

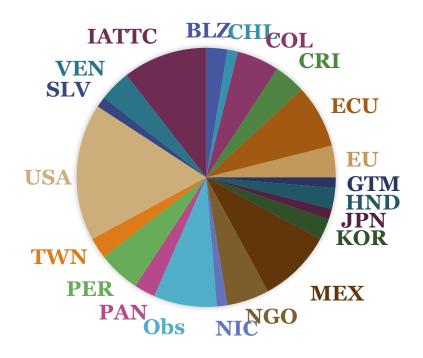
Overview of MSE for tropical tunas at IATTC, recap of previous MSE workshops

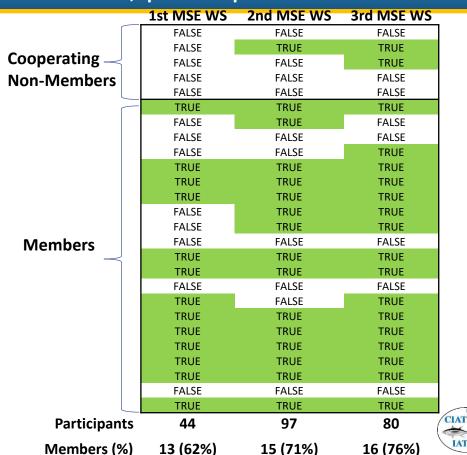
Juan L. Valero, Mark N. Maunder, Haikun Xu, Alexandre Aires-da-Silva

EPO tropical tuna Management Strategy Evaluation

- Tropical Tuna Harvest Control Rules (Resolution C-16-02, Resolution C-23-06)
- "...management strategy evaluation (MSE) is necessary to evaluate the HCR; and alternative HCRs should be considered that include hard and soft limit reference points, that use reference points based on biomass, and that establish well-defined scientific management recommendations"
- Workshops Terms of Reference (Resolution C-19-07)
- •SAC Recs. supported staff's MSE workplan
- •5-year IATTC staff MSE Workplan (<u>SAC-12-01</u>)
- •Intro HS workshops (2015-2019), 4 IATTC MSE workshops (2019-2025) (wsmse-1; wsmse-2; wsmse-3; wsmse-4)
- •2021-2023 MSE funding from the European Union
 - Two components:
 - Consultative/dialogue process (e.g. series of MSE workshops)
 - Technical implementation of MSE
- •2024 new permanent harvest strategy IATTC staff position, securing MSE work

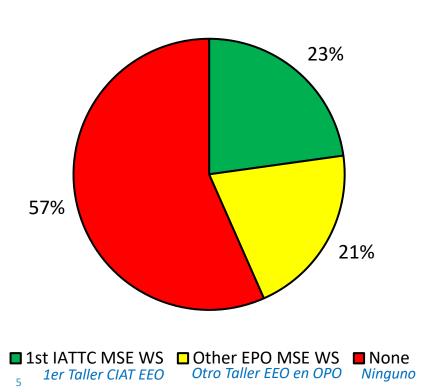
Online




MSE dialogue and stakeholder input

- •Training and enhancing dialogue / communication among scientists, managers, and other stakeholders regarding harvest strategies and the MSE process
- •Input and feedback on important elements to use in the MSE process
- •Intro Harvest Strategy workshops and MSE workshops
- •Requests by stakeholders for the establishment of a dedicated dialogue Working Group (WG), to enhance or replace the MSE workshops.
- •Recommendations from SAC-14 and from staff in SAC-15 for the Commission consider a Science-Management Dialogue (SMDWG) or informal workshops approach to continue the MSE process.
- •Resolution C-24-08: creation of an *ad hoc* Working Group to strengthen the dialogue among scientists, managers and other stakeholders on Management Strategy Evaluation (meeting on May 31, 2025)

3rd IATTC Tropical Tuna MSE Workshop, December 2022, participants 3er Taller CIAT sobre EEO, Diciembre 2022, participantes


80 participants / participantes



Participation in previous EPO tropical tuna MSE workshops Participación en talleres previos de EEO de atunes tropicales en el OPO

