### STATUS OF BIGEYE TUNA IN THE EASTERN PACIFIC OCEAN IN 2012

### January 1975 – December 2012



### Outline



- Stock assessment (base case model)
  - Fishery data updates
  - Model assumptions (biology, <u>data weighting</u>)
  - Results (fishing mortality, recruitment, biomasses)
  - Stock status (base case)
  - Population projections (*status quo*, F<sub>MSY</sub>, and effect of resolutions)
  - Retrospective analysis
  - Comparison to previous assessment
- Sensitivity analyses
- Conclusions



### Overview of assessment model

- Age-structured, statistical, catch-at-length model (Stock Synthesis – Version 3)
- Integrated analysis
- Same type of model as MULTIFAN-CL, A-SCALA and CASAL





- Catches
- Fishery definitions
- Discards
- Fishing effort
- Catch-per-unit-effort (CPUE)
- Size compositions



### New or updated data



- Surface fisheries
  - Catch, CPUE and size-frequency data updated to include new data for 2012 and revised data for earlier years
- Longline fisheries
  - New or updated longline catch data: China (2009 and 2011), Chinese Taipei (2009-2011), Japan (2009-2011), Korea (2011), US (2010-2011), and Vanuatu (2005-2011)
  - 2012 longline catch data available from monthly reports: China, Chinese Taipei, Japan, Korea and Vanuatu
  - New or updated CPUE data available for Japan (2009-2011)
  - New or updated longline size-frequency for Japan (2006-2011)



### Total catches





# Catch proportions by fishery



#### Fishery data

### Spatial distribution of PS catches



Annual distribution of BET PS catches, 2012



### Spatial distribution of LL catches



### **BET fishery definitions**







GEAR TYPE: PS, LP, LL PS set type (OBJ, NOA and DOL) Time period The IATTC sampling areas

DEL – sets on dolphins NOA – sets on unassociated fish OBJ – sets on floating objects LL – longline sets



## Annual catches by fishery



Year-año

**Fishery data** 

### Discards





Year-año

**Fishery data** 

IATTC

## Fishing effort



Year-año

### Nominal longline effort



Year



#### **Fishery data**

### Catch-per-unit effort (CPUE)





Year-año

1.0 -0.5 -

0.0

1980

1990

2010

2000

### Longline standardized CPUE



### Length compositions – OBJ transition





### Length compositions – OBJ fisheries «



### Medium

Small



Length compositions – LL





Length compositions – LL (cont.)





## Model assumptions (base case)

- Stock structure
- Biology (growth, natural mortality and maturity)
- Stock-recruitment relationship (S-R)



## Model assumptions



- Improved after External Review in May 2010 and recent diagnostics work (R<sub>0</sub> profile)
- Fishery definitions: 23 fisheries
- Data weighting:
  - Down-weighting size composition data of all fisheries
  - Fit to Central and Southern LL CPUE series (CV=0.15), no fit to purse seine CPUE
- Growth modeling: New growth curve estimated externally, L<sub>2</sub> and variance of length-at-age fixed
- Modeling of catchability and selectivity:
  - Two time blocks for all LL fisheries (split at 1990)
  - Early dome, late asymptotic selectivities



### BET stock structure



- Minimal net movement of fish between the EPO and WCPO
- Single stock of bigeye in EPO
- Pacific-wide collaborative assessment with SPC and sensitivity analysis extending the western boundary of stock to 170°E
- See update on results from collaborative tagging program with SPC in the CPO



Age and growth – Previous assessment

**Assumptions** 

- Richards growth curve
  - L<sub>2</sub> fixed (185 cm)
  - Variability of length-at-age (LSD) estimated



 Length of the largest fish observed (close to virgin population)



FIGURE 1. Geographical expansion of the Japanese longline fishery (solid curves) and the surface fishery in the eastern Pacific (dotted curves). Numerals denote calendar year.

