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Introduction

A population of oceanic fish under exploitation by a fishery may be
influenced by a great number of elements in the complex ecological system
of which it forms a part. Of these, however, only one, predation by man,
is capable of being controlled or modified to any significant degree by
man’'s actions. Any management or control of the fishery, to the extent
this may be possible at all, must, therefore, be effected through control
of the activities of the fishermen. It seems important to elucidate some
of the basic principles of the effect of fishing on a fish population and,
conversely, the effect of the fish population on the amount of fishing, in
order to understand in what circumstances and in what manner such con-
trol of the activities of the fishermen ean influence the fish population and
the yield obtained therefrom,.

Management of a fishery has as its purpose the modification or limi-
tation of the activities of the fishermen in order to realize a change in
the fish population, or the catch, or both, which in some manner is pref-
erable to that which would obtain if the fishermen were allowed to operate
without these modifications or limitations. What may be “preferable"
involves in the general case a great many economie and sociological mat-
ters difficult or impossible to treat objectively, and not susceptible to
guantitative reasoning. We must, therefore, confine our attention to a
less general case, but one most often met in practice, where the purpose
of management is to obtain a larger average total catch per unit of time
than would be obtained without management. An important special case of
this is management directed toward obtaining the maximum average total
catch per unit of time, which is often referred to, somewhat ambiguously,
as the “optimum catch.”

The Inter-American Tropical Tuna Comrnission has the task, specified
by the Convention under which it is organized, of gathering and interpreting
factual information to facilitate maintaining the populations of the tropical
tunas and of the tuna-bait fishes at levels which will permit maximum sus-
tained catches year after year. Information respecting these populations
is not at the present time adequate for this purpose. An analysis of the
fundamental relationships between population size, intensity of fishing, and
catch is a valuable, if not indispensable, basis upon which to plan the effi-
cient collection and interpretation of the information required to accom-
plish the purposes of the Commission.

The staff of the Commission has directed a large share of its attention
since its inception to the collection and compilation of reliable data respect-
ing the total catch and catch per unit of fishing effort of each tuna species
over the period of growth and development of the fishery in the Eastern
Tropical Pacific. This task is nearing completion. The next step in the
investigation is to employ these data together with such ancillary vital
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28 SCHAEFER

statistics as may be required and may be obtainable, to the estimation of
the level of maximum sustained vield of each tuna stock and the deter-
mination of the present condition of the fishery with relation thereto. This
step requires the employment of a suitable mathematical model describing
the effect of fishing on the tuna stocks. Models which have been applied
in the past to other fisheries are not satisfactory for this purpose. It has,
therefore, proven necessary to undertake the investigations reported in this
paper directed toward the development of a suitable model, and of methods
of its application to fisheries data, which can be applied to the data of the
tuna fishery., These studies, although of a theoretical nature, are of the
most direct practical importance to the objectives of the Commission, since
they are fundamental to the interpretation of the catech data and related
information being collected by the staff,

It is well known that in dealing with oceanic fisheries we have to do
with very complex ecological systems and that, therefore, the effects of the
amount of fishing on the size of the fish population and on the catch is
difficult to estimate. Some recent and current controversies bear adequate
witness to this. The very complexity of these systems tends, however, to
divert attention from consideration of the fundamental laws of population
growth which make it possible for a species to survive increases in predator
populations, and, by the same tolken, make possible that extensive predation
by man which is commercial fishing.

In this investigation it will be atiempted to indicate the manner in
which the fundamental laws of population growth operate in the case of a
commercial fishery, and so, perhaps, clarify some of the important eon-
siderations basic to the management of the oceanic fisheries. These will
be shown by means of mathematical models. Certain parts of these models
or very similar ones have been employed in predator-prey investigations of
other organisms (Gause 1934, Lotka 1925), and there have been limited
attempts to apply somewhat similar techniques to the fisheries, as will he
noted subsequently, There is rather good reason to believe that the models
sufficiently describe reality to be useful in furthering our understanding.

In pursuing the investigation we wish to elucidate the dynamics of a
population of oceanic fish not related to environmental variations, that is
the dynamics of the “mean' population under average environmental con-
ditions. We shall, therefore, consider the situation in which all the factors
of the environment are constant except predation by man, ie. the amount
of fishing. In application, the effect of variation due to environmental
changes is treated as a random variable, independent of size of population.

The law of population growth in populations which tend to stability

Populations of organisms living in a constant environment with a
limited food supply may be of one of two kinds. In one kind of population,
exemplified in particular by some insects, different stages of which are in
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competition with each other for the means of life, the number of adults
fluctuates periodically and continuously (Nicholson 1949, 1950). In the
other type, the population tends to stability, so that for a particular set of
environmental conditions the population has at each size a definite potential
rate of increase which is dependent only on the existing size of the popula-
fion. A great many populations from the veasts and protozoa to man have
ben shown to be of this sort. Most, at least, of the populations of fishes
are believed to be of this kind.*

The general law of population growth for such a population, P, may be

expressed as
B = i cmemmmsnraanas (1)
where f(P) is continuous, positive and single valued between P = O and

P = L, the maximum population which the living space and food supply can
support, and zero at these limiting values of P. We will call f(P) the natural
rate of increase.

A particular function which has been shown to fit experimental data
as well as data from populations in nature for a good many organisms is
the Verhulst-Fear] logistic

it T R ) SRR |,

where .E: is a (:cmslant

In this case, of course, f(P) is a parabola with its axis along P = L/2.
It is shown graphically in Figure 1. Integrating, we may obtain P as a
function of ¢ which is a sigmoid curve with an upper asymptote at P = L

and an inflection point at the value of P for which—d-Lls a maximum, ie.

di
atP =1/2

This law has been employed to describe the growth of a considerable
variety of organisms, for example yeasts (Gause 1934, p. T8, Pear] 1925,
p. 9, protozoa (Gause 1934, p. 36, p. 93 et. seq.), fruitflies (Pearl 1925,
p. 11), and humans (Pearl 1925).

