Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

IATTC

YELLOWFIN TUNA STOCK ASSESSMENT: CONCEPTUAL MODEL AND EXPLORATORY ANALYSES Carolina Minte-Vera, Mark N. Maunder, Haikun Xu, Cleridy E. Lennert-Cody, Jon Lopes, Alexandre Aires-da-Silva, Daniel W. Fuller, Mitchell S. Lovell

1st External review of data used in stock assessments of tropical tuna in the eastern Pacific Ocean Oct 2-6 2023

- 1. Background
- 2. Update of the conceptual model for yellowfin tuna in the EPO
- 3. Dynamic discrimination of stocks
- 4. Future directions

SAC 10 – INF - F

SAC-14-06

Background

- 2019 assessment rejected too sensitive to the longline index of abundance
- Longline index and purse-seine indices had contradictory information
- Model misspecification due to spatial structure
- 2020 benchmark assessment used risk analysis approach

- The management quantities are sensitive to the inclusion of the 2018 data for the longline index of abundance.
- Inconsistencies between Japanese longline index and the dolphinassociated purse-seine index
- Changes in the length composition for the longline fishery

MSY and related quantities

	SAC 9 Base case	SAC 10 Base case	SAC 10 Base case	
YFT	Caso base	Caso base	except update LL_S	
MSY-RMS	264,283	254,975	254,872	
B _{MSY} - B _{RMS}	376,696	371,787	372,247	
S _{MSY} - S _{RMS}	3,634	3,638	3,642	
$B_{\rm MSY}/B_0$ - $B_{\rm RMS}/B_0$	0.31	0.31	0.31	
$S_{\rm MSY}/S_0$ - $S_{\rm RMS}/S_0$	0.27	0.27	0.27	
C _{recent} /MSY- C _{reciente} /RMS	0.85	1.00	1.00	
$B_{\rm recent}/B_{\rm MSY}$ - $B_{\rm reciente}/B_{\rm RMS}$	1.35	0.84	1.03	
$S_{\rm recent}/S_{\rm MSY}$ - $S_{\rm reciente}/S_{\rm RMS}$	1.08	0.76	0.99	
F multiplier-Multiplicador de				
F	0.99	0.89	1.00	

- Results driven by the update in the longline-based index of abundance
- The rest of the new (or updated) data:
 - \checkmark Do not show indication of increase in fishing mortality
 - ✓ Decline in biomass not so strong

Inconsistencies among indices

Inconsistencies among indices

Change in longline length composition

Hypotheses for index inconsistencies

- Change in fishing behavior (e.g. targeting) by the longline fishery
- Mis-specified growth
- Inadequate consideration of spatiotemporal correlations in the indices of abundance
- Spatial structure in the population

Model runs to investigate the hypotheses

- Change in fishing behavior (e.g. targeting) by the longline fishery Estimate change in selectivity and catchability in 2010
- Mis-specified growth
- Inadequate consideration of spatiotemporal correlations in the indices of abundance
- Spatial structure in the population

Change in fishing behavior

Model: Time-block in selectivity and catchability in 2010

Change in fishing behavior

Model: Time-block in selectivity and catchability in 2010

Model runs to investigate the hypotheses

- Change in fishing behavior (e.g. targeting) by the longline fishery Estimate change in selectivity and catchability in 2010
- Mis-specified growth

Estimate growth parameters

- Inadequate consideration of spatiotemporal correlations in the indices of abundance
- Spatial structure in the population

Mis-specified growth

Model runs to investigate the hypotheses

- Change in fishing behavior (e.g. targeting) by the longline fishery Estimate change in selectivity and catchability in 2010
- Mis-specified growth

Estimate growth parameters

• Inadequate consideration of spatiotemporal correlations in the indices of abundance

Use spatiotemporal model for dolphin associated indices

• Spatial structure in the population

Inadequate consideration of spatial structure in the indices of abundance

Standartization: Spatiotemporal model (Xu et al, 2019) "VAST"

Inadequate consideration of spatial structure in the indices of abundance

Model runs to investigate the hypotheses

- Change in fishing behavior (e.g. targeting) by the longline fishery Estimate change in selectivity and catchability in 2010
- Mis-specified growth

