMMARY 

The IATTC port-sampling data are used to determine the species and size composition of the tropical tuna 
catch, and therefore play a very important role in the current Best Scientific Estimate (BSE) catch 
estimation methodology. The COVID-19 pandemic generally limited the ability of IATTC port-samplers to 
collect data in 2020 – 2021, however, the disruption to data collection was greater in some ports than in 
others. This may have resulted in bias in the BSE of catch composition for 2020 – 2021 because some fleet 
segments preferentially unload in specific ports. An increase in the 2020 BSE for bigeye tuna (BET) in 
floating-object (OBJ) sets in 2020, relative to the previous year (SAC 13-03), despite a decrease in OBJ sets 
(SAC-13-06), and the marked disparity between the 2020 BSE and the reported catches from observers 
and logbooks for 2020, contributed to a concern about potential bias in the BSE at the 12th Meeting of the 
Scientific Advisory Committee. A recent study that applied the BSE methodology to data from 2010 – 
2019, after simulating a systematic reduction in port-sampling data to match that which occurred in 2020, 
showed that bias could occur, but that the bias could be either an over-estimation or an under-estimation 
(SAC-13 INF-L). Therefore, to address the effect of the systematic loss of port-sampling data in 2020-2021 
on the BSE, a spatio-temporal model was developed to estimate the port-sampling catch composition 

https://www.iattc.org/Meetings/Meetings2022/SAC-13/_English/SAC-13-03_The%20tuna%20fishery%20in%20the%20Eastern%20Pacific%20Ocean%20in%202021.pdf
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from observer (logbook) data for catch estimation strata for which no port-sampling data were available. 
Exploratory analyses showed that observer data (supplemented with logbook data, where necessary) 
could be used successfully to predict the port-sampling species composition, and that prediction was 
improved when spatial and temporal covariates were included in the model. The spatio-temporal model 
performed well in terms of the percent variance explained and normalized prediction error, and the catch 
estimates from the model were highly correlated with the BSEs for 2010-2019, years for which no 
systematic data losses occurred. Through simulation, the spatio-temporal model was found to be robust 
to the type of systematic port-sampling data losses that occurred in 2020. One of the reasons for this may 
be that long-term historical information was incorporated into the spatio-temporal model through an 
autoregressive process. This spatio-temporal model was used to estimate the catch by species in the OBJ 
fishery for 2020 and 2021, and the results1 indicate that the BET catch was overestimated by the BSE 
methodology by about 12% and 18% in 2020 and 2021, respectively, while the yellowfin tuna catch was 
underestimated by 18% in 2020  and overestimated by 10% in 2021; bias estimates for skipjack tuna were 
considerably lower. The results for 2021 are preliminary, however, because the 2021 estimates are based 
on data for 2020, which was also impacted by the pandemic, and possibly in a different manner than that 
which occurred in 2021. Further research needs to be conducted to determine the robustness of the 2021 
estimates and to develop spatio-temporal models for the other set types. 

2. BACKGROUND  

Due to the COVID-19 pandemic, in 2020 - 2021 it was not possible to collect some of the data used to 
estimate the species and length composition of the tropical tuna catch (yellowfin, bigeye and skipjack) for 
the purse-seine fleet. Specifically, data collected in port (port-sampling data) were not collected during 
part of this two-year period in some of the main ports where bigeye tuna (BET) catch is unloaded (landed). 
As a result, there is concern that the Best Scientific Estimates (BSE) of the species and length composition 
of the catch for these two years may be biased, particularly for bigeye tuna (SAC-13 INF-L). The fact that 
the 2020 BSE of the BET catch in floating-object (OBJ) sets increased, relative to the 2019 estimate (SAC-
13-03), while the number of OBJ sets in 2020 decreased relative to the number in 2019 (SAC-13-06), has 
added to concern about bias. Therefore, for 2020 - 2021, modification to the statistical methodology used 
to estimate the tropical tuna catch composition is likely necessary, placing greater emphasis on other data 
sources, besides the port-sampling data, in the estimation methodology. 

2.1 Data sources available for catch composition estimation 

There are four primary data sources available with which to estimate the species composition of the 
purse-seine catch of tropical tunas in the eastern Pacific Ocean (EPO): (i) Observer data, (ii) Logbook data 
(iii) Cannery data, and (iv) Port-sampling data. These data sources differ in their coverage, collection 
methods, sample sizes, potential biases (both catch amounts and species identification), and the effects 
of COVID on data collection. A more detailed description of these data sources is provided in Appendix C. 

Of the four data sources, the observer and logbook data are the most extensive in terms of spatial and 
temporal coverage of the fishery. The logbook data are available for all size classes of purse-seine vessels. 
The logbook data include details of the fishing effort and estimates of the target species catch, but they 
do not provide information on the size of fish and rely on the fishers to provide information. The observer 
data have effectively 100% coverage for large purse seiners (IATTC Class-6; > 363 mt fish carrying-capacity) 
and contain additional information (e.g., bycatch, tuna discards), but are only available for a small fraction 

 
1 The following correction was made to the 2020-2021 CAR estimates: updated to reflect the latest total fleet catch 
of tropical tunas. 

https://www.iattc.org/Meetings/Meetings2022/SAC-13/_English/SAC-13-INF-L_The%20effect%20of%20pandemic-related%20port-sampling%20data%20loss%20on%20the%202020.pdf
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of small purse-seine vessels. The observer data provide estimates of the amounts of tuna catch by species 
in three weight categories (‘small’: fish < 2.5 kg total weight; ‘medium’: fish between 2.5 kg and 15 kg; 
‘large’: fish > 15 kg), but not actual measurements of length or weight of individual fish.  

Cannery data are principally estimated catch amounts of target species by trip, provided to the IATTC staff 
by tuna canneries. They do not provide information on exact fishing locations or dates, or on operational 
characteristics (e.g., purse-seine set type), although information on fishing zones and trip departure and 
arrival dates are provided. No size information is currently available on the database; some canneries do 
provide estimates of catch by weight categories, but those categories differ among canneries, making the 
size information problematic to use for catch composition estimation. Cannery data are not available to 
the IATTC staff for all trips nor from all canneries. The port-sampling data are collected by IATTC field 
office staff when purse-seine vessels unload their catch in port and are principally samples of lengths and 
species composition of the catch stored in individual vessel wells. The data include length measurements 
to the nearest mm from a sample of fish and counts of species from another independent sample of fish 
(see appendix in Suter (2010) for details of the sampling protocol). They also include data on the month, 
area and set type associated with the catch in the well that was sampled. Although the port-sampling data 
collection protocol is based on 13 sampling areas, since 2000 both the sampling area and the 5° area are 
available for each sample. Not every trip is sampled by the port-sampling program, and the coverage of 
trips differs by vessel size class. The coverage in terms of the percentage of wells sampled or percentage 
of the catch sampled is low. 

2.2 Current catch composition estimation methodology 

Comprehensive and accurate information on the species and size composition of the fleet catch is not 
available from any one of the four primary data sources. Therefore, these data sources have to be 
combined to produce the BSE. More information on the BSE statistical methodology used since 2000 to 
estimate the purse-seine tuna catch composition for the three target tuna species is provided in Appendix 
C and citations therein. The methodology is a design-based approach to catch estimation, as opposed to 
a model-based approach. The methodology uses the port-sampling data to estimate the species and size 
composition of the total catch of tropical tunas by stratum, where strata are defined by area and month 
of fishing, purse-seine set type and vessel size class category. The estimate of the total purse-seine catch 
of tropical tunas (sum of catches of yellowfin, bigeye and skipjack) is based on catches from cannery data, 
if available, otherwise observer data or logbook data are used. This total tropical tuna catch is distributed 
to strata using observer and logbook data.  

Because there are always strata with catch but no port-sampling data (SAC-13 INF-L), species and size 
composition in some strata are based on port-sampling data from ‘neighboring’ strata. The ‘best’ 
neighboring stratum is determined through a set of hierarchical rules. In general, priority is given to set 
type. Then priority is given to area or month, depending on the programs being used, and finally vessel 
size class category. Bias may be introduced by this procedure when the true species and size composition 
of ‘neighboring’ strata with port-sampling data are sufficiently different from that of the stratum for which 
no port-sampling data exist. The possibility of bias is always present, but much more likely when the 
overall level of port-sampling is very low or catch unloaded in some ports is not sampled for an extended 
period of time, as was clearly the case in 2020 (SAC-13-INF-L).  

2.3 Overview of statistical approach taken in this study  

The overall approach taken in this study was to develop a statistical methodology that would use the port-
sampling data to ‘adjust,’ in a statistical manner, the catch composition estimates obtained from the 
observer and logbook data. There are two reasons for this. First, collection of observer and logbook data 
was not as severely impacted by the pandemic as was the collection of port-sampling data. Second, as 

https://www.iattc.org/PDFFiles/SpecialReports/_English/No-18-2010-SUTER,%20JENNY%20M_An%20evaluation%20of%20the%20area%20stratification%20used%20for%20sampling%20tunas%20in%20the%20eastern%20Pacific%20Ocean%20and%20implications%20for%20estimating%20total%20annual%20catches.pdf
https://www.iattc.org/Meetings/Meetings2022/SAC-13/_English/SAC-13-INF-L_The%20effect%20of%20pandemic-related%20port-sampling%20data%20loss%20on%20the%202020.pdf
https://www.iattc.org/Meetings/Meetings2022/SAC-13/_English/SAC-13-INF-L_The%20effect%20of%20pandemic-related%20port-sampling%20data%20loss%20on%20the%202020.pdf
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noted above, the observer and logbook data are also more extensive in their spatial and temporal 
coverage of the fishery, as compared to the port-sampling data. Thus, the goal was to develop an 
integrated statistical model, which could accommodate multiple sources of variation inherent in the data, 
so that observer and logbook data could be used to predict the port-sampling catch composition by strata 
(e.g., by year and set type for specific spatial units), for strata for which no port-sampling data were 
actually available.  

Conditionally Auto Regressive spatio-temporal models (CAR; Besag et al. 1991) was the class of integrated 
statistical models used in this study. These types of models can take advantage of innate spatial and 
temporal correlation structure in the data, and are thus more likely to make reliable estimates when large 
amounts of data are systematically missing (e.g. for certain ports for many months). The work to date has 
focused on estimation of the species composition of the catch in OBJ sets because BET is primarily caught 
in OBJ sets (SAC-13-03) and the systematic loss of port-sampling data caused by the pandemic likely led 
to bias in the BET OBJ-set BSE (SAC-13 INF-L).  

Since the true species composition of the catch is unknown, in this study it was assumed that the goal is 
to develop a method that will produce catch estimates that are as consistent as possible with those 
produced by the BSE methodology prior to the pandemic (i.e., prior to 2020). Therefore, not only were 
standard measures of model performance used to develop the best CAR model, such as percent of 
variance explained by the model and prediction error, but the new methodology was also evaluated in 
terms of its ability to match the BSEs for 2000-2019 that are reported in the IATTC Fishery Status Report 
(e.g. Table A-7 of SAC-13-03).  

In this document, we present work on a new methodology to estimate the species composition of the 
tropical tuna catch, focusing on OBJ sets. First, we describe the exploratory analyses used to investigate 
the relationship between port-sampling and observer species composition estimates. Second, we describe 
the new integrated statistical methodology developed to estimate the species composition of the catch 
from both observer (logbook) data and port-sampling data. We conclude with revised estimates of catch 
by species for 2020 and 2021, a retrospective evaluation of the bias if the missing data for 2020 occurred 
in earlier years, and a discussion about future work. 

3. DATA EXPLORATORY ANALYSIS 

Several types of exploratory analyses, focusing on the data of IATTC Class-6 vessels, were conducted to 
investigate the relationship between the species composition estimates from port-sampling and those 
from observer data. First, the magnitude of differences in species catch composition between observer 
and port-sampling data was evaluated, by strata, using graphical techniques. Then, multiple regression 
analyses were carried out to: (i) understand the strength and nature of the relationship between the 
observer and port-sampling species composition estimates; and, (ii) to identify any spatial and temporal 
structure that may be present in the port-sampling species composition estimates.   

