

Electronic Monitoring Advancements in the Eastern Pacific Ocean

Developing baseline EM technical standards on longline and small class purse seine vessels, and mobilizing edge AI technology in electronic monitoring footage review.

Presentation agenda

1. Electronic Monitoring Pilot on Small Class Purse Seine Vessels in Ecuador (ECUAVESSEL / G.DEGFER)

Project objective: to develop a baseline EM Technical Standard for Small Class PS in the Eastern Pacific Ocean (EPO).

2. Pilot Plan for On-Board Monitoring (human and electronic) (INCOPESCA)

 Project objective: to develop an onboard monitoring plan (human and electronic) with a baseline EM Technical Standard for Longline vessels in the EPO.

3. Edge AI EM research on Costa Rica Longline (TNC)

Project objective: developed and deployed an Al-powered system that analyzes electronic monitoring (EM) footage of longline fishing activity
directly onboard vessels, delivering near real-time insights that significantly enhance fisheries transparency.

4. Benefits of EM (TNC)

Discussing the benefits of EM and possible recommendations to the EMWG.

Electronic Monitoring Pilot on Small Class Purse Seine Vessels in Ecuador

Alvaro Teran (TNC) and Luis Neira (EcuaVessel)

Partners:

Vessels:


- 3 Purse Seiners (32, 44 and 46 meters in lenght)

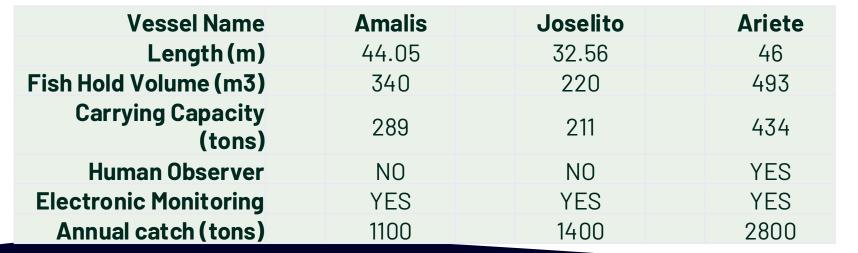
Pilot Goals:

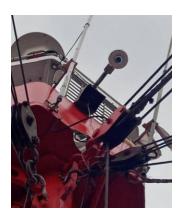
- To compare quality and effectiveness EM data vs HO data on 1 PS
- To develop EM Technical standards for this category of PS

Project Status:

- EM hardware installed on 3 vessels (1.5 years of data collected)
- Project is increasing its scope:
 - FAD characterization and ID
 - Shark BHP verified by EM

Aligned with IATTC Standards


The Vessels and their hardware (Satlink)



Direct Benefits: MSC Certification and VOSI List

/essel Name	‡	UVI Number	UVI Type	FAD buoy position data	FAD echosounder	Electronic Monitoring	In a FIP?	In an ITM?	In an MSC- Certified Fishery?	Initiative Type	Initiative Name
j JOSELITO		8212415	IMO#	⊘	⊘	Ø			Ø	MSC-certified	Eastern Pacific Ecuador Purse Seine Tropical Tuna Fishery (FSC and FAD set fishery)
/essel Name	‡	↓ UVI Number	UVI Type	FAD buoy position data	FAD echosounder	Electronic Monitoring	↑ ▼ In a FIP?	In an ITM?	In an MSC- Certified Fishery?	Initiative Type	Initiative Name
i AMALIS		8800808	IMO#	Ø	Ø	Ø			Ø	MSC-certified	Eastern Pacific Ecuador Purse Seine Tropical Tuna Fishery (FSC and FAD set fishery)
/essel Name	*	↓ UVI Number	UVI Type	FAD buoy position data	FAD echosounder	Electronic Monitoring		In an ITM?	In an MSC- Certified Fishery?	Initiative Type	Initiative Name
ARIETE		9212280	IMO#	Ø	Ø	⊘			Ø	MSC-certified	Eastern Pacific Ecuador Purse Seine Tropical Tuna Fishery (FSC and FAD set fishery)

Pilot Plan for On-Board Monitoring (human and electronic) Costa Rica

Jose Miguel Carvajal

August 2025

Partners:

Vessel:

- 1 longliner (22mts)

Pilot Goals:

- To compare quality and effectiveness EM data vs HO data
- To develop EM Technical standards for this category of LL

Project Status:

- EM hardware installed on vessels (4 months of data collected)
- Human Observer data collected an in process of digitalization
- 1st Project meeting being organized for October 2025

Aligned with IATTC Standards

Human Observer data

Data of travel: March to May, 2025 Number of fishing days: 93 days

Effective fishing days: 52.7 days

Number of sets: 31 sets

Retained catch

Mahi-mahi (<i>C. hippurus</i>)
Swordfish (X. gladius)
Blue marlin(M. nigricans)
Striped marlin (K. audax)
Blue shark (P. glauca)
Silky shark (C. falciformis)
Bull shark (C. leucas)
Bigeye thresher shark (A. superciliosus)
Pelagic thresher Shark (A. pelagicus)
Indo-Pacific sailfish (I. platypterus)
Wahoo (A. solandri)
YFT (T. albacares)

Catch released or not retained

Dolphin unidentified (Delphinidae)

Manta rays (Mobula spp)

Giant manta (Mobula birostris)

Oceanic whitetip shark (C. longimanus)

Longtail stingray (Hypanus longus)

Smooth hammerhead shark (S. zygaena)

Scalloped shark (S. lewini)

Olive ridley turtle (L. olivacea)

Black/Green turtle (C. mydas agassizii)

Electronic Monitoring Data and Review Framework

Trip #1: March to May, 2025

Number of fishing days: 93 days Effective fishing days: 52.7 days

Number of sets: 31 sets

Review done by Bureau Veritas:

- Vessel has 3 cameras on board
- 100% of fishing operations
- Review components:
 - Set and haul (date, lat&long, duration)
 - Catch and discard data (species data, fate, condition, BHPractices, measurements, hook type, sex and comments).

Advancing Industrial Fisheries Innovation:

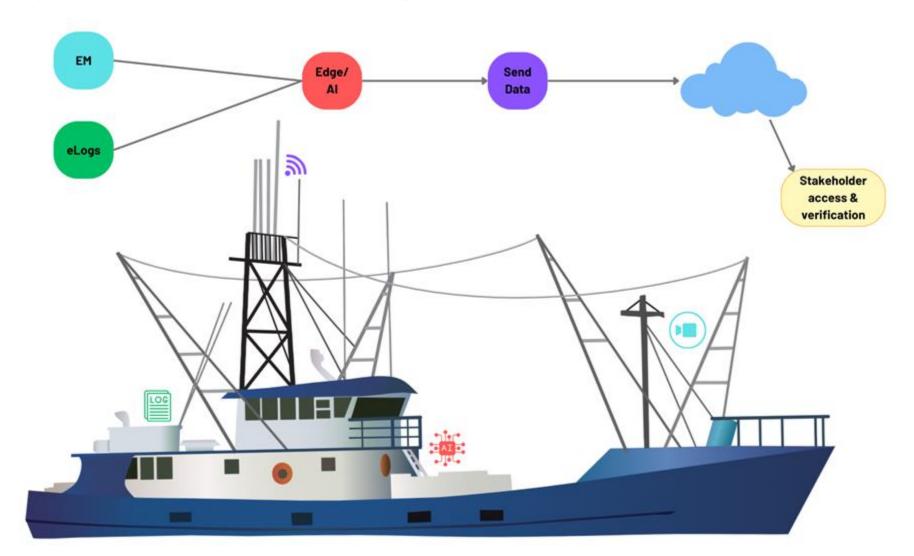
Mobilizing edge Al technology in electronic monitoring footage review

Presenters: Alvaro Teran and Vienna Saccomanno (TNC)

Partners: FSP, INCOPESCA, Tryolabs, Thalos, Deckhand, CVAT, and Bureau Veritas

Innovative Tech Solution

- Compatible with IATTC EMS Interim Minimum Standards
- Better technology is needed to flag possible IUU fishing activity in EM footage before vessels return to port
- Edge computation refers to the deployment of AI
 models directly on local computer processors
 close to where data gets collected (i.e., on vessels)
- Edge enables real-time EM footage processing and analysis without reliance on cloud or shore-based infrastructure.



TNC's Edge Al Objective

We aim to develop a repeatable, edge-based EM footage review system that provides near real-time, verified information on the sustainability of a vessel's catch before products enter global supply chains.