Suzuki, Tomlinson and Honma (1978)



### BET *L*<sub>2</sub> assumption?



Kume and Joseph (1966)



### Age and growth



Age (years)-Edad (años)







## Natural mortality





- Sensitivity analysis
  - Juvenile M (SARM-9-INF-B)
  - Adult M (Appendix B)



Age-specific maturity (Schaefer and Fuller, 2006)





## Stock-recruitment relationship



- Beverton-Holt relationship
- No S-R relationship (steepness = 1)
- Sensitivity analysis (Appendix B)
  - Steepness = 0.75
  - Likelihood profile on steepness (0.5, 0.6, 0.7, 0.8, 0.9, 1.0)





- Mean length-at-age and the variability of the length-at-age
- Sex and age-specific mortality-rates (*M*)
- Age-specific maturity schedule
- CV of LL-C and LL-S CPUE (0.15)
- Selectivity curves for discard fisheries
- Steepness of stock-recruitment relationship (*h*=1)



## Estimated parameters



- Recruitment in every quarter from 1975 to 2012 (average recruitment and temporal recruitment anomalies)
- Catchability coefficients for the 4 LL CPUE time series (LL-C and LL-S, two time blocks)
- Selectivity curves for late Central and Southern LL fisheries are assumed to be logistic (catch larger fish)
- Selectivities for all other fisheries (except discards) are assumed to be dome-shaped (double normal)
- Initial population age-structure



### Data weighting

### **PERSPECTIVE / PERSPECTIVE**

## Data weighting in statistical fisheries stock assessment models

**R.I.C. Chris Francis** 



Can. J. Fish. Aquat. Sci. Vol. 68, 2011



## Data weighting

### Previous base case SAR13 (2012)







### Data weighting



A

ATT





## Results (base case)

- Model fits (CPUE and size compositions)
- Fishing mortality
- Selectivity
- Recruitment
- Biomass


# Fit to CPUE – OBJ fisheries



**Results** 

(base case)



# Fit to CPUE – LL fisheries



**Results** 

(base case)

Catch per day (t) - Captura por dia (t)

# Fit to CPUE – Late LL fisheries



# Average fits to size comps.







# PS Size comp. residual pattern



#### Two time blocks for LL?

Lenght (cm)- Talla (cm)





Fishery data

# LL Size comp. residual pattern

**Results** 

(base case)







# **Fishing mortality**





# Size selectivity



## Recruitment





## Previous recruitment pattern



**Results** 

(base case)

# Recruitment and environment





#### Stock-recruitment



Relative spawning biomass–Biomasa reproductora relativa



# Summary biomass



# Spawning biomass







# Fishery impact





# BET average weight - PS





# BET average weight - LL







#### Stock status (base case)

- Spawning Biomass Ratio (SBR)
- Maximum Sustainable Yield (MSY)



#### Spawning Biomass Ratio (SBR)



Stock status (base case)

#### Management quantities



|                                                             | Base case- | 2010 2011 |
|-------------------------------------------------------------|------------|-----------|
|                                                             | Caso base  | 2010-2011 |
| MSY-RMS                                                     | 106,706    | 108,281   |
| B <sub>MSY</sub> - B <sub>RMS</sub>                         | 418,468    | 426,310   |
| S <sub>MSY</sub> - S <sub>RMS</sub>                         | 105,969    | 108,054   |
| $B_{\rm MSY}/B_0$ - $B_{\rm RMS}/B_0$                       | 0.24       | 0.25      |
| $S_{MSY}/S_0 - S_{RMS}/S_0$                                 | 0.20       | 0.20      |
| Crecent/MSY- Crecent/RMS                                    | 0.97       | 0.95      |
| $B_{\rm recent}/B_{\rm MSY}$ - $B_{\rm recent}/B_{\rm RMS}$ | 1.02       | 1.00      |
| Srecent/SMSY-Srecent/SRMS                                   | 1.08       | 1.06      |
| F multiplier-Multiplicador de $F$                           | 1.05       | 1.09      |