3.1 Graphical data summaries 

To graphically explore the relationship between the port-sampling species composition proportions, 𝑝𝑝𝑘𝑘𝑘𝑘, 
and the observer species composition proportions, 𝑞𝑞𝑘𝑘𝑘𝑘, where k indicates the spatial unit and t indicates 
the temporal unit, the estimates from the two data sources were compared at their finest common 
resolution, which is a 5° area x month x year. For each data source, the species composition proportions, 
by stratum, were computed as the ratio of the catch of the species of interest in the stratum to the sum 
of the catches of all three tropical tuna species in the stratum. 

If there is a simple linear relationship between the two sets of proportions for a given species, then it 
might be expected that 

https://www.iattc.org/Meetings/Meetings2022/SAC-13/_English/SAC-13-INF-L_The%20effect%20of%20pandemic-related%20port-sampling%20data%20loss%20on%20the%202020.pdf
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                                                          𝑝𝑝𝑘𝑘𝑘𝑘 =  𝑎𝑎 + 𝑏𝑏 𝑞𝑞𝑘𝑘𝑘𝑘 + 𝑒𝑒𝑘𝑘𝑘𝑘                                                          

where e is the random error. From scatter plots of 𝑝𝑝𝑘𝑘𝑘𝑘   versus 𝑞𝑞𝑘𝑘𝑘𝑘  (Figures 1 - 2) it is clear that there is an 
overall increasing relationship, but also that this relationship differs by species and that there is a 
substantial amount of variability. While the proportions for BET and skipjack tuna (SKJ) span the full range 
of (0,1), the values for yellowfin tuna (YFT) tend to be concentrated closer to the origin. The variability in 
these scatter plots may be due to several factors including spatial effects, temporal effects, or both spatial 
and temporal effects.  

To explore spatial differences between the two sets of proportions for each species, annual maps of the 
mean of differences (𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑞𝑞𝑘𝑘𝑘𝑘) were computed for each 5° area, for each of the three species (Figures 3 
- 4). These maps show spatial structure, as well as inter-annual fluctuations, in the mean differences. 
Summarizing the 5° monthly differences into longitudinal bands (Figure 5) shows that there is 
considerable inshore-offshore variation in the center, spread, and shape of these collections of 
differences. From Figure 5 it can be seen that there is: (a) significant spatial pattern – since the medians 
(centers) of the 5° longitudinal box-and-whisker plot summaries change as a function of longitude; and, 
(b) spatial variation – since the interquartile ranges and the ranges of the box-and-whisker plots change 
as a function of longitude. Moreover, these spatial features change annually.  An additional characteristic 
of the port-sampling data, in comparison to the observer data, is that its spatial extent is much more 
limited, even when aggregated across months within a year (marked in black in Figures 3-4 are the 5° 
areas where port-sampling data were not available). These results suggest there is a benefit to developing 
statistical models that can capture these spatial features.  

3.2 Regressing port-sampling species proportions on observer species proportions 

For the regression analyses, the following simple model was fitted to the data of each year (the natural 
logarithm transformation was used because it is variance stabilizing and ensures that the estimated 
species proportions are between 0 and 1): 

log(𝑝𝑝𝑘𝑘.) =  𝑎𝑎 + 𝑏𝑏 log(𝑞𝑞𝑘𝑘.) + 𝑒𝑒𝑘𝑘. 
 

where k corresponds to a 5° area and the species proportions have been pooled over months of the year. 
The results of this regression analysis indicated that the model was a good fit to the data in that the 𝑅𝑅2 
and the 𝑎𝑎𝑎𝑎𝑗𝑗 𝑅𝑅2, which are indications of how well the linear regression equation explains the variation in 
the response variable, were in the range of 30-50%. This implies that, when data are pooled over months 
within a year, there is a stronger relationship between p and q than was seen in Figures 1 - 2. This is 
perhaps not surprising because aggregation over months leads to more data points per 5° area, and the 
central limit theorem asserts that the means (in this case, the proportions) should converge to the true 
proportions, and variances reduce significantly, as the sample size increases.  

Next, with a view to improving model fit by explaining some of the spatial variation observed in Figures 3-
4, latitude (“lat”), longitude (“long”), and a latitude-longitude interaction term were included in the 
regression model: 

log(𝑝𝑝𝑘𝑘.) =  𝑎𝑎 + 𝑏𝑏1 log(𝑞𝑞𝑘𝑘.) + 𝑏𝑏2𝑙𝑙𝑎𝑎𝑡𝑡𝑘𝑘. + 𝑏𝑏3 𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑘𝑘. + 𝑏𝑏23 𝑙𝑙𝑎𝑎𝑡𝑡𝑘𝑘. 𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑘𝑘. + 𝑒𝑒𝑘𝑘. 

For every year, all the regressors were statistically significant for each of the three species. That is, the 
model fit was improved significantly by including latitude, longitude, and the latitude-longitude 
interaction term in the model. For example, for 2017 for BET, the results of fitting the above model are 
given in the following table:  
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Coefficients: 
   

 
Estimate Std Error t-value p-value 

Intercept -7.29 0.72 -9.9 < 2e-16 

 
  

0.55 0.07 7.6 3.54E-13 
 

0.29 0.05 5.1 5.30E-06 
 

-0.04 0.005 -8.5 1.52E-15 
 

0.002 0.0005 4.7 3.22E-06 

The variance explained by this regression model was 45%. The residual standard error was 1.227 on 255 
degrees of freedom, and the F-statistic was 54.21 on 4 and 255 degrees of freedom, while the p-value for this 
model was 2.2e-16. By comparison, the variance explained when no spatial information was included in the 
model was only 29%. This is an indication that further spatial modeling would be beneficial. 

4. STATISTICAL SPATIO-TEMPORAL MODELING  

In this section, the CAR spatio-temporal model (Besag et al. 1991) implemented in this study is described. 
Spatial CAR models with no temporal component were also considered in preliminary analyses but 
because of their poor performance, were not used for the final analysis (those models and their 
performance are described in Appendix A and Appendix B respectively.)  This section begins with a 
description of the key aspects of the statistical modeling that were needed to address the data 
characteristics identified by the exploratory analyses. The ‘best’ spatio-temporal CAR model developed is 
then described. In the latter part of this section, the results related to model fit and prediction 
performance are presented, as well as estimates of the species composition of the catch, which are 
compared to the BSEs presented in SAC-13-03.  

The key aspects of the statistical modeling that are needed to address the data characteristics are: 

1.  The statistical model needs to allow flexibility for spatial pattern (mean at each spatial location) 
and spatial variation (variance at each spatial location) in the data to change from year to year, all 
in one integrated model. The presence of spatial pattern implies that observations from units 
closer to each other are more similar than those from units farther from each other. If there is a 
flat spatial pattern and the spatial variance is also constant, for example, the data can be assumed 
to be distributed randomly in space. However, in the exploratory analyses, it was found that the 
BET species proportions exhibited spatial pattern and spatial variation that changed over the 
years.  Specifically, the box-and-whisker plots of Figure 5 have different medians and different 
interquartile ranges, and these values depend on longitude, which suggests that there may be 
residual spatial pattern and spatial variation after regressing port-sampling proportions on 
observer proportions.  

2. The statistical model needs to address data sparsity in space and time. Data sparsity is a function 
of the spatio-temporal resolution of the data used to fit the model.  While statistical models can 
be fitted to relatively fine-resolution data (e.g., 5°-monthly data), the sparsity of the port-sampling 
data in space and time, compared to spatio-temporal extent of the catch data (observer, logbook), 
made such modeling of the port-sampling species proportions problematic in preliminary 
analyses. An example of spatial data sparsity in the monthly 5° data is shown in Figure 6. One way 
to address this issue is to aggregate the data in space and time to compensate for low sample 
sizes in certain areas of the EPO, especially in some years where data were particularly spatially 
scarce. However, sparsity is still present in the annual data, as shown in Figures 3 - 4. An additional 
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way to deal with data sparsity is to take advantage of correlation structure within the data, either 
in space at the same time point, or through time, by incorporating data from multiple years into 
one model. In this way, the model can take advantage of spatial pattern that is evolving in a 
correlated manner through time to help mitigate the issue of data sparsity. 

3. The statistical model must be able to predict for new areal units to be able to estimate species 
proportions for areal units where port-sampling data were missing in 2020-2021. 

After several attempts to develop models using finer-resolution data, e.g., monthly and quarterly data at 
a 5° spatial resolution, which resulted in models with poor performance (but see Discussion section), it 
was decided to aggregate the data in time to a yearly resolution and in space to the 13 sampling areas 
(Figure 7) used in BSE catch estimation methodology (Tomlinson 2002). The spatial aggregation works well 
in reducing the variability of the proportions – leading to better fitting models, presumably because there 
are more data points in these larger regions compared to smaller spatial ‘cells’. Thus, spatio-temporal CAR 
models, described below, were fitted to the aggregated data to estimate pkt. 

4.1 Spatio-temporal CAR models for pkt 

Software for spatio-temporal modeling with conditional autoregressive priors using MCMC simulation 
was not previously available, which motivated the development of the CARBayesST package (Lee, 
Rushworth, and Napier 2018) in R (R Core Team 2021). The CARBayesST package was used for most 
analyses presented below. In all cases, inference is in a Bayesian setting using Markov Chain Monte Carlo 
(MCMC) simulation. In this section, the general hierarchical model that was fitted is described.  

The general model formulation is given by: 

log( 𝑝𝑝𝑘𝑘𝑘𝑘) =  𝑌𝑌𝑘𝑘𝑘𝑘 
 𝑌𝑌𝑘𝑘𝑘𝑘  | 𝜇𝜇𝑘𝑘𝑘𝑘    ~  𝑁𝑁𝑙𝑙𝑁𝑁𝑁𝑁𝑎𝑎𝑙𝑙 (𝜇𝜇𝑘𝑘𝑘𝑘 , 𝜈𝜈2  ) 

 
 𝜇𝜇𝑘𝑘𝑘𝑘 =   𝑋𝑋𝑇𝑇𝛽𝛽 +  𝜓𝜓𝑘𝑘𝑘𝑘  

where X is a matrix of covariates and 𝛽𝛽 is the regression coefficient vector. In our modeling context, 𝑋𝑋𝑇𝑇𝛽𝛽 
= 𝑎𝑎 + 𝑏𝑏1 log(𝑞𝑞𝑘𝑘𝑘𝑘), which was the first part of the multiple regression model used in the exploratory 
analyses described above.  𝜓𝜓𝑘𝑘𝑘𝑘   is the spatio-temporally autocorrelated random component (described in 
detail in Section 4.2) and 𝜈𝜈2 denotes the residual error, which is assumed to be a combination of variability 
around the relationship, model misspecification, and measurement error. The priors for the fixed effects 
parameters are given by: 
   

                                                       𝛽𝛽 ~ 𝑁𝑁�𝜇𝜇𝛽𝛽 , Σ𝛽𝛽�; 
                                                      𝜈𝜈2  ∼Inverse-Gamma(a,b)   
 

The hyper-parameters a, b can be chosen according to the problem. Usually a, b are chosen to make the 
Inverse-Gamma distribution flat (or, equivalently, to have a large variance). 𝜇𝜇𝛽𝛽  , Σ𝛽𝛽  are chosen to make 
the Multivariate Normal distribution centered around zero with large variance. 