Biichman (1938) has considered the general dynamics of commercial
fish populations based on this relationship, as has Graham (1939). Graham
(1935) employed this growth law in an analysis of the effect of World War
I on the abundance and landings of demersal fishes from the North Sea,
and Baerends (1947) has made similar analyses.

It is possible that for fish populations the special case of (1) repre-
sented by the logistic (2) is not, in general, an exact representation of the

*One notable exception may be some species of Pacific Salmon, which
tend to periodic fluctuations characteristic of the species. These may be
found to be the result of the direct or indirect competition of different vear
classes for the means of subsistence. This has been little investizated,
howewver.
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Figure 1. Natural rate of increase of a population which grows according
to the Verhulst-Pear] logistic.

population growth law. In particular, the relationship {2) is a parabola,
symmetrical with respect to its axis, from which it follows that the maxi-
mum natural rate of increase oceurs at a value of P half way between zero
and the maximum population value, L. There is reason to believe that in
at least some populations of fishes, the curve is actually somewhat asymmet-

rical, with the maximum value uflfg- at a value of P less than L/2. Experi-

mental data have also shown this is sometimes the case for other organisms,
for example the yeast data of Gause (1934, p. 68).

Effects of Fishing

A fishery, that is removal of fish from the stock by man, has the
effect of subtracting from that increase in stock which would oceur at the
existing level of population if no fishing were taking place. In other words,
the rate of change in the stock will be less than the natural rate of increase
by an amount equal to the rate of catching of the fish. That is

%: f(P) — P &(F) oo (3)
where P &(F) is the rate of catching, depending on the size of the fish stock

and some positive single valued function of the number of units of fishing
effort, F.

It is obvious from (3} that whenever the rate of ecatching is less than
the natural rate of increase, the population will increase. Conversely, when
the rate of catching exceeds the natural rate of increase, the population

shrinks in size. When the rate of catching is exactly equal to the natural

rate of increase,% = (J, the population remains unchanged, and the fishery

is said to be in equilibrium for that level of population and fishing effort.
The annual catch made under such a condition of equilibrium has been
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called the stabilized cateh, the equilibrium wvield, and other things. We
shall call it the egquilibrium catch.

From the equation (3) and the general form of f(P) certain conclu-
sions of importance in fishery research and management may be immedi-
ately perceived:

(1) As the fishery increases in intensity (as F increases), the stock
P, decreases. This decrease in population is a necessary consequence of

increasing fishing intensity, and, thus, is an inevitable result of the develop-
ment of a fishery.

(2) The stock, and the corresponding equilibrium catch, can be held
constant, by repulating the amount of fishing, at any value less than P = L.
Stability or instability of the population and catch over a given period of
time has, therefore, no necessary relationship to the level of abundance, but
merely reflects whether the rate of catching is changing or is constant.

Catech per unit of effort

Let it be assumed that the fishery operates on the stock in such a
manner that one unit of fishing effort produces the same relative effect on
the stock, that is it ecatches the same percentage of the stock, regardless
of the time or place it is applied. Then

s(F) = ,F where &, is a constant
and P @(F) = BPF oo ()
Under these circumstances, the rate of catching per unit of fishing effort is
EPF _
R ————— )

and is, thus, proportional to the stock. The average catch per unit of effort
during a given period of time will be proportional to the average size of the
fish stock encountered by the fishery during the period. The average catch
per unit of effort per vear, or some other short time period, has been ex-
tensively used by fishery scientists to measure changes in the size of fish
populations.

Maximum equilibrium catch

As has been shown above, when the rate of catching is just equal to
the natural rate of increase, the stock will remain unchanged and the catch
obtained will, of course, be stabilized also. The size or sizes of stock at
which the equilibrium catch may be maximized are levels of maximum
equilibrium catch. In general, it is supposed that a fish population has a
growth law at least similar to (2) in that there is but a single maximum.
In this case, there is but a single size of population at which the equilibrium
catch may be maximized. This size of population has been referred to as
the optimum stock and the corresponding rate of catching as the optimum
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catch. I prefer the expression maximum equilibrium catch as being more
descriptive of exactly what is meant.

Determination of the status of the fish population and estimation of
equilibrinm yields

In the practical consideration of management of a fishery we are
interested in finding out whether the fish population has been driven below
the point at which maximum equilibrium catch may be obtained. If so,
curtailment of the intensity of fishing will result in increased average
catches. It is also of interest to estimate, if possible, the maximum equi-
librium ecatch and the size of population at which it may be obtained.

The investigation of these matters involves, essentially, estimating
the eguilibrium catch at various levels of population. This may be accom-
plished by application of equations (3) and (4) where the assumptions
underlying these equations are sufficiently nearly realized.

From (3) and (4) we have

=f(P) — EPF. oo LB}
Integrating over the vear, we obtain

P_ I
(P'dP = [rf{de: e [ BPFAt oo (T)
il vl i

where P =P att = ¢,
andP =P, att =1t
from which :
P,—P, =/ AP=FPF) —RkFP. ... (8)

Where f(P) is the annual natural rate of increase a.rlj, hence, the
annual equilibrium catch corresponding to the mean stock P encountered
by the fishery during the year®*. F, is the total fishing mtens:t} for the

vear, F, = .[ Fdt. k,FP is, of course, the total catch during the year.
L]

The average catch per unit of effort is
, EF.P
U :_‘F,'_ =BF e (D)
If we have adequate statistical records of the fishery we know the
amount of effort, the catch, and the catch per unit of effort vear-by-vear.