Estimate growth parameters

• Inadequate consideration of spatiotemporal correlations in the indices of abundance

Use spatiotemporal model for dolphin associated indices

• Spatial structure in the population

Not investigated

2020 Conceptual model for yellowfin tuna in the EPO

2020 Conceptual model for yellowfin tuna in the EPO

- Needed more research
- Assessment centered where the core of the catches are taken (Purse-seine index of abundance)

2020 Benchmark assessment: Fishery definitions

- High mixing hypothesis
- "Areas-as-fleets" approach
- 38 fisheries defined by gear, set type, area and quarter
- Areas and quarters grouped by similarity in the length frequency
- Floating object and longline fisheries are separated by quarter and area

(quarters 1 and 4, quarters 2 and 3)

2020 Benchmark assessment: Fishery definitions

PS-Discards

Data – catch (quarterly)

- **PS-DEL** (**N** and **S**) is the main fishery
- **PS-OBJ** has been increasing since 2015

Data – purse-seine catch by fishery (annual)

Data – size composition

Update of the conceptual model for yellowfin tuna in the EPO

Two stocks in the EPO (NE and SW)

- Stocks associated with epi and mesopelagic biogeochemical provinces
- Boundaries between NE and SW stocks are dynamic and depend on the movement of the water masses (which correlates with ENSO)

Evidence:

Genomic/ Molecular Larval distribution/ Reproductive biology Archival and conventional tagging Fisheries dynamic

Purse seine

Evidence: genomic/genetic data

Within each study, different color indicate genetically or genomically different, same color indicate similarity:

D D: Díaz-Jaimes and Uribe-Alcocer 2006

- **G G G:** Grewe et al 2015
- **P** P: Pecoraro et al 2018
- M M: Muñoz-Abril et al 2022
- WW: Ward et al 1997

- There may be:
 - several stocks of yellowfin tuna across the Pacific Ocean
 - 2 different stock in the EPO

Evidence: biological data

Tagging data is consistent with the conceptual model

IATTC tagging data

Tagging data is consistent with the conceptual model

WCPFC tagging data

Source: SPC data, prepared by Mathew Vincent (2019) at the IATTC staff request

Release longitude

Stocks associated with biogeochemical provinces

Epipelagic

(a)

Mesopelagic

Longhurst (1995) static provinces

Reygondeau et al (2013) dynamic provinces (b)

PNEC: North Pacific equatorial counter current PEQD: Pacific equatorial divergence NPTG: North Pacific Tropical gyre WARM: Western Pacific warm pool SPSG: South Pacific gyre

SSTC

average period January 1998 to December 2007.

Biogeochemical provinces are dynamic

(b)

- WARM pool expansion,
- Contraction of
- PNEC: North Pacific Equatorial Counter Current
- PEQD: Pacific Equatorial divergence

 WARN contraction,

La Nina

(June 1998 - March 2001)

PNEC, PEQD expansion

Principal component analysis on oceanographic variables

PC1: Gradient in water column structure

PC2: Gradient in sea Surface temperature

Principal component analysis on oceanographic variables

Principal component analysis on oceanographic variables

PC2

Gradient in sea Surface temperature

Tree analysis on length frequency using environmental gradients as explanatory variable

Floating objects set

Warm area (PC2 > -0.25)

gradient

Tree analysis

Longline size patterns

Stock separation

Catch distribution: dolphin sets

Catch distribution: longline sets

Quarter

Catch distribution: proportion by area

Average proportion of the catches (in weight for purseseine and in numbers for longline) from the NE and SE putative stocks and from the north area

Gear	Set type	NE	SW	Ν
Purse-seine	Dolphin	99%	1%	1%
	Unassociated	96%	2%	2%
	Floating Objects	83%	17%	0%
Longline		17%	79%	4%

Population trends

- At least two stocks of yellowfin tuna (NE,SW) in the EPO associated with biogeochemical provinces
- This conceptual model is supported by available information
- The boundary is dynamic
- The boundary was informed using environmental gradients and length composition data, this may be a viable technique to split the catches

Future directions

All catches Not fit to longline data

Remove catches from "SW population"