4.2 Space-time random effects structures in the CAR model 

Allowing the spatio-temporal model to take advantage of any temporal autocorrelation in the 𝑝𝑝𝑘𝑘𝑘𝑘  is an 
one means of compensating for sparse data, while improving model performance. To take advantage of 
temporal correlation within the spatio-temporal model, the temporal aspect of the spatio-temporal 
random effect is modelled as a first order autoregressive process (using the ST.CARar function in the 
CARBayesST package). Specifically, 𝜓𝜓𝑘𝑘𝑘𝑘   is the latent or random `spatio-temporal’ variable defined on the 
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kth areal unit (in our case, one of the M = 13 sampling areas of Figure 7) and tth temporal unit (in our case 
the tth temporal unit will be a year, for example t = 2017). 𝜓𝜓𝑘𝑘𝑘𝑘  was defined as follows: 

𝜓𝜓𝑘𝑘𝑘𝑘 =  𝜙𝜙𝑘𝑘𝑘𝑘  

Φ𝑘𝑘 | Φ𝑘𝑘−1 ~N(  ρT Φ𝑘𝑘−1, 𝜏𝜏2 𝑸𝑸(𝑾𝑾,𝜌𝜌𝑆𝑆)−1 )  
 

Φ1~ 𝑁𝑁(𝟎𝟎,   𝜏𝜏2 𝑸𝑸(𝑾𝑾,𝜌𝜌𝑆𝑆)−1 ) 
 
𝜏𝜏2~ 𝐼𝐼𝑙𝑙𝐼𝐼𝑒𝑒𝑁𝑁𝐼𝐼𝑒𝑒 𝐺𝐺𝑎𝑎𝑁𝑁𝑁𝑁𝑎𝑎(𝑐𝑐,𝑎𝑎 ) 

𝜌𝜌𝑠𝑠,𝜌𝜌𝑇𝑇  ~ 𝑈𝑈𝑙𝑙𝑈𝑈𝑈𝑈𝑙𝑙𝑁𝑁𝑁𝑁(0, 1) 

where 𝜙𝜙𝑘𝑘 =  (𝜙𝜙1𝑘𝑘 , 𝜙𝜙2𝑘𝑘 , … ,𝜙𝜙𝑁𝑁𝑇𝑇) is a vector containing the spatial random effects at time t. This has a 
`dynamic’ evolution through time via a first order autoregressive process.  This evolution was assumed to 
have a conditional distribution of Φ𝑘𝑘 | Φ𝑘𝑘−1 which is Multivariate Normal. Thus, temporal autocorrelation 
is induced via the mean,  ρT Φ𝑘𝑘−1, whereas spatial autocorrelation is induced through the variance 
𝜏𝜏2 𝑸𝑸(𝑾𝑾,𝜌𝜌𝑆𝑆)−1.   𝜏𝜏2 is the spatial variance; the global spatial autocorrelation and global temporal 
autocorrelation coefficients are 𝜌𝜌𝑆𝑆  and 𝜌𝜌𝑇𝑇 respectively – hence have values in the range of -1 and 1. The 
hyper-parameters c and d were chosen to so as to make the Inverse-Gamma distribution flat. Several 
options for the order and extent (number of years) were considered for the autoregressive process. The 
best option is described in Section 5.1 and alternate options that were considered are discussed in 
Appendices A - B. 

W is referred to as the neighborhood or adjacency matrix (it is symmetric), where 𝑾𝑾 = (𝑤𝑤𝑘𝑘𝑘𝑘) and 
𝑤𝑤𝑖𝑖𝑘𝑘 gives the weights of the strength of the spatial association between the ith and kth regions. The only 
requirement is that the row totals of W add up to a positive value. Most often W is chosen to be binary, 
i.e., 𝑤𝑤𝑘𝑘𝑘𝑘  = 1 if the kth and ith area share physical boundaries, otherwise it is 0. Q is a function that helps to 
transform the W matrix to meet the needs of a covariance-variance matrix and it is given by 

𝑸𝑸(𝑾𝑾, 𝜌𝜌𝑆𝑆) =  𝜌𝜌𝑠𝑠 [(𝑎𝑎𝑈𝑈𝑎𝑎𝑔𝑔 𝑾𝑾.𝟏𝟏) −𝑾𝑾] + (1 − 𝜌𝜌𝑆𝑆 )𝑰𝑰 

Several options for the structure of the W matrix were explored in the preliminary analyses. Given that 
one of the goals of this study was to develop a spatio-temporal model that produced similar catch 
composition estimates to the BSE methodology in years prior to 2020, the final structure of W used was 
related to spatial aspects of the BSE methodology (See Section 5.1). Other structures explored for W in 
preliminary analyses are described in Appendix A. 

4.3 Catch estimation  

Once the estimated values for the port-sampling species proportions have been obtained, the next step 
is to estimate the total catch of a species for OBJ sets for the entire EPO, by year. To estimate the total 
catch, estimated species proportions, pktm , were obtained by spatial region (k), year (t) and vessel size 
class category (m; Classes 1-5 and Class-6).  For Class 1-5 vessels, the CAR models used both observer and 
logbook data to compute qktm, whereas for Class-6 vessels, the qktm were based only on observer data.  If 
the total tropical tuna catch for the EPO in year t is given by Ut, then Ut is prorated to area and vessel size 
class category using the proportion of tropical tuna catch within each stratum, as estimated from observer 
and logbook data. This procedure produces stratum-level estimates of total tropical tuna catch, Uktm . Then 
the estimated catch for that stratum for a species is Uktm pktm , and the total catch for OBJ sets is obtained 
as the sum   𝐶𝐶𝑘𝑘  = ∑𝑈𝑈𝑘𝑘𝑘𝑘𝑘𝑘  𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘 over the corresponding strata. Once total catch estimates for BET and SKJ 
are obtained in this way, we obtain the total catch estimate for the YFT by subtracting their sum from the 
total OBJ catch of tropical tunas of that year. That is, 𝐶𝐶𝑘𝑘_𝑌𝑌𝑌𝑌𝑇𝑇 = 𝑈𝑈𝑘𝑘 − 𝐶𝐶𝑘𝑘_𝐵𝐵𝐵𝐵𝑇𝑇 − 𝐶𝐶𝑘𝑘_𝑆𝑆𝑆𝑆𝑆𝑆.  
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5. RESULTS 

5.1.  Spatio-temporal modeling 

a) Model parameters 

Because one of the goals of the statistical modeling was to match as closely as possible the BSEs for 2010-
2019, a spatial adjacency matrix W was defined that was similar to the spatial substitution rules used in 
the BSE estimation methodology. The spatial substitution matrix that is used in the BSE methodology 
(Table 1) gives, for each of the 13 areas (Figure 7), the 12 areas that should be used as substitutes, ranked 
by preference. In creating W for the spatio-temporal CAR model, these preferences were mimicked as 
closely as possible. To do this, if the kth area is the nth option as a substitute for the jth area, then 𝑤𝑤𝑘𝑘𝑘𝑘 =
𝑤𝑤𝑘𝑘𝑘𝑘 = 𝜈𝜈𝑛𝑛, where 𝜈𝜈 is a parameter introduced to keep the structure flexible. To maintain the rationale of 
the substitution rules, it was necessary to have  1 ≥ 𝜈𝜈 > 0. The less desirable an area is as a substitute; 
the larger n is and the smaller the value of 𝑤𝑤𝑘𝑘𝑘𝑘. Several different values of 𝜈𝜈 were tried, and from model 
diagnostics and prediction error diagnostic measures, a value of  𝜈𝜈 = 0.001 was selected as optimal. The 
choice of a small value of 𝜈𝜈 implies that when  𝑙𝑙 > 1, the 𝜈𝜈𝑛𝑛 will be very small, thus mimicking the low 
preference of some areas as substitutes (i.e., the areas in the last rows of Table 1). Finally, it is noted that 
the substitution rules shown in Table 1 are not always symmetric, and thus, some adjustments to the 
formulation above had to be made so that W would be a symmetric matrix and yet still reflect the 
preferred substitutions shown in Table 1. The resulting W is shown graphically in Figure 8. 

With an annual time step, two options for the autoregressive process were considered: (i) a short-term 
model when three consecutive years were used in the model (for example, predictions for 2010 would be 
based on data from years 2008, 2009, and 2010): and, (ii) a long-term model where five consecutive years 
were used in the model (or more, as in the case of 2021). The long-term model performed better in terms 
of correlation with the BSE for the years 2010-2019, when the pandemic was not present. Hereafter, this 
long-term model will be referred to as the `best’ CAR model.  

The parameter estimates for the best CAR model for each year are given in Appendix B. There is some 
difference in the parameter estimates among years. The error variance 𝜈𝜈2,  and spatial variances  𝜏𝜏2 are 
small, signifying that the models perform well in capturing most of the variation in the available data. The 
spatial correlation 𝜌𝜌𝑆𝑆 and the temporal (annual) autocorrelation 𝜌𝜌𝑇𝑇 are positive and moderately high; this 
supports the use of spatio-temporal models. Also, the intercepts and slopes of the regression function 
vary somewhat with vessel size class category, species, and year. So, it is reasonable to say that the 
relationship between the observer and port-sample species proportions varies annually for OBJ sets. 

b) Catch estimates 

The catch estimates of each species for OBJ sets based on the best CAR model for each of years 2010-
2019 are given in Table 2, and those for 2020 and 2021 are shown separately in Table 3.  

c) Model performance 

The proportion of variation explained by the annual models and normalized prediction errors (squared 
root of the sum of squared prediction error divided by the variance of the data) indicated the models 
fitted the data reasonably well. The results of model performance are summarized in Tables 4 - 5. The 
proportion variance explained by these models ranges from 74-100%, and is mostly higher than 90%, 
indicating that the models fit the data well. The normalized prediction errors are mostly small (i.e., less 
than 1) indicating overall good prediction performance.  

The results of the third measure of performance, correlation to the historical BSEs (Table A-7 in SAC-13-
03), for each of the three species, are shown in Figure 9 and Table 6. If it is assumed that the BSEs for 

https://www.iattc.org/Meetings/Meetings2021/SAC-12/Docs/_English/SAC-12-03_The%20tuna%20fishery%20in%20the%20Eastern%20Pacific%20Ocean%20in%202020.pdf#page=41
https://www.iattc.org/PDFFiles/FisheryStatusReports/_English/No-19-2021_Tunas%20billfishes%20and%20other%20pelagic%20species%20in%20the%20eastern%20Pacific%20Ocean%20in%202020.pdf
https://www.iattc.org/PDFFiles/FisheryStatusReports/_English/No-19-2021_Tunas%20billfishes%20and%20other%20pelagic%20species%20in%20the%20eastern%20Pacific%20Ocean%20in%202020.pdf
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2000-2019 are ‘truth’, then the new catch estimation methodology can be applied to those years and the 
estimates compared to the historical BSEs using the correlation coefficient (ignoring the error of the two 
sets of estimates). For the estimates from the best CAR models, the correlation coefficient was 0.782 for 
BET, 0.98 for SKJ and 0.95 for YFT.   

d) Estimated bias  

One of the main objectives of this work was to investigate the bias in the BSE due to the pandemic-driven 
port-sampling data loss in 2020-2021. The spatio-temporal CAR models that were developed to be 
consistent with BSE during non-pandemic years 2010-2019, were found to perform similarly well (see 
Section 5.3) when port-sampling data for some ports for which data were systematically missing in 2020 
(SAC-13 INF-L) were excluded in the years prior to 2020. This robustness was taken to indicate that these 
best spatio-temporal CAR models would likely produce reliable estimates in 2020-2021. Given this, the 
bias of the BSE for a particular species was defined as the difference between the BSE estimate and the 
CAR estimate, divided by the CAR estimate (Table 7).  The estimated bias3 was high for BET, with 12%bias 
in 2020 and 18% bias in 2021 , and also high for YFT, with -18% in 2020 and 10% in 2021, and was lowest 
for SKJ (0.6% and -6% for 2020 and 2021, respectively). 

5.2. Retrospective analysis of bias 

To evaluate the effect of the pandemic-driven loss of port-sampling data on the 2020 OBJ BET BSE, the 
BSE estimation methodology was run for each of years 2010 - 2019, using all available cannery, observer 
and logbook data, but with only a subset of the port-sampling data; details of this analysis can be found 
in SAC-13 INF-L. The results indicate that the systematic pandemic-related loss of port-sampling data in 
2020 for ports where much of the EPO BET is estimated to be unloaded may have led to a bias in the OBJ 
BET BSE. Although the median difference between estimates, with and without the simulated data loss, 
was close to 0, both negative and positive biases of about 20% or more were seen over the 2010 – 2019 
period (Figures 10-11). A similar analysis for 2021 has not yet been completed. 

To further evaluate bias, the estimated ratios of BSE OBJ estimates divided by the best spatio-temporal 
CAR model estimates for three species of tuna, for the years 2020-2021, are given in Table 8. Comparing 
these ratios to results from the simulation study of SAC-13 INF-L (the box-and-whisker plots shown here 
in Figure 11), it can be seen that the ratios are close to or within the inter-quartile range of the ratios of 
BSE estimates, without and with the simulated pandemic data loss, obtained from that simulation study.  
This indicates that there is consistency between the two studies as regards the potential magnitude of the 
bias. 