If we can evaluate &, in (9) we shall be ahle tchmputE'FfUr each yvear from
the catch statistical data. From values of P we may estimate P, and P,

P is the average of P taken with respect to the units of effort applied dur-
ing the year.
i

PFdt

That is, P = -

i
S Fdr
o
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approximately by interpolating between values of P for successive vears.
Given P, — P, and the catch, we can estimate f(P), the annual equilibrium
catch corresponding to P during each vear of the series.

Cne estimate of &, is provided by data from tagging experiment, since
F:k, is simply the instantaneous rate of fishing mortality, that is { =

— & F ; A : d
I - * ', where f is the annual fishing mortality rate, which may be

determined from the recovery rates of marked fish. Other means also
exist, of course, for estimating k..

An application to the Halibut fishery of the North Pacific

The manner in which this procedure may be applied can be illustrated
by the example of the fishery for Pacific Halibut, using for our example the
population of Area 2 (the region south of Cape Spencer). Statistics of
catch and catch per unit are given by Thompson and Bell (1934) and by
Thompson (1950). Revised, and presumably more accurate, values have
been furnished recently by Bell to Dr. R. VanCleve (MS) from which I
have taken the values employed here; see the first three columns of Table 1.

Tagging experiments (Thompson and Harrington, 1830) conducted in
Area 2 indicated an annual fishing mortality rate of approximately 409 in
1926. Subsequently Thompson and Bell (1934) found that 47¢% was per-
haps more realistic. Using 47% as the annual fishing mortality rate in
1926, we have

e Fik, = .33, and F, = 454 078 skates (Thompson 1950, table 2)
Then F.k. = (.635
and, 1/k, = 232 x 10 = 778 x 10°*

Multiplying the values of U for each vear by /&, we obtain estimates
of P (Table 1, column 4}, Interpolating between successive values of P, we
obtain estimates of the stock at the beginning of each vear (column 3).
Differences of the values for successive yearz indicate the increase or de-
crease of the stock which resulted from the catch taken during the vear
(AP, column 6). In accordance with (8) we add AP to the annual ecatch
to obtain f(P), the annual equilibrium catch corresponding to P (eolumn 7).

We now have estimates of the stock and eguilibrium eatch obtainable
from that stock for the series of years from 1916 to 1946. Plotting f(P)

*By considering changes in catch per unit of effort and total cateh over the
period 1926 to 1933, during which period the stock fell and then returned
again to the original level, Thompson (1930) arrived at a value for 1/&, of
335 x 10®, This corresponds to a fishing mortality rate of about 77% in
1926, which seems unreasonably high from the tagping results, age com-
position data, and other information respecting this fishery, An indication
of why his analysis gives this result will be given later (p. 37).
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against P we would expect the points to fall on a curve (a parabola, if
f(P) is the logistic) in the absence of other influences. Actually, due to
unknown effects of variable environmental factors, measurement errors,
and other unaccounted-for sources of variation, the points will tend to scat-
ter ahout an average curve. By observing the trend of the plot of f(F)
against P, we may ascertain, however, how the equilibrium catch for this
population varies, on the average, with the size of the population. This has
been done in Figure 2, where the small, solid points represent the annual
values from Table 1. The centers of the crosses represent the mean values
caleulated for each 10 units of U,

It is quite obvious that the equilibrium catch increases, on the aver-
age, up to a catch per unit of effort of about 80 pounds per skate, at least,
corresponding to a mean population of some 62,000,000 pounds. Data
beyond this population level are not available (the single point for 1916 at
114 lbs. per skate is not deemed adequate for extending the relationship).
Certainly it appears that, contrary to the contention of Burkenroad (1951,
1953}, this halibut population was driven below its point of maximum equi-
librium eateh, and the eurtailment of fishing had a beneficial effect on the
subsequent catches,

Tt iz unfortunate that reliable data are not available for earlier years
when the population was, presumably, larger, which would enable us to
estimate equilibrium catches for higher population values and so find out
where the maximum oceurs. It appears that it might be desirable, if pos-
sible, in order to find this out, to curtail fishing to permit higher levels of
population to be reached.

This example points out clearly the desirability of obtaining adequate
statistical data on a fishery during its early stages so that the maximum
equilibrium catch may be estimated, approaching it from those population
levels which are too high to give the maximum equilibrium catch. It is
practically difficult, once the maximum has been passed, to drive the stock
back up past the point of maximum return for purposes of investigation,
sinece the immediate economic welfare of the industry must always be con-
sidered in practical regulations.

In the analysis of the halibut data thus far, we have not specified the
form of f(P) beyond the general restrictions on (1). As a matter of illus-
trating methodology, it is of interest to see what results are obtained if
we specify that the curve be the logistic (page 24), so that

f(P) =k, P (L —P)or,
since P = -}r:
fP) = $£U (L~ U),

where L, = &L
Fitting a curve of this form to the mean values (crosses) of Figure 2, (with
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TABLE 1. Estimation of Equilibrium Catches for the Population of Pacilic
Halibut of the Region South of Cape Spencer (1. F. €. Area 2)

Catch in 1000’s Cateh per unit of

of pounds effort in pounds

Year =l er skate P P, Fat (P)
(k.EF) {EU gy, !

