

Machine learning for characterization of tuna aggregations under drifting FADs from commercial echo sounder buoys data

Joint Tuna RFMOs Meeting (8-10 May 2019 – San Diego)

Y. Baidai, M.J. Amandé, D. Gaertner, L. Dagorn and M. Capello

Goal of the project

• To develop fisheries-independent indices of abundance for tropical tunas, using their associative behavior to floating objects

Objective of the study

- To have reliable biomass estimations from echo-sounder buoys
 - Presence/absence of tuna
 - Size of tuna aggregations

- Preliminary analyses evidenced that the biomass index computed by the internal buoy algorithm has very poor reliability (Baidai et al., 2017).
- M3i Buoy data and catch data in the AO & IO from the French fleet (2010-2017): 20 millions echosounder buoy data

Characterizing DFADs aggregation from Marine Instruments echosounder technology

Data recorded the day after the deployment

Acoustic samplings recorded **5 days after a virgin FAD deployment.**

Acoustic samplings recorded the day before DFADs visits without sets.

Set of **8336** acoustic data recorded under newly deployed DFADs and on DFADs visited but on which no fishing sets were performed

Characterizing DFADs aggregation from Marine Instruments echosounder technology

<u>Classification models :</u>

- Supervised learning based on **random forest algorithm** considering each ocean separately (Atlantic and Indian Oceans)
- Two types of classification models per ocean :
 - **Binary** : classification of presence or absence of tuna
 - > Multiclass : classification of size classes of tuna aggregations:
 - no tuna
 - less than 10 tons
 - between 10 and 25 tons
 - more than 25 tons

Characterizing DFADs aggregation from Marine Instruments echosounder technology

Acoustic data processing: The daily acoustic matrix

✓ **Step 1**: Reducing **time resolution**

Aggregation of the **layers into groups of homogeneous layers** (6 groups of layers) identified from **clustering analysis** carried out separately for Atlantic and Indian ocean.

	Atlantic	Indian
Accuracy (proportion of correctly predicted)	75%	85%

- > Ocean-specific classification skills :
 - o In Atlantic ocean :
 - Highly effective in detecting aggregations with tuna
 - $\circ~$ In Indian ocean :
 - Higher performance for recognition of acoustic patterns from non-tuna aggregations.

	Atlantic	Indian
Sensitivity (Ability to correctly identify positive instances, e.g. tuna presence)	82%	78%
Specificity (Ability to correctly identify negative instances, e.g. tuna absence)	67%	91%

	Atlantic	Indian
Accuracy (proportion of correctly predicted)	50%	45%

> Considerably less efficient than binary classifications (AO 75% - IO 85%)

ATLANTIC				
	No tuna	<10 tons	[10 , 25 tons]	> 25 tons
Sensitivity	0.66 (0.04)	0.40 (0.05)	0.28 (0.07)	0.37 (0.06)
Specificity	0.84 (0.02)	0.79 (0.02)	0.83 (0.02)	0.87 (0.03)
Precision	0.80 (0.03)	0.33 (0.03)	0.23 (0.05)	0.33 (0.05)

\succ In the Atlantic :

- The highest proportion of misclassifications are associated with tuna aggregations between 10 and 25 tons,
- Similar recognition performance for tuna aggregations below 10 tons, and above 25 tons.

INDIAN				
	No tuna	<10 tons	[10 , 25 tons]	> 25 tons
Sensitivity	0.88 (0.03)	0.19 (0.02)	0.23 (0.03)	0.51 (0.03)
Specificity	0.78 (0.01)	0.89 (0.01)	0.83 (0.01)	0.77 (0.01)
Precision	0.57 (0.01)	0.37 (0.04)	0.31 (0.03)	0.43 (0.02)

\succ In the Indian :

 Intermediate aggregation size classes (< 10 tons, and between 10 and 25 tons) represent the poorly classified classes.

Precision: Proportion of tuna presence correctly identified among presence predictions

Predictors importance in classification

Day time interval (h)

Cells represent combinations between depth layers and time periods. Shade indicates the relevance of the predictor in the classification.

> Mean Decrease Accuracy

> > 40

20

Mean Decrease

Accuracy

Day time interval (h)

50 25

Importance of depth layers and day period in presence/absence classification for the Atlantic (left) and Indian (right) oceans

Role of vertical behavior of tuna (different by ocean)

Daytime period = most relevant to characterize aggregations under DFADs

Importance of depth layers and day period in multiclass classification for the Atlantic (left) and Indian (right) oceans

Conclusions and perspective

- ✓ Accurate results for the assessment of presence/absence of tuna
- ✓ Easily adaptable and transferable to other buoy model
- ✓ IOTC-funded study to work with M₃i+ buoys (multifrequency)
- Milestones towards the use of echosounder buoy data to develop fisheries-independent indices of abundance for tropical tunas

Application example of presence/absence models :

Monthly average of proportion of DFADs with tuna per day and 5x5° squares (2014).