5.3.  Sensitivity analysis of the best CAR model in 2020  

To test the sensitivity of the CAR methodology to a systematic loss of port-sampling data in the year for 
which estimates were desired, a sensitivity analysis with data from 2019 and earlier was conducted, 
mimicking the 2020 data loss in the year of interest. Specifically, the port-sampling data from the ports of 
Manta (April-December), Mazatlan (April) and Posorja (April-May) (see SAC-13 INF-L for an explanation of 
why these ports and time periods were selected) were excluded for the year of interest and the catch 
totals for that year re-estimated using the same best CAR model. This was done for each of years 2010 – 
2019. Comparison of these estimates to the BSEs, and to the CAR estimates based on the full data sets for 

 
2 The following correction was made to the CAR estimates: updated to reflect the latest total fleet catch of tropical 
tunas. 
3 The following correction was made to the 2020-2021 CAR estimates: updated to reflect the latest total fleet catch 
of tropical tunas. 

https://www.iattc.org/Meetings/Meetings2022/SAC-13/_English/SAC-13-INF-L_The%20effect%20of%20pandemic-related%20port-sampling%20data%20loss%20on%20the%202020.pdf
https://www.iattc.org/Meetings/Meetings2022/SAC-13/_English/SAC-13-INF-L_The%20effect%20of%20pandemic-related%20port-sampling%20data%20loss%20on%20the%202020.pdf
https://www.iattc.org/Meetings/Meetings2022/SAC-13/_English/SAC-13-INF-L_The%20effect%20of%20pandemic-related%20port-sampling%20data%20loss%20on%20the%202020.pdf
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2010- 2019, demonstrates that even after excluding some of the port-sampling data, the CAR estimates 
seem robust, since they are close to the estimates obtained when the data were not excluded (Figure 12).  

To further demonstrate the robustness of the CAR estimates, Table 9 shows the correlation coefficients 
of the CAR estimates for the best model with the BSE (i) when no port-sampling data were excluded, and 
(ii) when some port-sampling data were excluded. The correlation coefficients are very similar for both (i) 
and (ii).  

6. DISCUSSION 

To address the systematic loss of port-sampling data from some ports during 2020 - 2021, a lognormal 
spatio-temporal CAR model was developed to obtain annual estimates of the species composition of the 
catch in OBJ sets. This modeling approach makes use of the observer (logbook) data, as well as the spatial 
and temporal structure inherent in the available port-sampling data, to predict the species catch 
composition for estimation strata for which no port-sampling data were collected. The spatial correlation 
structure of the CAR model was specifically designed to mimic the spatial dependencies inherent in the 
current BSE methodology. Thus, this CAR model can be viewed as an extension of the current BSE 
methodology, one which can take advantage of other data sources to mitigate the normal sparseness of 
the port-sampling data – a feature exacerbated by the effect of the pandemic on data collection in 2020 
- 2021. This CAR model was shown to have good performance in terms of percent variation explained and 
normalized prediction error, and the annual estimates produced by the CAR model had reasonably high 
correlation with the 2010-2019 BSEs for OBJ sets. In addition, the estimates of the CAR model were 
reasonably consistent with the BSE estimates even when trips were excluded systematically in the years 
prior to 2020 to simulate the pandemic-driven data loss. One of the reasons for this may be that the CAR 
model incorporated long-term historical information in a structured manner, which may be a reliable 
method to correct for short-term systematic data loss. 

The CAR model was used to estimate the potential ‘bias’ in the BSE for OBJ sets for 2020 and 2021, for 
each of the three tropical tuna species. From these results4 it seems that the BET catch may have been 
over-estimated by the BSE methodology for the years 2020 and 2021 by 12 and 18%, respectively. The 
percent bias for BET in 2021 (18%) and YFT in 2020 (-18%) was greater than the differences between the 
BSE and the CAR estimates in 2010-2019, years for which no bias in the BSE would be expected because 
there was no systematic loss of port-sampling data. In contrast, the ‘bias’ values for SKJ for 2020 and 2021 
were within the range of values obtained for the earlier years, i.e., 2010 - 2019. This suggests that, of the 
three species’ estimates for 2020 – 2021, those for SKJ were the least likely to have been impacted by 
pandemic-related data loss. 

The pandemic appears to have had less of an impact on the fishery and sampling in 2021, as compared to 
2020. The number of OBJ sets and fishing capacity increased compared to 2020 (SAC-13-06) as did the 
number of wells sampled by the port sampling (there were 447 well samples used in the analysis for 2020 
and 611 for 2021). However, despite the increase in fishing effort, the BSE estimate of bigeye tuna catch 
decreased (SAC-13-06). In addition, the estimated bias in the BSE estimates for BET were about the same 
as in 2020 and 2021, despite the increase in wells sampled by the port-sampling program. There may be 
several reasons for these unexpected changes. The retrospective analysis of the BSE catch estimates 
showed that there may be bias in the BSE estimates in the case of systematic data loss, but there could 
be both over and under estimation of catch in different years. In addition, the time series nature of the 
CAR estimator means that the 2020 port-sampling data, which had significant data gaps for some ports, 
were used in the estimation of the 2021 catch composition (although, to compensate for this a longer 

 
4 The following correction was made to the 2020-2021 CAR estimates: updated to reflect the latest total fleet catch 
of tropical tunas. 

https://www.iattc.org/Meetings/Meetings2022/SAC-13/_English/SAC-13-06_Stock%20status%20indicators%20(SSIs)%20for%20tropical%20tunas%20in%20the%20EPO.pdf
https://www.iattc.org/Meetings/Meetings2022/SAC-13/_English/SAC-13-06_Stock%20status%20indicators%20(SSIs)%20for%20tropical%20tunas%20in%20the%20EPO.pdf
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time series was used). Other factors such as bigeye tuna abundance could also impact the estimates. 
Therefore, further work is needed to investigate the reliability of the 2021 catch and bias estimates. In 
particular, we plan to conduct a full sensitivity analysis for 2021, as was done for 2020. This is important 
because the effect of the pandemic on 2021 port-sampling data availability may be different than was 
seen in 2020, and this could have implications for the formulation of the AR process in the CAR model, 
especially given the spatio-temporal movements of the fleet within the EPO over the course of a year.  

7. FUTURE WORK AND DIRECTIONS 

The exploratory analyses that were conducted for the unassociated sets (NOA) and dolphin-associated 
sets (DEL) showed that the species composition proportions, by strata, were closer to 0’s or 1’s (in case of 
DEL sets) and are sparse (in the case of NOA sets) than for OBJ sets, as reflected in Figures 1-2. Despite 
this, initial model fitting for NOA sets indicated that similar CAR methodology could still be used with 
those data, and thus this will be a topic of future research.  

Building on the CAR methodology developed for OBJ sets, a next step may be to investigate estimation of 
the length composition of the catch of each species within the same framework to determine whether 
similar lognormal spatio-temporal CAR models are well-suited to those data. One challenge is that for the 
observer data, the available size information is ordered categories of weight (i.e., small/medium/large) 
rather than lengths. This may lead to aggregation of the port-sampling data into three categories of length, 
and eventually a categorical data analysis and consequent spatio-temporal model development. 

In the future it is also of interest to determine whether fine-scale models (e.g., 5° - month or 5°- quarter) 
could be developed to fit the species composition data. This could be advantageous because the stock 
assessment models have a quarterly time step and the fisheries definitions differ from the 13 areas used 
in this analysis. As mentioned previously, aggregating the data to the 13 sampling areas (Figure 7) and 
year led to well-performing models that were also consistent with the BSE for 2010-2019. At a finer scale, 
there are many spatial ‘cells’ where port-sampling data are not available, as illustrated in Figure 6, which 
complicates model development. Figures 1-2 also illustrate that in the fine-scale situation, there is also 
the modeling challenge of dealing with many zero-valued ‘observations,’ and this may require the use of 
zero-inflated or other mixed models. 

One of our priorities for this work was to come up with well-performing statistical models that could 
match the estimates for BSE in the years 2010-2019 and perform robustly even when data were missing 
systematically. However, going forward methodologies based on alternate formulations of the W 
(adjacency) matrix for the spatio-temporal CAR models will be considered, which may lead to alternative 
modeling options for estimating species composition. For instance, in Appendix A, we discuss preliminary 
statistical modeling efforts where different adjacency matrices were considered and performance 
measures for those alternate models are shown in Appendix B. We note that the performance of these 
models is good, yet they were not selected since they failed the ‘consistency test’ with respect to the 
historical BSE estimates for 2010 - 2019. Therefore, future work may include an investigation of alternate 
W matrices, where the modeling selection criteria are not constrained to include the requirement of a 
high correlation with the historical BSEs. 

8. CONCLUSION 

• The COVID-19 pandemic limited the ability of port samplers to take samples, resulting in a 
reduction in OBJ-set samples for 2020 and 2021 of 66% and 35%, respectively, compared to 2019. 

• The port sampling data are used to calculate the species and size composition of the catch, and 
therefore play a very important role in the current BSE catch estimation methodology.  
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• Port-sampling data collection was disrupted by the pandemic in some ports more than others and 
this may result in bias in the estimates of catch by species because certain fleet segments 
preferentially unload in specific ports.  

• Applying the same systematic reduction in sampling by port to the data of years prior to 2020 
showed that bias could occur, but that the bias could be either an over-estimation or an under-
estimation (SAC-13 INF-L). 

• Exploratory analysis showed that observer data (supplemented with logbook data, where 
necessary) could be used successfully to predict the port-sampling species composition, and that 
prediction was improved when spatial and temporal covariates were included in the model.   

• A spatio-temporal model was developed to estimate the port-sampling species proportions from 
observer (logbook) data in catch estimation strata for which port-sampling data were not 
available. 

• Using the spatio-temporal model to estimate the catch composition of earlier years (2010-2019), 
after simulating the same systematic reduction in port-sampling data that occurred in 2020, 
showed that the catch composition estimates from the spatio-temporal model were robust to 
systematic port-sampling data loss for the year for which catch estimates were desired, as long as 
complete data were available for earlier years. 

• The spatio-temporal model was used to estimate the catch by species in the OBJ fishery for 2020 
and 2021, and the results5 indicated that the BET catch was overestimated by about 12% in 2020 
and by 18% in 2021.  

• The results for 2021 are preliminary, however, because the 2021 estimates are based on data for 
2020, which was also impacted by the pandemic, and possibly in a different manner than occurred 
in 2021.  