1915 44,023 1175 91,415

1916 30,278 114 1 BR,TT0 90,092 —14,082 16,1596
1917 30,803 1.3 63,251 76,010 —=10,542 20,261
1918 26,270 87.0 67,686 65,468 4+ 195 26,465
1914 26,602 Bl1.8 63,640 65,663 —1,323 25,279
1920 32,358 83.6 63,041 64,340 — 2,100 30,258
1921 36,572 T6.4 549,439 62,240 — 8,364 28,208
1922 30,482 621 48,314 53,876 — 7,663 22,819
1923 28,008 56.7 44,113 46,213 — 2645 25,363
1924 26,155 55.3 43,023 43,568 — 2,101 24 054
1925 22,637 51.3 35,911 41.467 — 1,360 21,277
1926 24,711 517 40,223 40,107 — 974 23,737
1927 22,954 48.9 38,044 39,133 — 1022 21,212
1928 25416 47.3 36,799 27,411 — 3,520 21 586

1829 24,565 39.8 30,964 33,881

4,900 19 665
1530 21,387

34.7 26,9097 28,981 + 272 21,659
1831 21,627 40.5 31,509 28,253 + 5,718 27,345
1932 21,988 4594 38,433 44,971 F 4,279 26,267
1833 22,530 al.a 40,067 39,250 -+ 2217 24,747
1934 22,638 55.1 42,868 41,467 + 4,240 26,878
1935 22 817 62.4 48,547 45,707 - 311 22,5086
1936 24,911 n4.3 41,245 45,396 - T8 24,133
1937 26,024 60,4 46,991 44 618 + 5,640 31,664
15938 24,875 65.58 33,526 00,258 + 39 25,014
1835 27,354 60.5 47,069 50,297 — 2,372 24,8982
1540 27,615 62.7 48,781 47,925 + 233 27,848
1941 26,007 61.1 47,536 48,158 + 622 26,629
1942 24,321 64.3 50,025 48,780 + 4,707 29,028
1943 25,311 73.2 06,350 53,487 + 7,818 33,130
1944 26,517 844 65,633 61,306 + 2,840 29,357
1945 24,378 20,5 62,629 64,146 - 39 24,417
1946 20,678 B4.5 65,741 64,185 + 2,100 31,778
1947 28,652 25.8 66,830 66,285

P and f(P) in thousands of pounds, U in pounds per skate) under the cri-
terion of least sguares, we obtain

-E* = 4.64 L, = 1561

This curve is plotted as the solid line in Figure 2*. It may be seen that

it has a maximum value of 28.25 million pounds for the equilibrium catch
at &P = T8.05 pounds per skate.

This curve depends, of course, only on the points to which it is fitted,
and may be rather dilferent beyond those points from the curve which
would be obtained if we had some values of Tﬁ'ﬂ for higher population
levels. The caleulated maximum population, corresponding to 156.1 pounds

“See footnote, Page 37.
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per skate, is much less than is shown by the available data of catch per
skate for the early years of the fishery. From the few data available it is
indicated by the International Fisheries Commission (Thompson and Bell
1934, table 1) that in the early 1900's the catch per skate was as high as
270 or 280 pounds. This is not, however, necessarily inconsistent with our
results, since in the early days of the fisheryv the vessels miay have been
operating on local concentrations of halibut more abundant than the aver-
age Tor the entire area fished in later years, Thompson (1950, p. 2) states
of the records on which these values are based: “It is my opinion, from
personal experience, that such records showed a higher eateh per set than
the present comprehensive methods of collecting would have shown.”

On the other hand, if we assume that the data from the 1800's are
representative of the population in an almost unfished condition, so that
the maximum population which the area will support corresponds to a
catch per skate of, =ay, 275 pounds, we may fit a logistic to the available
points, as before, but with the further restriction that L, = 275. This
results in a value of &,/ = 1.95. This curve is plotted as a broken line in
Figure 2, Tt will be seen that now the estimated maximum equilibrium
catch is 36.9 million pounds at a population corresponding to 137.5 pounds
per skate. This result is not entirely unreasonable in the licht of the total
catches of 530 to 60 million pounds per year which were actually obtained
by the fishery at its peak of production. (Thompson and Bell, table 1),

It is, it seems, not possible from the data to estimate precisely the
population level giving the maximum equilibrium vield. We can, however,
state with some certainty that it is at least as high as about 62 million
pounds, corresponding to a catch per skate in the neighborhood of 80
pounds, and that at lower values the stock is overfished., This limited con-
clusion is, however, of very great interest in view of current controversy
over the effect of regulation on the halibut stocks,

The nature of the growth of the amount of fishing

The intensity of fishing also may be expected to increase or decrease
according to some regular law in response to economic factors. In general,
as in any business, new investment of capital and effort will be attracted

*It may now be indicated why Thompson’'s method of determining 1/&.
gives a value higher than that from the tagging data. He assumed that the
equilibrium catch for the vears 1926 to 1933 was a constant. Actually the
equilibrium catch was not constant over this period . The deviations of
actual catches for this seriez of years from the equilibrium catches esti-
mated from the logistic with the constants indicated are, on the average,
greater than the deviations from the average of f{P) over the same period
of years. As may be observed from Thompson's formulae on p. 20 of his
paper, this will result in a higher value of his “K", which is the same as
our 1/&,.
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to come into the fishery as long as the expected return is equal to or greater
than that from alternative enterprises in which the investment might be
made. Put in another form, we may state this according to the theory of
the “marginal” factor, according to which the cost of the last unit of fishing
effort applied will, in general, be equal to the return from that unit.

Under the economic system in effect in most parts of the world, in
which the above type of law holds true, as the fishery proves profitable,
vessels and fishermen are attracted to it, increasing the rate of catching.
This, of course, results in a decrease in the population of fish, lowering the
return to each unit of fishing effort, and making the [ishery less attractive
to new investment. Ultimately, as the fishery grows, that level of fish
population will be reached at which the return per unit of effort is so low
that the cost of the next unit will be greater than the return from it. If
the population falls below this level, vessels will tend to leave the fishery.
This may be formulated

4L mP—b) (10)

where v is positive when P > & and negative when P < &, F being, as before,
the number of units of fishing effort, and # the eritical level of fish popula-
tion at which further investment in fishing becomes unprofitable.

To arrive at a particular function to describe the change of the inten-
sity of fishing with the size of the population, we may consider that the
incentive for new investment is proportional to the return to be expected,
in which case there will be a linear relation between the percentage rate of
change of fishing intensity and the difference between the level of fish

population and its economically critical level, &, This function will, then, be

dF _ _
kg P Wbt T (11)

where &; is a constant.

