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Key messages on the IATTC risk-analysis

e Assessments are uncertain and probability statements need to be evaluated
e Develop alternative hypotheses to address issues with assessment

e Hierarchical structure to represent hypotheses

e Combine probability distributions across models

e Model weighting based on a set of metrics to assign model probabilities (e.g.
diagnostics) not just fit (e.g. AlC)




Introduction: Why we need a risk-analysis

e Assessments are uncertain

e |ATTC HCR for tropical tunas (Resolution C-16-02) addresses uncertainty
through probability statements

= “if the probability that F will exceed the limit reference point (FLIMIT) is greater than 10%, as soon as is
practical management measures shall be established that have a probability of at least 50% of reducing
F to the target level (FMSY) or less, and a probability of less than 10% that F will exceed FLIMIT.”

e Evaluations

=  Current status relative to reference points

=  Status under different management scenarios

e Transition from single base-case assessment to set of reference models




Introduction: Main concept

e Arigorous statistical framework is not applicable

=  Multiple model assumptions are possible

= Stock assessment models are complex and highly parameterized
=  Models are misspecified

=  Process variation is ignored

= Data are not weighted appropriately

 Data should not be solely used to weight models




Introduction: Main features

1. Hypotheses developed to address issues

2. Hypotheses represented by stock assessment models

3. Hypotheses are grouped into a hierarchical framework
* Avoids any hypothesis dominating
» Facilitates model development and weight assignment

4. Sub-hypotheses represent models with parameters that cannot be reliably
estimated

5. Multiple metrics to evaluate plausibility of the hypotheses
6. Model fit only plays a limited role

7. Efficient approach to eliminate unlikely hypotheses



Introduction: 5 main steps

1.
2.
3.
4.
5.

Establishing a hierarchy of hypotheses and models

Define a weighting system for hypotheses and models

Calculate the probability distributions for quantities of interest for a model
Combine probability distributions across models

Present the results in the form of a risk analysis




1. Hierarchy of hypotheses and models
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e Level 1: Overarching hypotheses
=  Broad states of nature (e.g. the number of stocks)
= Represented by a variety of models and data
=  Not evaluated by fit to data

=  Expert opinion for weights



Risk
analysis
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e Level 2: Hypotheses

= Represented by a model
= Dividedinto sub-levels (A, B, ...) where each sub-level addresses an issue in the assessment

=  Sub-levels are typically used in combination to solve all the assessment issues

= Aidin assigning weights
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2. Defining a weighting system for hypotheses and models

a) Establish weight categories

b) Select weight metrics

c) Assign weights and rescale to be used in a probabilistic framework

d) Ensure the number of hypotheses is practical




Weighting system: weight categories

 Weighting is subjective
e Use general weight categories

e Assign each category a numeric value

Weight Value
Category

None:

Low:

Medium:
High:




Weighting system: Weight metrigssss

e WH(Expert): Assigned “a-priori”, without consideration of model fit
e W/(Convergence): Model convergence criteria of the estimation algorithm
e W(Fit): Fit of model to data

 W(Plausible parameters): Plausibility of estimates of parameters representing
the hypothesis

 W(Plausible results): Plausibility of model results

 W/(Diagnostics): Reliability of the model based on diagnostics




Weighting system: Diagnostics

e W(ASPM, RO, Catch curve)
 W/(Retrospective analysis)
e W(Composition residuals)
e W(Index residuals)

e W(Recruitment residuals)




Calculating probability distributions for quantMerest for a model

e Normal approximations based on the estimate and standard error

e Some standard errors are approximated

e The resulting distribution is rescaled to obtain P(Quantity | Model=m).
e Works well when the data is very informative

e Probability distribution may be asymmetrical

e Posteriors derived from limited MCMC analyses used to evaluate
appropriateness of the approximation




Presenting the results in the formwefarisk analysis

* Plot distributions by components (e.g. hypotheses at level 2A and 2B)

 Cumulative density functions (CDFs) can be used to determine the
probability of exceeding the reference points.

e Decision tables

=  Qutcome of specific management action under different states of nature.

= The states of nature could be the individual models, combinations of models, or a derived quantity (e.g.
biomass).