• Further research needs to be conducted to determine the robustness of the 2021 estimates and 
to provide estimates for the other set types. 
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FIGURE 1.  Scatter plots of the observer versus the port-sampling proportions for BET at a resolution of 
5°area x month, for 2010 – 2021, plotted for `cells’ that had both port-sampling and observer data. Red 
dots: OBJ sets; black dots: NOA sets; and blue dots: DEL sets. 
FIGURA 1.  Diagramas de dispersión de las proporciones de observadores frente a las proporciones de 
muestreo en puerto para BET en una resolución de área de 5° por mes, para 2010–2021, trazados para 
"celdas" que tenían datos de muestreo en puerto y de observadores. Puntos rojos: lances OBJ; puntos 
negros: lances NOA; puntos azules: lances DEL. 
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FIGURE 2.  Scatter plots of the observer versus port-sampling proportions for YFT (upper panel) and SKJ 
(lower panel) at a resolution of 5°area x month, for 2010 – 2021, plotted for `cells’ that had both port-
sampling and observer data. Red dots: OBJ sets; black dots: NOA sets; and blue dots: DEL sets. 
FIGURA 2.  Diagramas de dispersión de las proporciones de observadores frente a las proporciones de 
muestreo en puerto para YFT (panel superior) y SKJ (panel inferior) en una resolución de área de 5° por 
mes, para 2010–2021, trazados para "celdas" que tenían datos de muestreo en puerto y de observadores. 
Puntos rojo: lances OBJ; puntos negros: lances NOA; puntos azules: lances DEL. 
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FIGURE 3. Annual maps of differences between port-sampling and observer proportions (𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑞𝑞𝑘𝑘𝑘𝑘) for 
BET (Class-6 OBJ), at a 5° resolution. The black color indicates 5° areas for which port-sampling data were 
unavailable. 
FIGURA 3. Mapas anuales de las diferencias entre las proporciones de muestreo en puerto y las 
proporciones de observadores (𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑞𝑞𝑘𝑘𝑘𝑘) para BET (OBJ clase 6), en una resolución de 5°. El color negro 
indica áreas de 5° para las que no se disponía de datos de muestreo en puerto. 
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FIGURE 4. Annual maps of differences between port-sampling and observer proportions (𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑞𝑞𝑘𝑘𝑘𝑘) for 
YFT (top panel) and SKJ (bottom panel) (both Class-6 OBJ), at a 5° resolution. The black color indicates 5° 
areas for which port-sampling data were unavailable. 
FIGURA 4. Mapas anuales de las diferencias entre las proporciones de muestreo en puerto y las 
proporciones de observadores (𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑞𝑞𝑘𝑘𝑘𝑘) para YFT (panel superior) y SKJ (panel inferior) (ambos OBJ 
clase 6), en una resolución de 5°. El color negro indica áreas de 5° para las que no se disponía de datos de 
muestreo en puerto. 
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FIGURE 5. Box-and-whisker plots of the 5° x month differences between port-sampling and observer 
proportions of BET shown in Figure 3, for 2014-2019, grouped into longitudinal bins of 5° resolution. The 
horizontal bar within each gray box indicates the median difference for the 5° longitudinal bin, the gray 
box shows the interquartile range (the middle 50% of the values), the whiskers indicate variability outside 
the upper and lower quartiles, and the open circles indicate values beyond 1.5 x the interquartile range. 
FIGURA 5. Gráficas de caja y bigote de las diferencias de 5° por mes entre las proporciones de muestreo 
en puerto y las proporciones de observadores de BET mostradas en la Figura 3, para 2014-2019, agrupadas 
en intervalos longitudinales de 5° de resolución. La barra horizontal dentro de cada caja gris indica la 
diferencia mediana para el intervalo longitudinal de 5°; la caja gris muestra el rango intercuartil (el 50% 
de los valores); los bigotes indican variabilidad fuera de los cuartiles superiores e inferiores; los círculos 
abiertos indican valores más allá de 1.5 por el rango intercuartil. 
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FIGURE 6.  An example of the spatial sparsity of the port-sampling data, as compared to the observer data, 
for Class-6 OBJ, July 2017. The 5° areas shown in red denote positive catch of any of the tropical tuna 
species, for port-sampling samples (left panel) and observer data (right panel). 
FIGURA 6.  Un ejemplo de la escasez espacial de los datos de muestreo en puerto en comparación con los 
datos de observadores para la clase 6 OBJ, julio de 2017. Las áreas de 5° señaladas en rojo denotan 
capturas positivas de cualquiera de las especies de atunes tropicales, para muestras de muestreo en 
puerto (panel izquierdo) y datos de observadores (panel derecho). 

                                  
FIGURE 7.  The 13 sampling areas in the EPO used for carrying out final analysis of the catch estimation 
(Tomlinson, 2002). 
FIGURA 7.  Las 13 áreas de muestreo en el OPO utilizadas para realizar el análisis final de la estimación de 
la captura (Tomlinson, 2002).  
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FIGURE 8.  W matrix used in spatio-temporal CAR model represented as a matrix (left panel) and through 
arrows (right panel). In the left panel, the blue colors denote a value of zero for 𝑤𝑤𝑘𝑘𝑘𝑘  or no direct 
substitution. The white and black are shades to denote positive values between 0 and 1, the darker the 
shade, the larger the value. So, for instance for substituting for area 1, area 2 is the first choice and so on. 
In the right panel, the substitution rules are represented by colored arrows, with the rainbow color 
scheme. The substitution rules in order of the colors are red, orange, yellow, green, blue and violet. Thus, 
the red denotes the first order (strongest) substitution rule where the violet denotes the 6th order 
(weakest) substitution rule we have used. 
FIGURA 8.  La matriz W utilizada en el modelo CAR espaciotemporal representada como una matriz (panel 
izquierdo) y mediante flechas (panel derecho). En el panel izquierdo, el color azul indica un valor de cero 
para  𝑤𝑤𝑘𝑘𝑘𝑘  o ninguna sustitución directa. Los tonos de grises señalan valores positivos entre 0 y 1; cuanto 
más oscuro es el tono, mayor es el valor. Por lo tanto, por ejemplo, para sustituir el área 1, el área 2 es la 
primera opción y así sucesivamente. En el panel derecho, las reglas de sustitución están representadas 
por flechas de colores del arcoíris. Las reglas de sustitución en el orden de los colores son rojo, naranja, 
amarillo, verde, azul y violeta. Así, el rojo denota la regla de sustitución de primer orden (la más fuerte) 
mientras que el color violeta denota la regla de sustitución de sexto orden (la más débil) que utilizamos. 
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FIGURE 9. The BSE (on the x-axis) versus the estimates from the ‘best’ CAR model for 2010-2021 (y-axis), 
with 2020-2021 estimates shown in red, for: (a) BET (upper left panel); (b) SKJ (upper right panel); and 
(c) YFT (lower left panel). The following correction was made to the CAR estimates: updated to reflect 
the latest total fleet catch of tropical tunas.    
FIGURA 9. La BSE (en el eje ‘x’) versus las estimaciones del “mejor” modelo CAR para 2010-2021 (eje ‘y’); 
las estimaciones de 2020-2021 se muestran en rojo para: (a) BET (panel superior izquierdo); (b) SKJ (panel 
superior derecho); y (c) YFT (panel inferior izquierdo). Se realizó la siguiente corrección en las estimaciones 
CAR: se actualizaron para reflejar la captura total más reciente de la flota de atunes tropicales. 
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FIGURE 10. BET OBJ catch estimates for years 2010-2020. “BSE program”: BSEs shown in Table A-7 of the 
IATTC Fishery Status Report; “SA program, BSE strata”: BSEs from the stock assessment (“SA”) estimation 
program using the BSE strata; CAE: IATTC Catch and Effort database summary (not adjusted for coverage); 
“SA program, SA strata”: BSEs from the SA program using the SA strata; “reduced data”: the estimation 
program used the reduced port-sampling data set (see SAC-13-INF-L for details).    
FIGURA 10: Estimaciones de captura de BET en lances OBJ para el periodo 2010-2020. “Programa BSE”: 
las BSE presentadas en la Tabla A-7 del Informe de la situación de la pesquería de la CIAT; “Programa SA, 
estratos BSE”: las BSE del programa SA utilizando los estratos BSE; CAE: resumen de la base de datos de 
captura y esfuerzo de la CIAT (no ajustado por la cobertura); “Programa SA, estratos SA”: las BSE del 
programa SA utilizando los estratos SA; “Datos reducidos”: el programa utilizó el conjunto de datos de 
muestreo en puerto reducidos (ver SAC-13-INF-L para más detalles).  

 

 

 

https://www.iattc.org/GetAttachment/bbcc847b-99df-4576-8e9c-f72fc68caa96/Tunas%20billfishes%20and%20other%20pelagic%20species%20in%20the%20eastern%20Pacific%20Ocean%20in%202020
https://www.iattc.org/GetAttachment/bbcc847b-99df-4576-8e9c-f72fc68caa96/Tunas%20billfishes%20and%20other%20pelagic%20species%20in%20the%20eastern%20Pacific%20Ocean%20in%202020
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FIGURE 11. Box-and-whisker plots of ratios of some of the BET OBJ estimates shown in Figure 10, 2010 - 
2019: 1) ratio of the dark green time series of Figure 10 to the light green times series of Figure 10; and, 
2) ratio of the dark blue time series of Figure 10 to the light blue time series of figure 10 (see SAC-13-INF-
L for details). 
FIGURA 11. Gráficas de caja y bigote de las razones de algunas de las estimaciones de captura de BET en 
lances OBJ mostradas en la Figura 10, 2010-2019: 1) razón de la serie de tiempo color verde oscuro de la 
Figura 10 a la serie de tiempo color verde claro de la Figura 10; y, 2) razón de la serie de tiempo color azul 
oscuro de la Figura 10 a la serie de tiempo color azul claro de la Figura 10 (ver SAC-13-INF-L para más 
detalles). 
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FIGURE 12. The CAR estimates with some port-sampling data excluded (on the x-axis) versus the CAR 
estimates for 2010-2019 with no data excluded: (a) BET (upper left panel); (b) SKJ (upper right panel); and, 
(c) YFT (lower left panel). The following correction was made to the CAR estimates: updated to reflect the 
latest total fleet catch of tropical tunas. 
FIGURA 12. Las estimaciones CAR con algunos datos de muestreo en puerto excluidos (en el eje ‘x’) versus 
las estimaciones CAR para 2010-2019 sin datos excluidos: (a) BET (panel superior izquierdo); (b) SKJ (panel 
superior derecho); y, (c) YFT (panel inferior izquierdo). Se realizó la siguiente corrección en las 
estimaciones CAR: se actualizaron para reflejar la captura total más reciente de la flota de atunes 
tropicales. 
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TABLE 1. Matrix showing the area substitution choices that are used by the current BSE methodology. The 
top row (bold numbers, gray highlighting) gives the number of the sampling area (Figure 7) for which a 
substitute area is needed. The subsequent rows give the areas to be used as substitutes, starting with the 
preferred choice in the second row of the table, down to the least desirable choice in the last row of the 
table. For example, for Area 1, the best substitute is Area 8, the second-best substitute is Area 2, and so 
on, down to the least desirable substitute, which is Area 11. 
TABLA 1. Matriz que muestra las opciones de sustitución de área utilizadas por la actual metodología BSE. 
La fila superior (números en negrita, resaltada en gris) proporciona el número del área de muestreo 
(Figura 7) para la que se necesita un área sustituta. Las filas siguientes proporcionan las áreas a utilizarse 
como sustitutas, comenzando por la opción preferida en la segunda fila de la tabla, hasta la opción menos 
deseable en la última fila. Por ejemplo, para el Área 1, la mejor sustitución es el Área 8, la segunda mejor 
el Área 2, y así sucesivamente hasta el área sustituta menos deseable, que es el Área 11. 

1 2 3 4 5 6 7 8 9 10 11 12 13 

8 1 10 5 7 7 9 1 7 3 12 13 12 

2 4 9 8 9 13 6 4 3 11 9 11 6 

4 8 2 3 3 5 5 2 11 2 10 9 7 

3 3 4 2 6 12 12 5 12 9 7 7 9 

5 10 5 1 4 9 13 3 10 5 3 6 5 

10 5 7 9 12 4 3 6 5 7 5 5 4 

6 9 1 10 2 3 11 7 2 1 13 3 11 

7 7 12 7 10 8 4 13 4 4 6 10 3 

13 12 11 6 8 2 10 9 6 12 2 2 8 

12 11 6 13 1 1 2 10 13 6 4 4 2 

9 6 8 12 11 10 1 12 1 8 1 1 1 

11 13 13 11 13 11 8 11 8 13 8 8 10 
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TABLE 2. OBJ catch estimates of BET, YFT, SKJ (metric tons) for 2010-2019 based on the `best’ CAR model. The BSE 
values were taken from Table A-7 of SAC-13-03. The following correction was made to the CAR estimates: updated 
to reflect the latest total fleet catch of tropical tunas. 
TABLA 2. Estimaciones de captura de BET, YFT, SKJ en lances OBJ (toneladas métricas) para 2010-2019 basadas en 
el 'mejor' modelo CAR. Los valores BSE se tomaron de la Tabla A-7 del documento SAC-13-03. Se realizó la siguiente 
corrección en las estimaciones CAR: se actualizaron para reflejar la captura total más reciente de la flota de atunes 
tropicales. 

Estimates 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

BET CAR 50909 49212.8 60780 51531 55197 65169 58943 60953 62173.9 68715 
BET BSE 57059 55587 65035 48337 59797 60975 55269 65443 63815 68553 
YFT CAR 40231 51011.6 53457 48828 56311 64603 75507 86681 82712.5 65568 
YFT BSE 37850 42176 37487 35112 46049 43603 58673 67167 66122 52862 
SKJ CAR 118427 168732 165340 177462 194034 181321 227682 209398 198677 213507 
SKJ BSE 114659 171193 177055 194372 199696 206515 248190 224422 213626 226375 

TABLE 3. OBJ catch estimates of BET, YFT, SKJ (metric tons) for 2020-2021 based on the `best’ CAR model. The BSE 
values were taken from Table A-7 of SAC-13-03. The following correction was made to the 2020-2021 CAR 
estimates: updated to reflect the latest total fleet catch of tropical tunas. 
TABLA 3. Estimaciones de captura de BET, YFT, SKJ en lances OBJ (toneladas métricas) para 2020-2021 basadas en 
el 'mejor' modelo CAR. Los valores BSE se tomaron de la Tabla A-7 del documento SAC-13-03. Se realizó la siguiente 
corrección en las estimaciones CAR de 2020-2021: se actualizaron para reflejar la captura total más reciente de la 
flota de atunes tropicales. 