It may be noted that this is the law of growth of predator populations
which has beeen arrived at in various predator-prey studies, for example
Lotka (1925, p. 88), Volterra and d’Ancona (1935).

Stabilization of an unregulated fishery

Equations (3) and (10), taken simultaneously, describe the mutual
interaction of a population of fish, the growth law of which is specified in
(1) and a “population” of fishermen, the growth law of which is specified
by equation (10). A very general model of a fishery is, then, given by
the simultaneous equations

4L jpy - Py ()

dF
9=V (F,P—b)

An important special case is a population of fish the growth law of
which is the logistic, being fished under economic circumstances such that
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the intensity of fishing has the growth law (11), and where the rate of
catching is proportional to the number of units of fishing effort. In this
rase, the interaction of the fish and fishermen is described by the simul-
taneous equations

dp
5= kP(L ~ P) — k,PF

AL — pFP — b)

For the reasons which have been given in previous discussion, it is believed
that this pair of equations is sufficiently descriptive of the actual laws under
which a commereial fishery operates to be of utility in analysis of its dy-
namies, and will be employed in investigation of the nature of the develop-
ment of fisheries. Certain important results may be obtained, however,
from consideration of the more general pair of eguations (12).

As has been pointed out previously, by the first equation of (12) the
population of fish and the corresponding equilibrium catch may be stabi-

lized at anv level by regulating the amount of fishing, Since% = 0 when-

ever f(P) = P4¢(F). The change in fishing intensity in an unregulated
fishery will be zero, however, only at P = &, so that the system can only be
in equilibrium naturally at P = &, If the system is such that it will come to
a stable equilibrium at all, it will, under no regulation, reach stability of
itself at the economicallv critical population level P = &

This has implications of importance to fishery management:

(1) If b is above the value of P at which f{P) is maximum, the inten-
sity of fishing will cease to increase at a level of fish population greater than
that at which the maximum equilibrium catch might be obtained. In this
rase regulation of the fishery cannot increase the average yield of the
fishery.

{2) If & is below the value of P at which f(P) is maximum, it will be
possible to increase the equilibrium ecatch by curtailing the amount of
fishing and, if sufficient information is available, to establish that rate of
fishing which will result in the fish population which will give maximum
equilibrium catch.

It is to be noted that the system defined by the simultaneous equations
(13), which seem realistic for deseribing existing commercial marine fish-
eries, is such that it will come to stability of itself with P = b and F =

_EJ. fL — b). It will be shown later (p. 41) that this is a point of stable
4

equilibrium. The mamrer in which it arrives at stability will also be dis-
cussed subseguently.
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The course of development of an unregulated fishery and the manner of
approach to stable equilibrium

It is of considerable importance to our understanding of the fisheries
to investigate the manner in which the population of fish and the amount
of fishing react with each other in the course of development of the fishery.
We may take as our mathematical model the pair of differential equations
(13) and investigate the nature of the solutions. The initial conditions,
when the fishery starts, are that P is equal to L and F is small.

There does not seem to be any formal solution of these equations
giving P and F as functions of time. It is possible, however, to obtain ap-
proximate solutions by means of numerical procedures. First, however,

it will be profitable to investigate some of the general properties of the
solutions.

By dividing the first equation of (13) by the second, we may obtain
an eguation in P and F.
4P EP(L — P) — EPF
dF — . EEP — &) e s s sz Y

This equation does not have, so far as I can ascertain, a formal solu-
tion. The general nature of the solution may be investigated, however.

It may be seen that there is a line of horizontal tangents, -'j% = 0, when

k(L —P) = &,F. or F =—J’E—L(r_ ~P), P=£b
2
there is a line of vertical tangents, dF /4P = O
when P=b F _,—é—EL(L—b}
At F —-'- L — &), P = b there is a singular point.
Furﬂiermnre, it may be seen that

whenP > bandF > —IE‘_—E'L — P) JaF s negative

when P = Fand F < -E'— (L—P) fﬁi— is positive
¢ aP .

whenP < band F > —'Er:-(L s dF s positive

dP . :
whenP < band F < —E— (L—P) dF 1s negative

From this it may be seen that (14) might represent either a family of closed
curves or spirals about the singular point. The corresponding solutions of
{13) for P and F as functions of ¢ are in the first case an undamped oscilla-
tory function, and in the second a damped oscillatory function, approaching

P=bandF '—-—EL( L — k) in the limit. In the latter case, the singular point
of (14) is a point of stable equilibrium, in the former it is not.

We may examine the behaviour of the solution of (14) in the vicinity
of the singular point to determine which it may be.
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Lotka (1923) has investigated a more general pair of differential
equations, which include ours as a special case, He has shown that if a
certain descriminant is less than, equal to, or greater than zero, the solution
is a spiral winding inward toward the singular point, a family of closed
curves, or a spiral winding outward, (The last solution is, of course, im-
possible in our case from the physical conditions). The value of Lotka's
discriminant “R" of our equations is

- - 1ok )% P’,:J(L - 5)]_[&

) -E‘;(L— P)

Since (L — &) and (L — P) are always positive in our case, R is always less
than zero.

Therefore, according to Lotka's analvsis, the solution would be a
spiral winding inward toward the singular point, A diagram of this solution
is shown in Figure 3,

L\'\
b
P=b
1 /
o
T Sy e o
K,
Fee(L=P)
\_\// Ka
0 kel

F

Figure 3. Solution of equation (14), according to Lotka’s analysis.

It appears from this that in general P, the fish population, taken as a
function of time, follows some damped oscillatory function, fluctuating
above and below F = &, but the amplitude of the fluctuations getting smaller
and smaller. Similarly F, the amount of fishing effort, follows a similar

funection, approaching F = £ fL — &) in the limit, The singular point is a
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point of stable equilibrium. It is the point which F and P tend to approach,
and is the only point where the unregulated fishery will stay in natural
equilibrium.