# Time varying indicators





# MSY-quantities by fishery

| Stock status |
|--------------|
| (base case)  |
| Alterna      |
|              |
| San X        |

|                                                                         | Base case- | PS only-  | LL only-  |
|-------------------------------------------------------------------------|------------|-----------|-----------|
|                                                                         | Caso base  | sonamente | solamente |
| MSY-RMS                                                                 | 106,706    | 77,766    | 254,983   |
| BMSY- BRMS                                                              | 418,468    | 323,018   | 464,742   |
| S <sub>MSY</sub> - S <sub>RMS</sub>                                     | 105,969    | 84,446    | 61,676    |
| $B_{\rm MSY}/B_0$ - $B_{\rm RMS}/B_0$                                   | 0.24       | 0.19      | 0.27      |
| $S_{\rm MSY}/S_0$ - $S_{\rm RMS}/S_0$                                   | 0.20       | 0.16      | 0.12      |
| Crecent/MSY- Crecent/RMS                                                | 0.97       | 1.32      | 0.40      |
| $B_{ m recent}/B_{ m MSY}$ - $B_{ m recent}/B_{ m RMS}$                 | 1.02       | 1.33      | 0.92      |
| $S_{\text{recent}}/S_{\text{MSY}}$ - $S_{\text{recent}}/S_{\text{RMS}}$ | 1.08       | 1.36      | 1.86      |
| F multiplier-Multiplicador de $F$                                       | 1.05       | 1.54      | 8.57      |



# Target Kobe plots









# Projection simulations (base case)

- Status quo fishing strategy
- MSY fishing strategy
- Effect of tuna conservation resolutions (2004-2012)



# Forward projections



- Projection period: 10 years (2013-2022)
- Evaluate:
  - Catches (surface and longline fisheries)
  - Spawning Biomass Ratio (SBR)
- Three exploitation scenarios:
  - Status quo (*F*<sub>cur</sub>): 3-year F average (2010-2012)
  - F<sub>MSY</sub>
  - No IATTC tuna conservation resolutions (2004-2012)



#### Spawning Biomass Ratio (SBR)







**Projected catches** 





# **Spawning Biomass Ratio**

0.9

8.0





#### Impact of conservation measures



CLAT

Projections (base case)



Stock status (base case)



#### Effect of no IATTC tuna conservation resolutions







#### **Retrospective analysis**



#### **Recruitment - retrospective**

Retrospective (base case)





#### **Recruitment - retrospective**





Retrospective (base case)
#### **Biomasses - retrospective**







#### **Biomasses - retrospective**









#### Comparisons to previous assessment (SAR11)



#### Summary biomass







#### Spawning biomass





Comparison to SAR10



#### Recruitment



Comparison to SAR10

#### Recruitment







## Sensitivity analyses

- Steepness of SR relationship (Appendix A)
- Adult natural mortality (Appendix B)
- Sensitivity analysis to the weighting assigned to the size composition data (Appendix C)



### Spawner-recruitment curve



Spawning biomass (t)-Biomasa reproductora (t)



**Sensitivities** 

(Steepness)

## Summary biomass







# Recruitment







# Spawning biomass ratio



# Likelihood profile on steepness





# F multiplier and steepness



CIAT

Sensitivities (Steepness)