Estimated values 2020 
CAR 

2020 
BSE 

2021 
CAR 

2021 
BSE 

BET 69,901 78,208 48,088 56,861 

SKJ 190,243 191,399 239,692 225,132 

YFT 53,924 44,461 60,701 66,488 
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TABLE 4. Proportion of variance explained, and normalized prediction error (sum of prediction error divided by 
variance of response) for the BET and SKJ ‘best’ CAR models for 2010-2021, for Class-6 vessel data (OBJ sets). The 
values in the table are interpreted as follows: 1 is highest and signifies perfect fit while 0 is the lowest value and 
signifies ineffective model fitting. 
TABLA 4. Proporción de varianza explicada y error de predicción normalizado (suma del error de predicción dividido 
por la varianza de respuesta) para los 'mejores' modelos CAR para BET y SKJ para 2010-2021, para datos de buques 
de clase 6 (lances OBJ). Los valores en la tabla se interpretan de la siguiente manera: 1 es el más alto y significa un 
ajuste perfecto mientras que 0 es el valor más bajo y significa un ajuste ineficaz del modelo. 

Vessel size class 6  2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 
BET              
proportion of 
variance 
explained  0.99 0.99 0.99 0.96 0.96 0.96 1 1 1 1 0.99 0.99 
normalized  
prediction error 0.2 0.12 0.25 0.45 0.72 0.91 0.15 0.2 0.12 0.12 0.14 0.19 
SKJ              
proportion of 
variance 
explained 0.88 0.87 0.74 0.82 0.8 0.82 0.74 0.83 0.83 0.85 0.88 1 
normalized 
prediction error 1.6 0.61 3.2 1.39 0.73 0.96 2.2 0.91 0.96 0.59 0.62 0.19 

 
TABLE 5. Proportion of variance explained, and normalized prediction error (sum of prediction error divided by 
variance of response) for the BET and SKJ ‘best’ CAR models for 2010-2021, for Classes 1-5 vessel data (OBJ sets). 
Values smaller than 1 indicate good prediction performance. 
TABLA 5. Proporción de varianza explicada y error de predicción normalizado (suma del error de predicción dividido 
por la varianza de respuesta) para los 'mejores' modelos CAR para BET y SKJ para 2010-2021, para datos de buques 
de clases 1-5 (lances OBJ). Los valores menores de 1 indican un buen desempeño de predicción. 

Vessel size class 1-5  2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 
BET              
proportion of 
variance explained  0.88 0.97 0.94 0.98 0.84 0.95 0.95 0.96 0.97 0.97 0.97 0.96 
normalized  
prediction error 0.8 0.35 0.4 0.18 0.93 0.56 0.29 0.31 0.33 0.24 0.19 0.21 
SKJ              
proportion of 
variance explained 0.91 0.97 0.97 0.98 0.97 0.95 0.95 0.99 0.99 0.99 0.99 0.87 
normalized 
prediction error 0.51 0.25 0.17 0.09 0.23 0.61 0.39 0.24 0.04 0.11 0.15 0.3 
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TABLE 6. Correlation coefficients of the CAR estimates with the BSE for 2010-2019 for the three species of tuna 
using the short-term and long-term models. The ‘best’ model is marked in bold. The following correction was made 
to the CAR estimates: updated to reflect the latest total fleet catch of tropical tunas. 
TABLA 6. Los coeficientes de correlación de las estimaciones CAR con la BSE para 2010-2019 para las tres especies 
de atunes utilizando los modelos de corto y largo plazo. El 'mejor' modelo está marcado en negrita. Se realizó la 
siguiente corrección en las estimaciones CAR: se actualizaron para reflejar la captura total más reciente de la flota 
de atunes tropicales. 

Correlation coefficients 2010-2019  
BET 

2010-2019 
SKJ 

2010-2019 
YFT 

Short-term model  0.70 0.98 0.92 

Long-term model 0.78 0.98  0.95 
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TABLE 7. Absolute (in metric tons) and percent bias of the BSE in 2020-2021 as estimated from the best 
CAR model. Bias is defined as the BSE estimate minus the CAR estimate, divided by the CAR estimate. The 
following correction was made to the 2020-2021 CAR estimates: updated to reflect the latest total fleet 
catch of tropical tunas. 
TABLA 7. Sesgo absoluto (en toneladas métricas) y porcentual de la BSE en 2020-2021 según la estimación 
del mejor modelo CAR. El sesgo se define como la estimación BSE menos la estimación CAR, dividido por 
la estimación CAR. Se realizó la siguiente corrección en las estimaciones CAR de 2020-2021: se 
actualizaron para reflejar la captura total más reciente de la flota de atunes tropicales. 

Bias 2020 2021 

BET 8,307  
(12%) 8,773 (18%) 

SKJ 1,156 
(0.6%) 

-14,560 
(-6%) 

YFT -9,463 
(-18%) 

5,787 
(10%) 

 

TABLE 8. OBJ estimates for BSE program divided by CAR model, for 2020-2021 for the three species of 
Tuna. The following correction was made to the 2020-2021 CAR estimates: updated to reflect the latest 
total fleet catch of tropical tunas. 
TABLA 8. Estimaciones OBJ del programa BSE divididas por el modelo CAR, para 2020-2021, para las tres 
especies de atunes. Se realizó la siguiente corrección en las estimaciones CAR de 2020-2021: se 
actualizaron para reflejar la captura total más reciente de la flota de atunes tropicales. 

Ratio 2020 2021 

BET 1.12 1.18 

SKJ 1.00  0.94 

YFT 0.82 1.10 
 

TABLE 9. Correlation of BSE with the best CAR models for the three Tuna species in 2010-2019. The 
following correction was made to the CAR estimates: updated to reflect the latest total fleet catch of 
tropical tunas. 
TABLA 9. Correlación de la BSE con los mejores modelos CAR para las tres especies de atunes en 2010-
2019. Se realizó la siguiente corrección en las estimaciones CAR: se actualizaron para reflejar la captura 
total más reciente de la flota de atunes tropicales.  

Correlation coefficients 2010-2019  
BET 

2010-2019 
SKJ 

2010-2019 
YFT 

Best CAR model 0.78 0.98 0.95 

Best CAR model with trips 
excluded mimicking 2020 
pandemic data loss situation  

0.73 0.98 0.92 
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APPENDIX A:  STATISTICAL MODELING 

In our modeling we have tested for different choices of spatio-temoral CAR model with adjacency matric 
W as described below: 

In Figure A1, we have used the traditional method to define W from the physical maps of the regions 
which give us a spatial matrix map with an adjacency matrix of the form. In the left panel of the figure, we 
represent this using a colored matrix. The yellow values denote 1 or direct adjacency and the whites 
denote 0 or no direct adjacency. In the arrow map (right panel), the substitution rules are represented by 
red arrows. The arrows denote adjacency of the binary W matrix, so 𝑤𝑤𝑘𝑘𝑘𝑘 = 𝑤𝑤𝑘𝑘𝑘𝑘 =  1 if j-th and k-th regions 
share boundaries or corners. The result by running this model on the data for OBJ set types is given in the 
Appendix. In our preliminary analysis, we have also used the traditional method to define W from the 
physical maps of the regions which give us a spatial matrix map with an adjacency matrix of the form – 
but we removed the diagonal areas from the adjacency matrix. The yellow values denote 1 or direct 
adjacency and the whites denote 0 or no direct adjacency. 

 
FIGURE A1. W or adjacency/neighborhood matrix of the traditional model in spatio-temporal CAR models 
through a matrix (left) and through arrows (right). 

 In Figure A2, we represent the model with a certain adjacency matrix where the adjacency is defined 
when the regions share boundaries but not corners. Again, as in FigureA1 (right panel) the substitution 
rules are represented by red arrows. The arrows denote adjacency of the binary W matrix, so 𝑤𝑤𝑘𝑘𝑘𝑘 = 𝑤𝑤𝑘𝑘𝑘𝑘 =
 1 if j-th and k-th regions share boundaries (but not corners). The results corresponding to the modeling 
where temporal units were chosen to be years were not very good. We modeled the BET using the model 
but discontinued observing the poor performance of the model defined by poor consistency with the BSE 
estimates. 
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FIGURE A2. W or adjacency/neighborhood matrix of the traditional model having got rid of the diagonal 
adjacencies in spatio-temporal through arrows (right). 

Building areal models with no temporal component  

Although the spatial structure seen in the 𝑝𝑝𝑘𝑘𝑘𝑘  (Figures 2,3,4) may be modelled by known predictor 
variables in a regression model, as was done in the exploratory analyses, it is common for spatial structure 
to remain in the residuals. The most common remedy for this residual autocorrelation is to augment the 
linear predictor with a set of spatially autocorrelated random effects, as part of a Bayesian hierarchical 
model. These random effects are typically represented with a conditional autoregressive (CAR, Besag et 
al. 1991) prior, which induces spatial autocorrelation through the adjacency structure of the areal units. 
However, these CAR priors force the random effects to exhibit a single global level of spatial 
autocorrelation, ranging from independence through to strong spatial smoothness.  Such a uniform level 
of spatial autocorrelation for the entire EPO may be unrealistic, given the spatial variation seen in 𝑝𝑝𝑘𝑘𝑘𝑘  
(Figure 4). 

A number of approaches have been proposed for extending the class of CAR priors to deal with localized 
spatial smoothing amongst the random effects, including Lee and Mitchell (2012), and Lee and Sarran 
(2015). These types of models are typically implemented in a Bayesian setting, where inference is based 
on Markov chain Monte Carlo (MCMC) simulation. Some of the choices we considered are 

Univariate Model with Gaussian assumption 

                                          Model 
log(𝑝𝑝𝑠𝑠) =  𝑌𝑌𝑠𝑠 

𝑌𝑌𝑠𝑠  | 𝜇𝜇𝑠𝑠   ~  𝑁𝑁𝑙𝑙𝑁𝑁𝑁𝑁𝑎𝑎𝑙𝑙 (𝜇𝜇𝑠𝑠,  𝜈𝜈2  )  
      𝜇𝜇𝑠𝑠 =   𝑋𝑋𝑇𝑇𝛽𝛽 +  𝜓𝜓𝑠𝑠 
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         Here  𝜓𝜓𝑠𝑠   is the spatially autocorrelated component. 

Priors 
    

𝛽𝛽 ~ 𝑁𝑁�𝜇𝜇𝛽𝛽  , Σ𝛽𝛽� 

𝜈𝜈2  ∼   Inverse-Gamma(a, b). 

For the spatial model with no temporal component the following was a special case to incorporate the 
latent spatial effects ψs into a hierarchical model structure. 

S.CARleroux model: Leroux et al. (2000) proposed the following alternative Conditional Autoregressive 
(CAR) prior for modeling varying strengths of spatial autocorrelation using only a single set of random 
effects. W is the symmetric neighborhood matrix so that 𝑊𝑊𝑖𝑖𝑘𝑘  give the weights of the strength of the 
spatial association between the i’th and k’th regions when they are “neighbors”. The only condition we 
need are the row totals of W add up to a positive value. And  𝜙𝜙𝑘𝑘 are the spatially autocorrelated 
components. 