We may note in passing that the line of horizontal tangents F =

%-'. {L — P) is the locus of the values of F and P corresponding (to the equi-

4
librium condition, that is if we hold F constant at any given value, by regu-
lation, the corresponding value of P lies on this line, when the cateh and the
natural rate of increase are in equilibrium.

The general nature of the solutions of (13) may also be investigated
more directly. If we differentiate the first equation of the pair and sub-
stitute from the second, we obtain a d:ffe-renhal equation of the second
degree in P alone:

aF () [k,P e &)]%+ EkP(P — b) (L — P) = 0_(15)

This equation cannot, so far as I can see, be solved formally. However, we
may investigate the solutions in the neighborhood of the sinpular point of
(14). Taking a new origin at &, by taking P = N + b, we obtain

d:N 1 (dNy? dN d,w
dar = NIk _)_ (k. — k) N a‘lr L T
— &k, (L —8) BN + (L —25) Ne — N (16)

In the vicinity of the origin, i.e. for very small values of N, we may

neglect all terms of the second and higher degree, provided also that &= dN

dr
is small in the vicinity of the singular point of (14). We obtain:
d*N dN z
dimm — kb — RRB(L — BN (17)
Or
L e b b BRGNS O (18)

which is a homogeneous linear equation with constant coefficients, The
roots of the characteristic equation are

kb \] kbt —4kk (L—b)p
2
The form of the solution will depend on whether the roots are real
or complex, i.e. whether the term under the radical is positive or negative.
If the roots are complex, the solution will be of the form
r.& bi

N =& (C cns—z‘r 4+ &, sm—f ) ........................ (20)

= (19)

where « = \/ #k,k,b(L—b) —kb* and C,, C. are constants of inte-
gration. This solution is, of course, a damped harmonic. As ¢+ — e,
N — O, approaching the limit by oscillating above and below N = 0. This
solution is the same kind obtained by Lotka's analysis.
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On the other hand, if the roots are real, the solution will be of the
form

(kb a kb a
N— G (T'T)i ! c,e_(_zl_ T)E _________________ (21)

where @ = \/ kbt — kkb(L — b)

Here, as t — o, N — 0O, so that the origin is a point of stability, but in this
case it iz approached from one side only, the equilibrium condition being
approached smoothly without oscillations.

The solution will be oscillatory or not depending on whether

k,obe % 4k,kb(L — b)

< L — &
k, S 1k, (—5—2 (22}

In the case of real roots, where the point of stable eguilibrium is ap-
proached from one side only, P is always greater than &, and, correspond-

ingly, F is always greater tl'lan-El(L — P). Thus, the resulting relationship
E

or

between F and P, which is a solution of (14}, is, in this case, not a spiral,
but is a curve remaining always on the positive sides of the lines of hori-
zontal and vertical tangents, and terminating in the limit in the singular
paint.

These considerations tell us something about the general nature of the
solutions and their behavior near the point of stable equilibrium. In order
to find out in more detail the changes in the fish population, amount of fish-
ing, and catch, recourse may be taken to approximation methods for solv-
ing the equations (13). We have employed the method due to Lord Kelvin,
as described by Willers (1948, p. 394 et. seq.) to obtain a graphical solution
to the equation (15) and the corresponding equation for F as a function of
¢, Solutions have been computed for two examples, one of which has com-
plex roots and one of which has real roots for equation (18).

In the first example we have taken
kB, = Ry b = 0.3L

initial conditions, P = L F=01
The resulting solution, showing F and P as functions of ¢, is traced out in
Figure 4. It may be seen that the fish population and the intensity of
fishing approach the condition of stable equilibrium as a series of damped
oscillations. The catch, which is proportional to the product of F and P,
also oscillates about its point of stable equilibrium, as may be seen from
the graph of catch in the same figure. It is of interest to note that on the
first swing the catch rises far above its ultimate position of stable equi-
librium, and also above the level of maximum equilibrium ecatch, which also
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[i -1 8

p—

t —

Figure 4. Solution of equations (13) for &k, = &, & = 0.3L,
(5.E. indicates level of stable equilibrium. NM.E.C. indicates
level of maximum equilibrium catch),
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is indicated in the figure. The relationship between F and P is plotted in
Figure 5 for the values of the two variables which have been computed for
this example. It may be seen that, as was deduced, it forms a spiral wind-
ing inward toward the singular point of stable equilibrium.

Lk =iy

P

F—>
Figure 5. Solution of equations (13) for &, = &,, b = (.31,

For the second example, for which the roots of equation (18) are

real, we have taken
k= 15k & =0.3L

initial conditions, P =L F=01
The resulting solution, traced out by the method of approximation cited,
showing F and P az functions of ¢, is graphed in Figure 6. In this case, as
we expected, F and P approach the condition of stable equilibrium asymp-
totically from one side only. The curve of cateh, however, rises well above
the final stabilization level (and also somewhat above the level of maximum
equilibrium catch) then approaches it asvmptotically from above.

Finally, for this second example, the relationship between F and P is

plotted in Figure 7, showing that its form corresponds to what we expected
from the general considerations.

It is of some interest to note that Volterra and D'Ancona (1935, pp.
44-45) stated as a theorem for a system of equations which includes ours
as a special case, that these two types of solutions would be found.
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L k1=15k3

F—>
Figure 7. Solution of eguations (13) for &, = 154, & = 0.3L.

Two conclusions of importance to fisheries management follow from
this analysis, if the mathematical model (13) fairly represents a commer-
cial fishery:

1) Large scale fluctuations in fish population and ecatch can arise as
a result of the interaction of the forces of growth of the fish popula-
tion and growth of the intensity of fishing, with all other conditions
constant.