Edge proof-of-concept visual

Al Model & Model Components

YOLO 11m Object Detection Framework

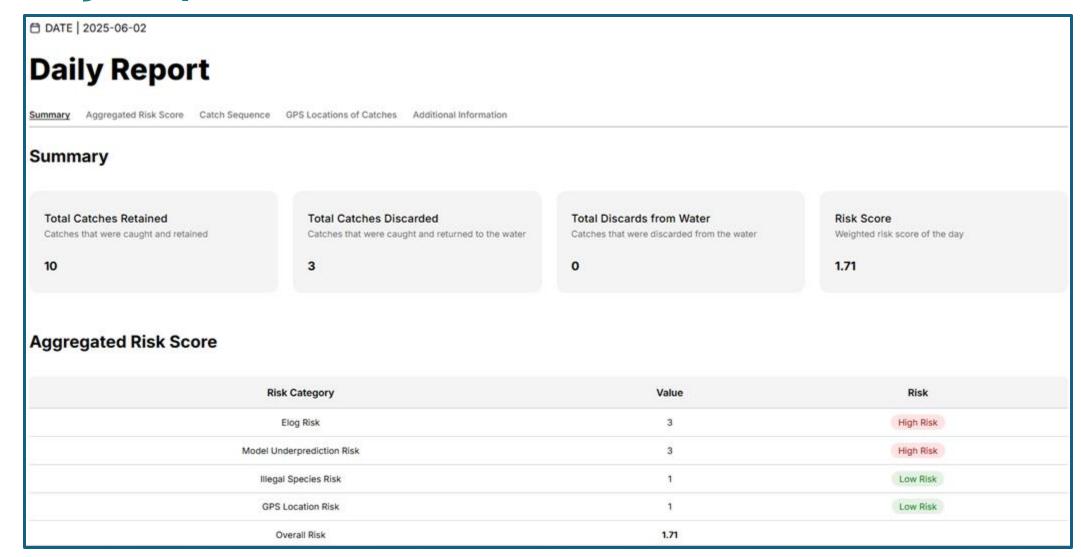
Model Performance

			Count								
Icon	Class	Event	GT	Pred	TP	FP	FN	Precision	Recall	f1-score	Error
⊘	CATCH	IN	140	142	132	10	8	93%	94%	94%	1%
⊘ √	CATCH	WATER DISCARDS	33	46	20	26	13	43%	61%	51%	39%
<	CATCH	VESSEL DISCARDS	5	15	2	13	3	13%	40%	20%	100%
< ∢	CATCH	RETAINED	135	127							5%

GT = groundtruth count from EM analyst

Pred = model's predicted catch count

TP = count of model's true positive predictions


FP = count of model's false positive predictions (i.e. counted a fish that wasn't there)

FN = count of model's false negative predictions (i.e. missed a fish that was there)

Daily Report & Risk Profile

Daily Report & Risk Profile

Catch Sequence Export Table to CSV Export Evidence Frames											
Species	Event Type ①	Confidence ①	Time	Evidence							
≪ Yellowfin tuna □	IN	80%	04:22:34								
≪ Yellowfin tuna ①	IN	84%	05:00:31								
	IN	23%	05:28:59								

Benefits of EM

100% Continuous Coverage In most fisheries, human observers are deployed on a portion of fishing trips. A boat with EM has cameras running nonstop – deterring IUU and other illicit activities.

Better, Verified, And Timely Data More and improved data helps scientists and fisheries managers better understand the status of fish stocks, assess the impact of fishing activities on bycatch, and monitor the effects of climate change on fisheries.

Cost Effective

Ex. To install EM systems on all EU vessels >10m(18,735 vessels) and complete 10% data review, cost is \$111 million/yr - compared to \$743 million/yr. for the same coverage with the human observer program.

Market Access

Help fisheries secure certificates (MSC, FIP) or import control requirements by demonstrating compliance with management measures, monitoring and data collection requirements, and other obligations

Drive Compliance

Following the passing of the 2018 Discard and Bycatch Law, EM was attributed with helping to reduce the discard rate from 35% to less 1% in the Chilean hake fishery in 3 years.

Reduce Supply Chain Risks Increase confidence to both businesses and consumers that seafood products have been harvested legally, sustainably and without labor abuses.

Thank you/Gracias!