= The probability of each state of nature is also included

e Risk curves

=  Probability of outcome versus management action




Application: bigeye tuna

 Conducted in Stock Synthesis
 Many fisheries
e CPUE and length composition data

* Overarching hypothesis: is regime shift in recruitment when fishery on
juveniles expanded real

* |Issues
A. Regime shift
B. Misfit to large fish in composition data from asymptotic fishery

* Panel of experts that subjectively assign weights




Flow chart for bigeye tuna
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probability distributions.relative to RPs
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e Develop alternative hypotheses to address issues with assessment

e Hierarchical structure to represent hypotheses

e Model weighting based on a set of metrics to assign model probabilities (e.g.
diagnostics) not just fit (e.g. AlC)
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Weighting system: Assigning andsresealing weights

e When should the weights be rescaled to sum to one

= Levell
= Rescale across all overarching hypotheses
= Weights will then be multiplied by the weights from the other levels.
= Level2
=  Rescale within each sub-level (e.g. A, B, ...) within a branch of the hierarchy
= Exception is model fit with different or down-weighted data.
= Rescale within groups of models with the same data
= Level3

=  Rescale to sum to one within a branch of the hierarchy (i.e. for a given Level 2 hypothesis).




Weighting system: Assigning andsresealing weights

e How to assign the weights for a specific model relative to the other models

Level 1
=  W(Expert) relative to all overarching hypotheses.
Level 2

=  W(convergence), W(Plausible parameters), W(Plausible results) and W(Diagnostics) relative to all
models and hypotheses.

= W(Fit) relative to models that use the same data independent of branches in the hierarchy

=  W(Expert) relative to models in the same branch of the hierarchy (e.g. assuming a Level 1
overarching hypothesis is true).

Level 3

= Relative to models in the same branch of the hierarchy (i.e. for a given Level 2 hypothesis).
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Combining probability distributionssaeross models

a) Determine the weight of each model: W(model)
b) Rescale the values from (a): “P(Model = m)”

c) Calculate the probability of the quantity of interest for each model, rescaled
so that they sum to one: P(Quantity | Model=m).

d) Multiply (b) and (c) for each model in the collection and sum across models:
P(Quantity).

e) Evaluate (d) for all management quantities.

P(Quantity) = z P(Quantity|Model = m)P(Model = m)
me{Models }




Weighting system: W(“Empirical’selectivity)

e Compares “Empirical” selectivity with estimated selectivity

e “Empirical” is the catch at length in numbers divided by the estimated
abundance at length in numbers

e Focusses on larger fish which are more influential

08 Fixgrowth
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Other presentations and documents=

1. Identify alternative hypotheses
= YFT: SAC-11-J; BET: SAC-11 INF-F

2. Implement stock assessment models representing alternative hypotheses
= YFT: SAC-11-07; BET: SAC-11-06

3. Assign relative weights to each hypothesis (model)
= YFT: SAC-11 INF-J; BET: SAC-11 INF-F

4. Compute combined probability distributions for management quantities
= SAC-11-08

Documents
https://www.iattc.org/Meetings/Meetings2020/SAC-11/IATTC%20Scientific%20Meeting%20and%20Working%20Groups%202020ENG.htm
Presentations

https://www.youtube.com/plavlist?list=PLKeH-azh54PV{bUDbePSLcZvIozGXSHRa



https://www.iattc.org/Meetings/Meetings2020/SAC-11/IATTC%20Scientific%20Meeting%20and%20Working%20Groups%202020ENG.htm
https://www.youtube.com/playlist?list=PLKeH-azh54PVfbUDbePSLcZvIozGXSHRa

Discussion —

e Are we doing ensemble modelling or just model development/selection?
e Need more objective and transparent scoring

e Other diagnostics

e Posterior predictive checks and Frequentist equivalents

e One-step-ahead predictions

e \We use data for parameter uncertainty but diagnostics for model uncertainty




Introduction: Assessment uncertainty-

e Parameter uncertainty

=  Standard practice in stock assessment

=  Confidence intervals on quantities of interest

e Model structure uncertainty
=  Sensitivity analysis
= Multiple models
=  Combine models

=  Model weights

e Uncertainty about the future (e.g. process variation)

= E.g. recruitment variation
= Notimplemented yet

= Can’t evaluate biomass reference points




Presenting results: Decision tables
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Presenting results: Decision tables

Model, group of models, derived quantity

Probability

Catch, Biomass, P(F>F; 1)
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Presenting results: IATTC Risk curvessand-decision tables

