INTER-AMERICAN TROPICAL TUNA COMMISSION
COMISION INTERAMERICANA DEL ATUN TROPICAL

3RD MEETING OF THE SCIENTIFIC WORKING GROUP

LA JOLLA, CALIFORNIA, USA

MAY 6-10, 2002

BACKGROUND PAPER A21
(DRAFT OF BACKGROUND PAPER TO BE SUBMITTED AT THE 69TH MEETING OF THE IATTC)

SAMPLING THE EASTERN PACIFIC OCEAN TUNA CATCH FOR
SPECIES COMPOSITION AND LENGTH-FREQUENCY DISTRIBUTIONS

PREPARED APRIL 2002
At the beginning of the year 2000, the Inter-American Tropical Tuna Commission (IATTC) changed the "standard" length-frequency sampling program (Tomlinson et al., 1992) to a joint species composition-length frequency sampling method (Tomlinson, 2002). In this brief report, the results for the year 2000 have been updated and the preliminary results for 2001 are given.

Three different estimates for each species are given in Table 1. With the standard method the catches of the three species were treated as known and three independent estimates ("standard") of the length frequencies were completed, one for each species. For the species composition method, only the combined catch of the three species was treated as a known and the species composition samples were used to estimate the catch for each species. These estimated catches, by species, were then used to estimate the length frequencies for each species. To obtain the confidence regions for the estimated catches from the species composition method, the sample data was resampled 1000 times, resulting in 1000 estimates for each of the catches. Since these 1000 estimates can be averaged, this results in two estimates of each catch value, one from the sampling model ("best") and one from the average of the 1000 estimates ("resample").

Of the six estimates (best) obtained by species composition sampling, the confidence regions of only two contain the standard catch within their region, the 2000 yellowfin and the 2001 skipjack. For both years, the bigeye catch estimated by the species composition method was significantly higher than the standard value.

Comparisons of the annual length frequency for each species, for each year, are shown in Figures 1 and 2. Except for the differences in total catch, the six length frequencies shown in Figures 1 and 2 do not show much difference. In other words, the two sampling models estimate the same relative frequency of occurrence by length.

LITERATURE CITED

TABLE 1. Estimated catches, in metric tons, of three species of tunas in the eastern Pacific Ocean during 2000 and 2001.

<table>
<thead>
<tr>
<th>Species</th>
<th>Standard method</th>
<th>Species composition method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellowfin</td>
<td>272,711 394,532</td>
<td>270,909 383,214</td>
</tr>
<tr>
<td>Skipjack</td>
<td>211,257 144,282</td>
<td>199,325 140,065</td>
</tr>
<tr>
<td>Bigeye</td>
<td>70,136 43,616</td>
<td>83,870 58,832</td>
</tr>
</tbody>
</table>