2) During the development of a fishery, it is to be expected that in the
course of reducing the stock of fish from its virgin condition, the
catch will rise for a short time well above the level at which it will
reach natural stable equilibrium, and also well above the maximum
equilibrium ecatch, The task which conservationists have sometimes
set themselves of restoring a fishery to the highest historical levels
of production is, in this event, unobtainable on a permanent basis.
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Examples from the commercial fisheries

It is of interest to see how well our model may be applied to the actual
data of some commercial fisheries. This may be best accomplished, per-
haps, by presenting the data of some well-documented fisheries in the form
of Figure 5 (or 7) by plotting the observed intensity of fishing against the
corresponding observed population values., It is convenient to plot U rather
than P, since U = kP, and U is the datum which is obtained directly from
the statistical records of the fishery. This form has the further advantage
that the product of the ordinate and abscissa for any point along the line

of values of = dL = 0 [ i.e. the line F, =%-’7( L, — U) which is equivalent
2

to F, = —if-r-rL —P) | . and which we will call the line of equilibrium con-
ditions, is 'the equilibrium cateh,

There have been noted previously certain properties, under our

theory, of this sort of diagram which should be remembered here. When

‘fg is negative, that is when the population is declining, the catch being

greater than the equilibrium catch, the values of F, U will fall to the right

of the line of equilibrium conditions. Conversely, when ‘;U is positive, that

is when the population is increasing due to the catch being less than the
equilibrium catch, the values of F,, U will fall to the left of the line of equi-
librium econditions. This property, as well as the equation of the line of
equilibrium conditions depends esly on the first equation of (13) and is
completely independent of the second equation. So long as the first
equation of (13) correctly describes the natural rate of increase and the
catch, the line of equilibrium econditions is determined, and the properties
mentioned hold regardless of the way in which F, varies in relation to P and
t. The points F,, U will fall to the right or left of the line depending on
whether the catch is greater or less than the equilibrium cateh for the par-
ticular value of P.

If, in addition, the second equation of (13) is true, the successive values
of F,, U will form a curve corresponding to one of the joint solutions of the
pair of equations, as indicated above. It should be noted here that we have
assumed that the economically critical level is constant. This may be
expected to be true only over a relatively limited time, since it will be
influenced by technical developments as well as by the general business
cycle.

We may expect the data of commercial fisheries to correspond to the
properties of the model if the assumptions underlyving the model are fairly
well fulfilled by the fisheries. The most basic assumption was that the
growth of the fish population is a function of the size of the population, and
is not, therefore, subject to important variations due to other causes. If
there exist other causes influencing the growth of the population of fish,
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such as variations in the environment, which give rise to variations in the
population growth and which are large in comparison to the changes due
to population size alone, we shall expect our plot of F,, U to exhibit a quite
different pattern. In this case we should have large changes in population
size in either direction quite independent of antecedent changes in the
amount of fishing. As a result, the increases or decreases in population
will have little orderly sequence, except as they may be related to eyelic
phenomena, and will bear little relation to the location of any line of average
equilibrium conditions.

Pacific Halibut

We may first consider the fishery for Pacific halibut on the Southern
Grounds, which was the subject of an earlier example (p. 33). Thompson
(1950, table 2) gives values of F, and U for this fishery from 1916 through
1947, Until 1931 the fishery operated essentially without regulation of the
catch or intensity of fishing, so that the population of halibut and the in-
tensity of fishing were free to interact according to natural and economic
laws, After 1931, the fishery was regulated by placing quota limits on the
catch in order to build up the halibut population.

If one examines Figure 2 of Thompson and Bell (1934), in which is
depicted the historical record of this fishery up to the time of regulation,
it will be observed how similar the curve of landings is to our theoretical
curve in Figure 4, as well as the general similarity of the curves for fishing
intensity and fish population, which however, are available only for the
period after the peak of the catch had been reached.

Values of F,, U for successive vears are plotted from Thompson's
(1950} table 2 in our Figure 8. There has also been drawn the line of
equilibrium conditions, using the values of the constants estimated by our

Previous analysis (p. 35),{}&2 =464, L, = 156.1.
B

It may be seen that the picture is not inconsistent with the theory.
From 1916 until 1930, the stock was falling and the plotted points remain
generally to the right of the line of equilibrium conditions. It may be that
by 1830, the stock had fallen below an economically eritical level and the
fishing intensity had commenced, in conseguence, to decrease: however,
regulation of the fishery commenced in 1931 =s0 we cannot tell much about
this. From 1932 to 1947, during which the stock was being built up, the
plotted points remain to the left of the line of equilibrium conditions, ap-
proaching it elosely in the last vears of the series when the fishery was
becoming stabilized under regulation. This corresponds to just what would
be expected from the theoretical considerations discussed above.

We have also plotted on this diagram, as a light broken line, the line
of equilibrium conditions corresponding to the fish population logistic with
upper asymptote at L, = 275, which, it will be remembered, was obtained
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Figure 8. Relationship between intensity of fishing and mean population,
Pacific halibut south of Cape Spencer.
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from the data _g{ the fishery if we specified that the curve should go through
this value for P = L. It may be seen that, emploving this line, the plotted
points do not form a very reasonable pattern in the licht of the theory. It
seems therefore most probable that the fish population growth curve with
L, = 156.1 corresponds more nearly to realitv. If this line of equilibrium
conditions is valid for this stock of halibut, the maximum equilibrium catch
is 28.2 million pounds with a stabilized fishing intensity of 362 thousand
skates. Due to lack of data at higher levels of population this estimate may
not be quite correct, however, as pointed out previously.

California Sardine (Pacific Pilehard)

The fishery for the California Sardine, or Pacific Pilchard, has been
the subject of much study, and of some notable differences of opinion, dur-
ing the course of its growth and subsequent decline. It may be instructive
to see what sort of results are obtained from considering the population
statistics of this fishery in the light of the theory herein developed. In view
of the widely held opinion that the major changes in the sardine population
have been due to variation in environmental conditions, this is, of course, a
bold attempt. In our treatment, variation due to environment is treated
as a random variable, independent of P.