 
 𝜓𝜓𝑘𝑘 =  𝜙𝜙𝑘𝑘 

 

Φ𝑘𝑘 | Φ−𝑘𝑘 ,𝑾𝑾, 𝜏𝜏2, 𝜌𝜌 ~ 𝑁𝑁 � 𝜌𝜌∑ 𝑤𝑤𝑘𝑘𝑘𝑘 𝜙𝜙𝑘𝑘𝑘𝑘
𝜌𝜌 ∑ 𝑤𝑤𝑘𝑘𝑘𝑘 +1−𝜌𝜌𝑘𝑘

,  𝜏𝜏2

𝜌𝜌∑ 𝑤𝑤𝑘𝑘𝑘𝑘 +1−𝜌𝜌𝑘𝑘
 � 

 
𝜌𝜌  ~ 𝑈𝑈𝑙𝑙𝑈𝑈𝑈𝑈(0, 1) 

𝜏𝜏2 ~  𝐼𝐼𝑙𝑙𝐼𝐼𝑒𝑒𝑁𝑁𝐼𝐼𝑒𝑒 𝐺𝐺𝑎𝑎𝑁𝑁𝑁𝑁𝑎𝑎(𝑎𝑎, 𝑏𝑏) 
 

Thus, 𝜌𝜌  represents overall spatial autocorrelation in the model, where as 𝜏𝜏2 represents the overall 
spatial variance. In the model the traditional adjacency matrix W defined in Appendix A (i) was used. 
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APPENDIX B: ESTIMATES AND PERFORMANCE MEASURES  

Apart from numerical values, we have also used some other performance measures for model screening 
of the CAR models discussed in the paper and in Appendix A, namely (i) Normal Quantile-Quantile plots 
of the residuals, (ii) fitted versus observed plots. Additionally, for each candidate CAR model – we have 
used two options: (i) autoregressive (1) or AR (1) versus (ii) autoregressive (2) or AR (2). We observed that 
AR (1) was a better choice in each case, and so the results quoted below pertain to AR (1).  

Below we provide the catch estimates and model performance of different models we have built, tested, 
and compared results with the BSE through 2010-2019. The results of the model can be summarized as 
follows –estimates of the species composition are given in the first, and performance measures are given 
in the consecutive table below the first. 

TABLE B1. Model performance with W chosen to be `traditional’ adjacency matrix for 13 regions, using 
annual data. The difference with the `best’ CAR model is that the W is given as in Figure A1: 

                 Year   2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 
 
Vessel size class 6 
 
BET            
proportion of  
variance explained 0.97 0.93 0.9 0.91 0.95 0.99 0.999 0.98 0.98 0.88 0.76 
normalized  
prediction error 0.41 0.58 0.93 0.77 0.75 0.13 0.09 0.42 0.29 0.98 1.41 
SKJ            
proportion of  
variance explained 0.59 0.45 0.78 0.64 0.64 0.39 0.38 0.47 0.41 0.42 0.47 
normalized  
prediction error 2.37 0.73 3.9 1.71 1.27 1 1.5 1.15 0.75 1.18 1.59 
            
vessel size class 1-5            
 
BET            
proportion of  
variance explained 0.57 0.91 0.75 0.8 0.97 0.99 0.99 0.65 0.8 0.92 0.7 
normalized  
prediction error 1.7 0.87 1.21 1.72 0.4 0.09 0.12 1.21 1.61 0.87 1.24 
SKJ            
Proportion of  
variance explained 0.67 0.97 0.99 0.99 0.49 0.6 0.77 0.32 0.25 0.24 0.59 
normalized  
prediction error 0.93 0.23 0.11 0.18 2 1.92 0.49 1.37 1.4 1.69 1.79 

 

TABLE B2. Model performance with W chosen to be `traditional’ adjacency matrix for 13 regions, using 
quarterly data. The difference with the ‘best’ CAR model is that the W is given by Figure A1 and the data 
was aggregated on quarters, and not years. 
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OBJ sets                       
Vessel size class 6             
Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 
              
BET             
proportion of 
variance explained  0.866 0.85 0.87 0.9 0.89 0.91 0.91 0.91 0.92 0.95 0.9 
normalized 
prediction error 8.11 6.95 7.35 7.83 6.84 7.91 7.3 7.8 6.28 9.56 11.54 
              
SKJ             
proportion of 
variance explained 0.866 0.85 0.87 0.9 0.89 0.91 0.91 0.91 0.92 0.95 0.9 
normalized 
prediction error 8.11 6.95 7.35 7.83 6.84 7.91 7.3 7.8 6.28 9.56 11.54 
              
vessel size class 1-5              
              
BET             
proportion of 
variance explained  0.9 0.89 0.9 0.88 0.85 0.94 0.99 0.98 0.93 0.88 0.94 
normalized 
prediction error 1.4 1.6 2.95 3.03 2.73 1.51 0.56 1.19 1.52 1.78 0.89 
              
SKJ             
proportion variance 
explained 0.9 0.89 0.9 0.88 0.85 0.94 0.99 0.98 0.93 0.88 0.94 
normalized 
prediction error 1.4 1.6 2.95 3.03 2.73 1.51 0.56 1.19 1.52 1.78 0.89 
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TABLE B3. Model performance from CAR model with W mimicking BSE substitution rules for 13 regions, 
using quarterly data. This is the like the ‘best’ CAR model we used; however, the data that was used was 
aggregated over quarters instead of years: 

OBJ sets 
Year  

 
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

 
vessel size class 6    
 
BET             
proportion of  
variance explained  0.9 0.9 0.91 0.96 0.92 0.93 0.9 0.9 0.92 0.99 0.99 
normalized  
prediction error 1.96 1.98 2 2.02 2.55 1.72 2.47 2.32 1.39 0.63 0.42 
 
SKJ             
proportion of  
variance explained  0.69 0.73 0.71 0.83 0.75 0.81 0.85 0.93 0.94 0.89 0.93 
normalized 
prediction error 4.04 2.53 4.2 3.34 3.89 1.66 1.67 2.24 2.18 1.79 1.57 
              
vessel size class 1-5            
 
BET             
proportion of  
variance explained  0.94 0.93 0.95 0.89 0.97 0.99 0.997 0.998 0.995 0.98 0.88 
normalized  
prediction error 1.4 1.32 2.19 2.85 1.22 0.63 0.3 0.39 0.39 0.71 1.88 
 
SKJ             
proportion of 
variance explained 0.78 0.87 0.88 0.96 0.96 0.98 0.59 0.7 0.62 0.48 0.78 
normalized  
prediction error 3.5 0.36 2.03 2.03 1.07 0.91 7.66 6.13 1.53 2.98 2.75 
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TABLE B4. Model performance from CAR model with W mimicking BSE substitution rules for 13 regions, 
with annual data (short-term model). This is the like the ‘best’ CAR model we used; however, the number 
of years used in the model was three instead of five: 

OBJ sets  
Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 
 
vessel size class 6   
 
BET             
proportion of  
variance explained  1 0.98 0.98 0.97 0.96 1 0.99 1 0.99 0.99 0.93 
normalized prediction 
error 0.54 0.38 0.48 0.49 0.73 0.12 0.11 0.14 0.22 0.17 0.75 
SKJ             
proportion of variance 
explained  1 0.92 0.99 0.86 0.76 0.89 0.95 0.93 0.92 0.9 0.86 
normalized prediction 
error 0.14 0.81 0.38 0.99 1.04 0.78 1.06 0.62 0.67 0.98 1.28 
              
vessel size class 1-5           
 
BET             
proportion of  
variance explained  0.88 0.98 0.9 0.92 0.85 0.93 0.94 0.96 0.96 0.93 0.97 
normalized prediction 
error 0.79 0.27 0.34 0.34 0.82 0.63 0.32 0.35 0.41 0.34 0.19 
SKJ             
proportion of 
variance explained 0.91 0.89 0.98 0.81 0.9 0.85 0.87 0.92 0.89 0.87 0.99 
normalized prediction 
error 0.5 0.42 0.04 0.19 0.42 1.01 0.62 1.1 0.13 0.43 0.15 
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TABLE B5. Model performance from best CAR model with trips excluded at Manta, Mazartan, Pasorja 
(April-December for all years) mimicking the pandemic situation (see Appendix A): 

OBJ sets 
Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 
 
vessel size class 
6 
 
BET              
 
proportion of  
variance 
explained  0.99 0.99 0.98 0.95 0.96 0.95 0.99 0.99 0.99 0.99 0.99 0.99 
normalized  
prediction error 0.36 0.19 0.52 0.63 0.77 0.91 0.15 0.19 0.12 0.1 0.14 0.19 
SKJ              
proportion of  
variance 
explained  1 0.82 0.78 0.87 0.83 0.79 0.74 0.84 0.83 0.85 0.88 1 
normalized  
prediction error 0.2 1.35 2.9 1.18 0.68 1.03 2.22 0.9 0.97 0.59 0.62 0.19 
               
vessel size class 1-5             
 
BET              
proportion of  
variance 
explained  0.88 0.97 0.94 0.98 0.84 0.95 0.95 0.96 0.97 0.97 0.97 0.96 
normalized  
prediction error 0.8 0.35 0.4 0.18 0.93 0.56 0.29 0.31 0.33 0.24 0.19 0.21 
SKJ              
proportion of 
variance 
explained 0.91 0.97 0.97 0.98 0.97 0.95 0.95 0.99 0.99 0.99 0.99 0.87 
normalized  
prediction error 0.51 0.25 0.17 0.09 0.23 0.61 0.39 0.24 0.04 0.11 0.15 0.3 

Next, we provide the correlation coefficients between the CAR estimates and the BSE for the three species 
(BET, SKJ, YFT). We have calculated correlations twice—once for the years 2010-2019, and once for 2010-
2020.  
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TABLE B6. Correlation of CAR estimates with BSE; the ‘best’ CAR model results are marked in bold. The 
following correction was made to the CAR estimates: updated to reflect the latest total fleet catch of 
tropical tunas. 

Correlation coefficients 2010-2020 
BET 

2010-2019  
BET 

2010-2020 
SKJ 

2010-2019 
SKJ 

2010-2020 
YFT 

2010-2019 
YFT 

Traditional W with year as 
temporal unit .80 0.59 0.98 0.99 

 0.97 0.96 

Traditional W with quarters 
as temporal unit 0.68 0.34 

 0.97 0.99 .84 .93 

W mimicking BSE 
substitution quarters as 
temporal units 

0.76 0.43 0.89 .92 0.69 0.80 
 

W mimicking BSE 
substitution with year as 
temporal unit 
(Short-term model)  

0.52 0.70 
 0.98 0.98 0.85 0.92 

W mimicking BSE 
substitution with year as 
temporal unit 
(Long-term model) 

0.83 0.78 0.98 0.98  0.95 0.95 

 
TABLE B7. Correlation of BET CAR estimates with BSE for various CAR models, the ‘best’ CAR Model results 
is marked in bold fonts. The following correction was made to the CAR estimates: updated to reflect the 
latest total fleet catch of tropical tunas. 

Correlation coefficient 2010-2020 2010-2019 

Traditional W with year as temporal unit 0.80 0.59 
 

Traditional W with year as temporal unit remove the 
diagonals from W -0.08 0.39 

Traditional W with quarters as temporal unit 0.68 0.34 
 

Modified W with quarters as temporal units 0.76 0.43 

Modified W with year as temporal unit (short term) 0.52  0.70 
 

Modified W with year as temporal unit (long-term) 0.83 0.78 

Spatial CAR with no temporal term, with traditional W 0.15 0.18 
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TABLE B8a. Parameter estimates of the BET and SKJ ‘best’ CAR model for vessel size 6. 
 

 

TABLE B8b. Parameter estimates of the BET and SKJ ‘best’ CAR model for vessel size 1-5. 
 