#### Management quantities



| _   |
|-----|
| 1.1 |
| -   |
|     |

| 4                                                                       | Base case-     |                |         |          |         |           |           |
|-------------------------------------------------------------------------|----------------|----------------|---------|----------|---------|-----------|-----------|
|                                                                         | Caso base      | <i>h</i> = 0.9 | h = 0.8 | h = 0.75 | h = 0.7 | h = 0.6   | h = 0.5   |
|                                                                         | ( <i>h</i> =1) |                |         |          |         |           |           |
| MSY-RMS                                                                 | 106,706        | 104,468        | 102,782 | 101,994  | 101,199 | 99,483    | 97,415    |
| BMSY- BRMS                                                              | 418,468        | 547,941        | 679,829 | 754,430  | 838,483 | 1,051,330 | 1,375,260 |
| S <sub>MSY</sub> - S <sub>RMS</sub>                                     | 105,969        | 146,270        | 187,294 | 210,470  | 236,561 | 302,550   | 402,818   |
| $B_{\rm MSY}/B_0$ - $B_{\rm RMS}/B_0$                                   | 0.24           | 0.28           | 0.32    | 0.33     | 0.34    | 0.37      | 0.39      |
| $S_{\rm MSY}/S_0$ - $S_{\rm RMS}/S_0$                                   | 0.20           | 0.25           | 0.28    | 0.30     | 0.31    | 0.34      | 0.38      |
| Crecent/MSY- Crecent/RMS                                                | 0.97           | 0.99           | 1.00    | 1.01     | 1.02    | 1.04      | 1.06      |
| $B_{\text{recent}}/B_{\text{MSY}}$ - $B_{\text{recent}}/B_{\text{RMS}}$ | 1.02           | 0.90           | 0.83    | 0.80     | 0.78    | 0.74      | 0.70      |
| $S_{\rm recent}/S_{\rm MSY}$ - $S_{\rm recent}/S_{\rm RMS}$             | 1.08           | 0.92           | 0.84    | 0.81     | 0.79    | 0.74      | 0.70      |
| F multiplier-                                                           |                |                |         |          |         |           |           |
| Multiplicador de F                                                      | 1.05           | 0.93           | 0.85    | 0.82     | 0.80    | 0.74      | 0.68      |



#### Spawning biomass ratio









## Sensitivity analyses

- Steepness of SR relationship (Appendix A)
- Adult natural mortality (Appendix B)
- Sensitivity analysis to the weighting assigned to the size composition data (Appendix C)



# Natural mortality M schedules



Age (quarters)–Edad (trimestres)



**Sensitivities** 

(Adult M)

## Summary biomass





## Recruitment



Sensitivities (Adult *M*)

# Spawning biomass ratio



Sensitivities (Adult *M*)

# Likelihood profile on adult M

**Sensitivities** 



# F multiplier on adult M



Sensitivities (Adult *M*)

### Management quantities



|                                                    | M1      | M2      | Base case | M3      | M4      | M5      | M6      | <b>M</b> 7 |
|----------------------------------------------------|---------|---------|-----------|---------|---------|---------|---------|------------|
| Female M                                           | 0.09    | 0.12    | 0.14      | 0.17    | 0.19    | 0.22    | 0.24    | 0.27       |
| Male M                                             | 0.05    | 0.08    | 0.10      | 0.13    | 0.15    | 0.18    | 0.20    | 0.23       |
| MSY-RMS                                            | 100,282 | 94,542  | 106,706   | 112,840 | 117,782 | 121,804 | 124,890 | 127,458    |
| $B_{\rm MSY}$ - $B_{\rm RMS}$                      | 561,929 | 487,368 | 418,468   | 419,145 | 416,585 | 413,296 | 410,355 | 407,473    |
| S <sub>MSY</sub> - S <sub>RMS</sub>                | 168,599 | 138,347 | 105,969   | 103,381 | 99,086  | 95,869  | 92,700  | 89,789     |
| $B_{\rm MSY}/B_0$ - $B_{\rm RMS}/B_0$              | 0.27    | 0.25    | 0.24      | 0.24    | 0.25    | 0.25    | 0.25    | 0.25       |
| $S_{\rm MSY}/S_0$ - $S_{\rm RMS}/S_0$              | 0.26    | 0.22    | 0.2       | 0.2     | 0.2     | 0.2     | 0.2     | 0.2        |
| Crecent/MSY-<br>Crecent/RMS                        | 1.03    | 1.09    | 0.97      | 0.91    | 0.87    | 0.85    | 0.82    | 0.81       |
| $\frac{B_{ m recent}}{B_{ m recent}}/B_{ m MSY}$ - | 0.29    | 0.73    | 1.02      | 1.13    | 1.2     | 1.25    | 1.29    | 1.31       |
| Srecent/SMSY-Srecent/SRMS                          | 0.26    | 0.76    | 1.08      | 1.2     | 1.28    | 1.33    | 1.37    | 1.4        |
| F multiplier-<br>Multiplicador de F                | 0.41    | 0.73    | 1.05      | 1.21    | 1.33    | 1.42    | 1.5     | 1.56       |