Statistics of total catch along the Pacific Coast are available since
the early days of the {ishery (Schaefer, Sette and Marr 1951, Clark 1952},
but data on catch-per-unit-of-effort are available only since the 1932-33
season. The period coversd by data on abundance commences, as may
be seen from Figure 1 of Schaefer, Sette and Marr, after the fishery
was well along in its development, but vet considerably prior to the peak
of total catch. In this respect, the data are available for a period commene-

ing when the fishery iz “yvounger” than the initial point of the series for
Pacific halibut.

Figures of total catch along the Pacific Coast were taken from Table
1 of Clark (1952). Figures of abundance (catch per California hoat month
linked to the base year 1941) were taken from Table 3 of Clark and Daugh-
erty (1952). The total catch divided by the cateh per boat month gives the
apparent intensity of fishing in terms of 1941 California boat-months.

In order to translate values of abundance, U, inta values of P we need
to evaluate the constant !/& in (2). To do this, we have referred to the
results of California tagging experiments from 1936 to 1943, from which it
appears that the average annual fishing mortality rate during that period
was about 43 percent (Clark and Jansen 1945} for the California fishery.
Using the average of the intensity of fishing in California, as given by

lark and Daugherty (1952), during the same period we have obtained
1/k. = 2,197 x 10* (for ' in tons per boat month and P in tons). Proceed-
ing as before (p. 33) we then estimated the equilibrium ecatch for each
season from 1934-35 to 1949-50. Fitting a curve of the form J(P) =
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—E—’,U{ L, — U) to the resulting data under a criterion of least squares (the
curve was fitted to the points for each season and not to the means of
several as in the halibut), Figure 9, we obtained

frB) = L2563 U (1385 — U)
where U is in tons per boat month and f(P) is in thousands of tons.
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Figure 9. Relationship between mean population and estimated equilib-
rium catch, California sardine.

In Figure 10 we have plotted successive values of F,, U for each sea-
son, the points being labeled by the first year of the pair for a season. We
have also drawn the estimated line of equilibrium conditions

F; = 1.253 (1385 — U")

It may be perceived that the main features of the changes in popula-
tion over this series of vears are in accordance with what we would expect
if they were determined by the amount of fishing, but that there are some
notable aberrancies attributable to other causes between 1938 and 1942,

During the first two vears of this series, the population is increasing,
the catches being less than the equilibrium catch. This is doubtless a result
of the curtailment of landings, and probably therefore of fishing effort,
during the immediately preceding years, as a result of the economic de-
pression (see Figures 1 and 6 of Schaefer, Sette and Marr). In other words,
there appears to have been temporarily an economically critical level some-
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where near 600 tons per boat month. From 1934 to 1937, the population
was declining, the decline being associated with catches above the equi-
librium ecatches for the corresponding population sizes, From 1938 to 1942,
the pattern is somewhat confused. During this period two things trans-
pired which may account for much of this: (1) There were unusually good
vear classes entering the fishery from the spawnings of 1938 and 1939
(Clark 1952, Clark and Daugherty, 1952), so that the population growth
was greater than would be expected from the average relation of popula-
tion size to growth of population. (2) The fishery was affected by some
restrictions and disturbances at the outbreak of the war. From 1942 to
1947, the population is again rather steadily declining, with the cateh above
the equilibrium catch. From 1947 to 1949, the catch is below the egui-
librium ecateh and the population is inereasing. In 1950 the population
again shows some decline, which is associated with a catch above the equi-
librium value. From this it would appear that there may be an economical-
Iy critical level near 150 tons per boat month, and if left to stabilize by
itself the fishery would tend to fluctuate about the corresponding population
size, at which the equilibrium ecatch is, on the average, about 232,000 tons
per vear.
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Figure 10. Relationship between intensity of fishing and mean population,
California sardine.



=4 SCHAEFER

The pattern of changes in the sardine population, then, over the period
for which data are available, appears to be in general consistent with the
hyvpothesis that one of the major causes of the changes has been the associ-
ated changes in the intensity of fishing. If the estimated line of equilibrium
conditions is correct for this population, the average maximum equilibrium
catch will be about 601 thousand tons at a population level corresponding
to 692 tons per boat month (a mean population of about 1,520,000 tons},
with a stabilized fishing intensity of 868 boat months per vear.

The foregoing examples illustrate how the theory developed here may
be emploved to make estimates concerning the condition of a commercial
marine fishery. The examples employed, although having perhaps as com-
plete information as any available for this purpose, leave something to be
desired. In particular, in both of these examples, very little or no data are
available concerning intensity of fishing and abundance for the early period
of development of the fishery, well before the maximum catches are

reached. A great deal of precision would be added to the estimate if such
information were available.

We may emphasize, therefore, the desirability of obtaining detailed
information on the total catch and catch-per-unit-of-effort from as early in
the development of a commercial fishery as may be possible. Measurements
of fishing mortality rates at more than one level of population would also
be desirable, since they would make possible verification of the adequacy
of the form of eguation (13a) for describing the changes in population
under the joint influences of growth and fishing.

In order to apply the theory developed here to the tropical tuna fish-
ery, it will be necessary to compile statistics of cateh, abundance and inten-
sity of fishing over a considerable series of yvears, beginning as early in the
history of the fishery as possible. This task is well under way. It will also
be necessary to obtain some estimate of the rate of Tishing mortality, or
to devise some other means of estimating the constant .. Estimation of
fishing mortality from tagging promises to be a difficult probilem for the
tunas. Exploration of other means of obtaining the relationship between
U and P appears, therefore, to constitute an important line of investigation.
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