2nd Workshop / 2^{do} Taller

3rd Workshop / 3^{er} Taller

Objectives, quantities, performance indicators

OBJECTIVE	Quantity	Performance Indicators	
Safety Maintain stock above limit reference points	Equilibrium virgin spawning biomass SB ₀ • < 10% probability SB below 7.7% of SB ₀ • < 5% probability SB below 7.7% of SB ₀ < 10% P SB < SBmsy Flim (< 5% P F > Fmsy)	Ratio of SB_{yr} over SB_0 Probability calculated over projected 30 years (All years, any year by replicates)	
Status Maintain stock in green quadrant of Kobe plot	SB≧ dynamic SB _{MSY} and F <f<sub>MSY • 60% probability • 75% probability</f<sub>	% of simulated runs falling in Kobe's green quadrant Probability calculated over projected 30 years	
Stability Maintain low variability of catch and effort limits, gradual changes in management measures. Caps at 10% (effort), 15% (catch)	Standard deviation of annual catch, effort Average interannual proportional change (catch, effort)	% change in catch and/or effort between years Calculated over projected 3, 15 and 30 years	
Yield/Abundance Maintain catches/effort/CPUE above historical ranges	 Average catch/effort/CPUE by fishery (PS and LL) 1994-2019 (since FAD expansion) 2017-2019 (latest status quo) 	Ratio of projected 3, 15 and 30-year average catch/effort/CPUE by fishery over historical period	
Status quo Maintain the stock at levels near the (2017-2019) status quo	Spawning biomass, Index (LL CPUE)	Ratio of projected 3, 15 and 30-year average SB, Index (LL CPUE) over status quo period (2017-2019)	

Objectives, Ref. points, Probabilities, Timelines

		, , , , , , , , , , , , , , , , , , , ,	(Working table from <u>WSMSE-05-01</u>)
Objective from WS	Conditions	Interpreted from IATTC instruments	Workshop discussions
Safety	Define LRP(s)	Resolution C-23-06	P(S< S _{7.7%}) <= 10% or 5%
Maintain above LRP	Define probability	P(S< S _{7.7%}) <= 10%	$P(S < S_{MSY}) <= 10\% \text{ or } 5\%$
	Define timeline	P(F> F _{7.7%}) <= 10%	$P(F>F_{MSY}) \le 5\%$
	Reduce F before LRP		Timeline: Over 20 or 30 years
Status	Define TRP(s)	Antigua Convention	P(S>dS _{MSY}) >= 50%, 60%, 70%, 75% or 80%
Maintain stock in green quadrant	Define probability	$S >= S_{MSY}$	$P(F < F_{MSY}) >= 50\%, 60\%, 70\%, 75\% \text{ or } 80\%$
of Kobe plot	$F_{\text{max}} \ll F_{\text{target}}$	$F \leftarrow F_{MSY}$ (implied)	F _{40%} , F _{45%}

 $S_{\text{control}} << S_{\text{target}}$

management changes

Limits on

Stability

measures Yield

ranges

Effort

ranges

Abundance/CPUE

Low variability, catch, effort

Gradual changes in management

Maintain catches above historical

Maintain effort above historical

Maintain above historical ranges

 $F \leq F_{MSY}$ (implied)

Resolution C-23-06 F_{MSY} Skipjack F_{30%}

Resolution C-24-01

Eliminate Corralito

Resolution C-21-04 (IVT) Decrease for BET in PS

Increase PS OBJ (for other species)

Average 1994-2019 (since FAD expansion)

Average

Average

 $dS_{40\%}$

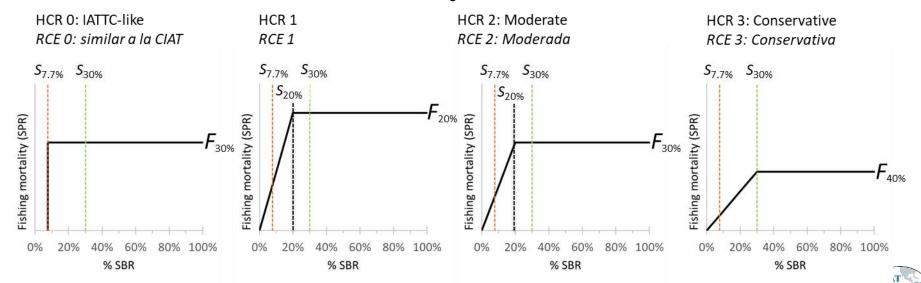
Effort 10% change cap

Catch 15% or 20% change cap

Relative to other historical levels (maximize yield)