BET vessel type 1-5     SKJ      
Parameters Intercept Slope tau2 nu2 rho.S rho.T Intercept Slope tau2 nu2 rho.S rho.T 

2010 -0.67 0.88 0.03 0.71 0.61 0.35 0.08 1.66 0.02 0.10 0.58 0.32 
2011 -0.92 0.84 0.06 0.04 0.82 0.45 -0.08 1.09 0.03 0.04 0.66 0.34 
2012 -1.03 0.82 0.07 0.04 0.80 0.41 -0.05 1.08 0.03 0.03 0.73 0.35 
2013 -1.12 0.82 0.09 0.03 0.82 0.45 -0.03 1.09 0.03 0.03 0.71 0.34 
2014 -1.15 0.83 0.03 0.52 0.71 0.33 0.01 1.10 0.04 0.02 0.69 0.33 
2015 -1.56 0.72 0.07 0.06 0.81 0.37 0.00 1.13 0.03 0.05 0.66 0.29 
2016 -1.60 0.73 0.07 0.05 0.81 0.40 0.02 1.16 0.02 0.07 0.62 0.28 
2017 -1.65 0.73 0.09 0.05 0.79 0.42 -0.14 0.72 0.05 0.02 0.84 0.82 
2018 -1.65 0.72 0.09 0.03 0.84 0.36 -0.14 0.62 0.06 0.02 0.80 0.56 
2019 -1.71 0.72 0.06 0.03 0.87 0.31 -0.15 0.63 0.05 0.02 0.84 0.53 
2020 -1.75 0.71 0.06 0.06 0.81 0.32 -0.17 0.61 0.06 0.02 0.83 0.57 
2021 -1.99 0.66 0.09 0.04 0.74 0.32 -0.15 0.63 0.02 0.14 0.65 0.25 
 

 
  

BET vessel 6 SKJ
Parameters Intercept Slope tau2 nu2 rho.S rho.T Intercept Slope tau2 nu2 rho.S rho.T

2010 0.27 1.25 0.03 0.07 0.66 0.45 0.54 2.41 0.05 0.01 0.72 0.92
2011 0.47 1.34 0.03 0.05 0.65 0.48 -0.03 1.08 0.01 0.03 0.45 0.42
2012 0.25 1.20 0.01 0.25 0.49 0.30 0.31 1.96 0.02 0.31 0.58 0.42
2013 -0.16 1.06 0.05 0.02 0.74 0.83 0.38 2.16 0.02 0.13 0.57 0.30
2014 -0.28 1.06 0.05 0.01 0.83 0.90 0.46 2.38 0.01 0.50 0.49 0.32
2015 -0.16 1.06 0.05 0.02 0.74 0.83 0.38 2.15 0.02 0.13 0.55 0.30
2016 -0.28 1.06 0.06 0.01 0.82 0.90 0.46 2.38 0.01 0.51 0.46 0.34
2017 -0.47 1.05 0.08 0.02 0.80 0.71 0.32 1.80 0.01 0.09 0.36 0.20
2018 -0.99 0.85 0.08 0.02 0.82 0.65 0.38 1.98 0.01 0.08 0.42 0.23
2019 -0.43 1.01 0.06 0.02 0.76 0.46 -0.06 0.85 0.01 0.01 0.31 0.35
2020 -0.02 1.13 0.02 0.29 0.60 0.39 -0.06 0.99 0.01 0.01 0.29 0.39
2021 -0.26 1.06 0.05 0.02 0.77 0.38 0.22 1.69 0.03 0.01 0.70 0.92
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APPENDIX C 

DATA SOURCES 
The primary three data sources are (i) Observer data, (ii) Logbook data (iii) Cannery data and (iv) Port-
sampling data and are described below.  

Observer data 

These data are collected by observers on board large (IATTC Class-6; > 363 mt fish carrying-capacity) 
vessels, for which data collection began in 1980 and there has been 100% observer coverage (or nearly 
so) since 1992. To note, however, is that detailed observer data are only available on the IATTC database 
for all Class-6 trips since 2009; data of trips of Mexican-flag vessels sampled by the Mexican national 
observer program are not available on the database for years prior to 2009, although logbook data are 
available for many of these trips (see below). Observer data are also available for a small percentage of 
trips of small (IATTC Classes 1-5; ≤ 363mt) purse-seine vessels.  

Observers collect data on fishing activities, gear characteristics, and catch of target and non-target species 
(non-target species are also referred to as ‘bycatch’, e.g., billfish species, dorado, turtles, marine 
mammals, etc.). For catch of both target and non-target species, size composition is recorded. However, 
the type of size data collected depends on the taxonomic group; size data for the tropical tuna species are 
only amounts of catch by three weight categories (‘small’: fish < 2.5 kg total weight; ‘medium’: fish 
between 2.5 kg and 15 kg; ‘large’: fish > 15 kg), not actual measurements of length or weight of individual 
fish. The observer data have the finest spatial and temporal resolution of any of the four main data 
sources, with a spatial resolution of 100th of a degree (decimal degrees) and a temporal resolution of 
minutes to hours (depending on the fishing activity). One important difference between the catch data 
collected by observers and that abstracted from vessel logbooks (see below) is that logbooks contain only 
the amount of catch loaded into the wells of the specific vessel, whereas observers record several catch 
quantities: the amount of tuna caught (sometimes referred to as ‘catch weights’ or ‘capture’); the amount 
of tuna loaded onto the vessel (referred to as ‘load weights’); and, the amount of tuna discarded. 
(Discarding of fish has been prohibited in recent years, however.) The amount of tuna ‘retained’, which is 
the difference between the capture and the discards, includes any tuna catch given to another vessel or 
transferred to storage pens, in addition to the amount of tuna catch loaded into the vessel’s wells. Thus, 
the only the loaded catch can be compared between observer data and logbook data.  

For a comprehensive description of observer data held at IATTC, see Fuller et al. (2022). 
 

Logbook data 

Logbook data are data abstracted by IATTC staff from fishermen’s logbooks on fishing locations, dates, 
types of purse-seines sets, and target species catch amounts (no size information is available). The logbook 
data on catches (load weights only) are set-by-set data, at a spatial resolution of 100th of a degree (decimal 
degrees). The data are available for all size classes of purse-seine vessels but are typically not used for 
fishing trips for which observer data are also available because the logbook data are more limited in scope. 
The coverage of the logbook database has improved over time and a timeline can be found in Document 
SAC-08-06a (which also contains a useful description of the types of data available for Class 1-5 purse-
seine vessels).   

Cannery data 

Cannery data are catch amounts of target species by trip, provided to the IATTC staff by tuna canneries. 
They are trip-level data, without any information on exact fishing locations or dates or operational 
characteristics (e.g., purse-seine set type), although information on fishing zones and trip departure and 

https://www.iattc.org/PDFFiles/SpecialReports/_English/No-25-2022-Multiple_History%20of%20the%20IATTC%20Bycatch%20Data%20Collection.pdf
https://www.iattc.org/Meetings/Meetings2017/SAC-08/PDFs/Docs/_English/SAC-08-06a_A-review-of-fishery-data-available-for-small-purse-seine-vessels-with-emphasis-on-FADs.pdf
https://www.iattc.org/Meetings/Meetings2017/SAC-08/PDFs/Docs/_English/SAC-08-06a_A-review-of-fishery-data-available-for-small-purse-seine-vessels-with-emphasis-on-FADs.pdf
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arrival dates are provided. No size information is currently available on the IATTC database; some 
canneries do provide estimates of catch by weight categories, but those categories differ among 
canneries, making the size information problematic to use for catch composition estimation Cannery data 
are not available to IATTC staff for all trips nor from all canneries. 
 

Port-sampling data 

The port-sampling data are collected by IATTC field office staff when purse-seine vessels unload their 
catch in port. The data are samples of the catch from one or more wells (fish storage compartments on 
board the vessel); staff typically try to sample only one or two wells of a trip, rather than all wells of the 
trip that meet the sampling criteria (see below). The data collected include length measurements from a 
sample of fish, and, separately from the fish measured, counts of species from another sample of fish. The 
sampling protocol that is to be followed by the staff can be found in the appendix of Suter (2010). Very 
generally, the protocol requires samplers to alternate between counting and measuring fish (in groups of 
25 fish for counts and 50 fish for measurements), with the purpose of extending each type of sampling 
over a larger fraction of the unloading than would occur if the counts and measurements were each 
collected from a contiguous number of fish. The port-sampling data can be linked to observer and/or 
logbook data through trip and vessel identifiers. 

The port-sampling data have a coarse spatial and temporal resolution. Since 2000, all samples can be 
assigned to a 5° square area. A monthly resolution is likely the smallest temporal resolution that can be 
assigned to all samples. In principle, for some percentage of samples, it is possible to obtain finer spatial 
and temporal resolution. However, this is only in cases where, for example, an entire set fills the well that 
was sampled; wells on the vessel can contain samples from multiple sets and the catch of one set may be 
loaded into multiple wells. The sampling instructions stipulate that sampled wells must have catch from 
the same purse-seine set type, sampling area (Figure 7) and month. Wells with catch from different set 
types/sampling areas/months are not sampled.  

Not every trip is sampled by the port-sampling program, and the coverage of trips differs by vessel size 
class (see last slides of this presentation). Although the coverage computed in terms of sampled trips is 
relatively high (at least for Class-6 vessels), the coverage in terms of the percentage of wells sampled or 
percentage of the catch sampled is low; an added consideration when considering the percentage of wells 
sampled is that not all wells would be considered sampleable under the current protocol, as noted above. 
The percentage of trips sampled is determined by resources available and logistical constraints, rather 
than being established to achieve a specific precision for the estimates of catch. Some vessels unload in 
locations where it is not possible to sample their catch in port. 

The sampling protocol has changed over time. Prior to 2000 the sampling was only for the length 
composition of the catch. Beginning in 2000, sampling was also for species composition. The sampling 
has always been a multi-stage protocol, where first a fishing trip and then a well (or wells) of that trip 
of are selected for sampling, and then fish within the well are selected. It is worth noting that although 
the instructions to samplers (appendix of Suter 2010) imply that selection of units for sampling is at 
random, when in actuality, the selection of trips to sample is largely opportunistic (as is selection of 
wells, from among those wells of a trip that meet the same area/month/set type criteria), and the 
sampling of fish within a well most closely resembles a single-cluster systematic sample (but not 
initiated from a random start).  
 

 

https://www.iattc.org/PDFFiles/SpecialReports/_English/No-18-2010-SUTER,%20JENNY%20M_An%20evaluation%20of%20the%20area%20stratification%20used%20for%20sampling%20tunas%20in%20the%20eastern%20Pacific%20Ocean%20and%20implications%20for%20estimating%20total%20annual%20catches.pdf
https://www.iattc.org/Meetings/Meetings2021/SAC-12/Presentations/_English/SAC-12-PRES_The%20tuna%20fishery%20in%20the%20EPO%20in%202020.pdf
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CURRENT CATCH COMPOSITION ESTIMATION METHODOLOGY 

A description of the statistical methodology used since 2000 to estimate the purse-seine tuna catch 
composition for the three target tuna species can be found in several documents: starting on page 339 of 
Stock Assessment Report 2; starting on page 311 of Stock Assessment Report 4; and, for both time periods 
(1975-1999 and 2000 onwards), in Document BET-02-06 . The latter document also contains a description 
of the data used for catch-estimation and stock assessments.  

The methodology is a design-based approach to catch estimation, as opposed to a model-based approach. 
The methodology amounts to estimation of catch composition using a type of ratio estimator of species 
and size composition, which is applied to the port-sampling data, by strata. Equations can be found in the 
documents noted in the previous paragraph. In practical terms, the methodology can be broken down 
into the following three steps: 

1) Obtain the total purse-seine fleet catch of tropical tunas (that is find the total of yellowfin, bigeye 
and skipjack). This total is based on catches from: cannery data, observer data (load weights; if no 
cannery data for a trip are available), and logbook data (if no cannery or observer data are 
available for a trip). 

2) Distribute the total from (1) to strata (area x month x set type x vessel size class category (Classes 
1-5; Class-6)), using the proportion of total tropical tuna catch in each stratum (proportions 
computed from the combination of observer and logbook data). 

3) For each stratum, distribute the total tropical tuna catch total from (2) to species and size (1 cm 
length bins), using estimates of the species and size composition of the catch from the port-
sampling data. Because there are always strata with catch but no port-sampling data, species and 
size composition in some strata are based on port-sampling data from ‘neighboring’ strata. Briefly, 
the ‘best’ neighboring stratum to a stratum without port-sampling data is determined through a 
set of hierarchical rules. In general, priority is given to set type – which means that to the extent 
possible, the ‘neighbor’ stratum should have the same set type. Then priority is given to month 
and area, and finally to vessel size class category. For example, a stratum that has catch from OBJ 
sets in area 7, month 3, and Class-6 vessels, would be considered ‘closer’ to a stratum with catch 
from OBJ sets in the area 7 and month 3 but from Class 1-5 vessels than to a stratum with catch 
from OBJ sets in area 9 and month 3 and Class-6 vessels. 

https://www.iattc.org/PDFFiles/StockAssessmentReports/_English/No-2-2002_Status%20of%20the%20tuna%20and%20billfish%20stocks%20in%202000.pdf
https://www.iattc.org/PDFFiles/StockAssessmentReports/_English/No-4-2004_Status%20of%20the%20tuna%20and%20billfish%20stocks%20in%202002.pdf
https://www.iattc.org/Meetings/Meetings2019/BET-02/Docs/_English/BET-02-06_Summary%20of%20purse%20seine%20data%20for%20bigeye%20tuna%20in%20the%20eastern%20Pacific%20Ocean.pdf
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