* Outcome of different levels of fishery closures

 Assumes fishing mortality is proportional to the days the fishery is open

e 365 - days of closure
* Adjusted for changes in fishing capacity and the Corralito
* P(F>Fy) and P(F>F 1)

* Need to do projections for spawning biomass so not provided




BET: Risk curves for exceeding F
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BET: Decision table

Closure days Env—Fix|Enu—Gm|Enu—5Q Env—Mrt|5_r_t_—Fix|5_r_t_—Gm| Sd—SEI|Sn—Mn|Mnu| Gm| Sel | Mrt (Comb
P(model) 0.01 0.13 0.05 0.02 004 022 0.11 0.07 0.01 0.24 0.09 0.02

P(F>Fmsy) Probability £50% =50%
0 1.00 0.48 0.78 098 1.00 1.00 0.99 1.00 0.47 0.09 0.31 0.65| 0.62

36 1.00 0.32 0.63 093 1.00 099 0.97 1.00 0.30 0.03 0.17 0.45| 0.56

0 1.00 0.19 0.44 084 1.00 0597 092 099 0.150.01 0.07 0.25] 0.50

12 1.00 0.18 0.43 083 1.00 096 091 0.98 0.14 0.01 0.06 0.24| 0.49

88 1.00 0.13 0.35 075 100 09593 0387 097009000004 017 046

100 1.00 0.09 0.28 067 100 088 081 0950.060.00002 0.11] 043
P(F>Fuair) Probability £10% =10%
0 0.97 0.00 0.04 0.17 089 039 0.37 0.570.000.000.00 0.007 021

36 0.79 0.00 0.01 0.06 067 019 018 0.33 0.000.000.00 0.00] 0.12

70 0.33 0.00 0.00 001 038 007 006 0.14 0.00 0.00 0.00 0.00] 0.05

72 0.30 0.00 0.00 001 036 006 0.06 0.13 0.000.000.00 0.00] 0.05

88 0.11 0.00 0.00 0.00 0.25 0.02 0.03 0.08 0.00 0.00 0.00 0.00( 0.03

100 0.04 0.00 0.00 0.00 0.17 002 0.02 0.04 0.000.000.00 0.00] 0.02




Weighting system: Reducing the-number of models

e All model combinations is impractical
e Some diagnostics are computationally intensive
e Metrics assigned zero eliminate a model

e Eliminating groups of models

= Define a “base” model
= The base model is the simpler model
= |f base model is eliminated, then the other models derived from this model are also eliminated

= Need to consider the reason for the elimination because other models may correct for the reason the
base model was eliminated




1. Hierarchy of hypotheses and meoedels

e Level 1: Overarching hypotheses
=  Broad states of nature (e.g. the number of stocks)
= Represented by a variety of models and data
= Not evaluated by fit to data

=  Expert opinion for weights

e Level 2: Hypotheses
= Represented by a model
= Divided into sub-levels (A, B, ...) where each sub-level addresses an issue in the assessment
=  Sub-levels are typically used in combination to solve all the assessment issues

= Aid in assigning weights




Introduction - Hierarchy of hypotheses and models

e Level 3: Sub-hypotheses
=  Evaluated differently

=  Avoid the influence of data
=  Reduce the number of analyses
= Convenience
= Typically encompassed by a single hypothesis

= Can be represented by restricting a model (e.g. fixing the value of a parameter, such as steepness)

= Applied to most, if not all, models on Level 2.




2. Defining a weighting system for hﬁb?heses and models




Weighting system: W(Fit)

e Does not use standard AIC rules
e W(Fit) = Low + (High - Low) x (1- [A AIC / max(A AIC)])
e Needs same data and same data weighting

e For models with data specific to a parameter (e.g. age at length data for
growth), calculate AIC without those data

e Otherwise, models with different data evaluated separately

e Modelled process variability brings additional complications




e |Introduction

e Hierarchy of hypotheses and models

e Weighting system

e Probability distributions for quantities of interest
e Combining probability distributions across models
e Presenting results

e Summary




Summary ——

e Assessments are uncertain

e |ATTC HCR for tropical tunas (Resolution C-16-02) addresses uncertainty
through probability statements

e Transition from single base-case assessment to set of reference models
e Hierarchy of hypotheses to define models

e Rigorous statistical framework is not applicable

e Set of metrics to assign model probabilities

e Decision table to present outcome of alternative management actions