2017-2019 (latest status quo)

1994-2019 (since FAD expansion) 2017-2019 (latest status quo)


Relative to other historical levels (maximize vield)

1994-2019 (since FAD expansion) 2017-2019 (latest status quo)

Management Model / Modelo de Ordenación

-Model-based Harvest Control Rules, based on surplus production model (ASPM-R, ASPM-R+)

-Evolving staff view on Target Reference Points for tropical tunas (SAC-15-05), from MSY-based quantities to MSY proxies $(0.3B_0)$

8

Individual HS elements, harvest control rules (HCR) (Working table from WSMSE-05-01)

Component of HCR	Staff	Workshops	Options
F _{max}	F _{30%}	F _{20%} , F _{30%} , F _{40%} , F _{45%} , F _{MSY}	
S _{control}	S _{20%}	S _{7.7%} , S _{20%} , S _{30%} , S _{40%} , S _{MSY}	
S _{F=0}	0		
S _{fmin}	NA		
F _{min}	NA		
EM	ASPM-Rdev+ Base reference 2024 / Gear- aggregated SAM		

Candidate HS: combining HS elements, HCR, EM, Data (Working table from WSMSE-05-01)

Component of HCR	Staff	Candidate 1	Candidate 2	Candidate 3	Candidate 4	Candidate 5	Candidate
F_{max}	F _{30%}						
S _{Control}	S _{20%}						
$S_{F=0}$	0						
S_{Fmin}	NA						
F_{\min}	NA						
EM							
Model type	ASPM-						
	Rdev+						
Model	Base						
	reference						
	2024						
Data	Catch,						
	CPUE, LF						
	index + LL						

Challenges / Desafíos

- **COVID-19 pandemic** / *Pandemia de COVID-19*Limitations of virtual workshops, changes to workplan timeline
 - Inhabilidad de tener talleres en persona, cambios en el cronograma de trabajo
- Limited-representation by some CPCs, high turnover of representatives Representación limitada de algunas CPCs, alto recambio de representantes
- Multiple extraordinary meetings during 2020-2021
 Múltiples reuniones extraordinaries durante 2020-2021
- Some challenges expected to ameliorate/Algunos desafíos se espera que mejoren
 - End of COVID pandemic
 - Full time harvest strategies position at staff since January 2024
 - 2024 BET assessment resolved structural issues of previous BET assessments, new OMs to update MSE should result in a better strategy being selected
 - Resolution C-24-08: ad hoc Working Group on MSE (May 31, 2025)

IATTC BET MSE focus of work at the onset

- Recent large changes in the modeling of BET in the EPO
 - 2020 benchmark BET assessment issues (bimodal results, recruitment shift)
 - Review of data and modelling for tropical tuna assessments (Oct-Nov 2023)
 - Substantial changes and improvements on modelling for BET assessment (2024)
- Revisiting Tropical Tuna reference points (<u>SAC-15-05</u>)
- Staff proposed candidate harvest strategy for BET (<u>SAC-16-06</u>)
- Continue technical work on BET MSE
 - Incorporate stakeholder feedback between preliminary runs and final runs
- Finalize BET MSE and plan to present results during 2025 / 2026
- Move onto the other tropical tuna MSE

Beyond bigeye tuna MSE

- EPO tropical tuna fisheries have multispecies (BET, YFT, SKJ), multi-gear (PS, LL) and fishing modes (FAD, Dolphin, NOA) present several challenges:
 - More difficult to simulate and evaluate
 - Different objectives for different fisheries?
 - Weak-stock management? Or 3 species individually? or two species?
- Very few truly multispecies MSEs in the world, focus on gear interactions
- Need to plan, part of the next 5-year IATTC Scientific Strategic plan (SAC-16-07)

	Species	2026	2027	2028	2029	2030
Stock Assessments	BET	Update	Benchmark			Benchmark
	YFT		Update		Benchmark	
	SKJ			Exploratory	Benchmark	
MSE	BET	Finalize				
	YFT	Start		Finalize		
	SKJ				Start	Finalize

Harvest strategy Chronogram for EPO tropical tunas

Questions? / ¿Preguntas?