## Sensitivity analyses

- Steepness of SR relationship (Appendix A)
- Adult natural mortality (Appendix B)
- Sensitivity analysis to the weighting assigned to the size composition data (Appendix C)



## Summary biomass





# Recruitment





# Spawning biomass ratio





# Length comp weighting



**Sensitivities** 

(weighting)

### Management quantities



|                                                                     | Base case            | PS-all               | $\lambda = 0.05$       | LL-all $\lambda = 0.05$              |          |  |
|---------------------------------------------------------------------|----------------------|----------------------|------------------------|--------------------------------------|----------|--|
|                                                                     | All $\lambda = 0.05$ | LL-all $\lambda = 1$ | LL 14-17 $\lambda = 1$ | <b>PS</b> - <b>all</b> $\lambda = 1$ | ] PS-S ] |  |
| MSY-RMS                                                             | 106,706              | 99,124               | 98,180                 | 97,018                               | 95,334   |  |
| $B_{\rm MSY}$ - $B_{\rm RMS}$                                       | 418,468              | 312,484              | 313,793                | 409,722                              | 388,362  |  |
| $S_{MSY}$ - $S_{RMS}$                                               | 105,969              | 71,818               | 72,708                 | 106,472                              | 99,877   |  |
| $B_{\rm MSY}/B_0$ - $B_{\rm RMS}/B_0$                               | 0.24                 | 0.29                 | 0.29                   | 0.24                                 | 0.24     |  |
| $S_{\rm MSY}/S_0$ - $S_{\rm RMS}/S_0$                               | 0.20                 | 0.22                 | 0.22                   | 0.20                                 | 0.20     |  |
| Crecent/MSY-                                                        |                      |                      |                        |                                      |          |  |
| Crecent/RMS                                                         | 0.97                 | 1.04                 | 1.05                   | 1.06                                 | 1.08     |  |
| $B_{\rm recent}/B_{\rm MSY}$ - $B_{\rm recent}/B_{\rm RMS}$         | 1.02                 | 0.47                 | 0.41                   | 1.01                                 | 0.86     |  |
| $S_{\text{recent}}/S_{\text{MSY}}-S_{\text{recent}}/S_{\text{RMS}}$ | 1.08                 | 0.36                 | 0.32                   | 1.12                                 | 0.97     |  |
| F multiplier-                                                       |                      |                      |                        |                                      |          |  |
| Multiplicador de $F$                                                | 1.05                 | 0.54                 | 0.51                   | 0.95                                 | 0.85     |  |





#### Sensitivity analyses

• Overall results



### Management quantities



| -                                                  |                         | Appendix-Anexo  |                  |         |               |         |           |         |  |  |
|----------------------------------------------------|-------------------------|-----------------|------------------|---------|---------------|---------|-----------|---------|--|--|
|                                                    |                         | Α               | ]                | В       | С             |         |           |         |  |  |
|                                                    | Base case-<br>Caso base |                 | Adult M-M adulto |         | $\lambda = 1$ |         |           |         |  |  |
|                                                    |                         | <i>h</i> = 0.75 | Sens M1          | Sens M5 | LL            | LL      | PS        | PS-S    |  |  |
|                                                    |                         |                 |                  |         | All-Todas     | 14-17   | All-Todas | 2       |  |  |
| MSY-RMS                                            | 106,706                 | 101,994         | 100,282          | 121,804 | 99,124        | 98,180  | 97,018    | 95,334  |  |  |
| $B_{\rm MSY}$ - $B_{\rm RMS}$                      | 418,468                 | 754,430         | 561,929          | 413,296 | 312,484       | 313,793 | 409,722   | 388,362 |  |  |
| S <sub>MSY</sub> - S <sub>RMS</sub>                | 105,969                 | 210,470         | 168,599          | 95,869  | 71,818        | 72,708  | 106,472   | 99,877  |  |  |
| $B_{\rm MSY}/B_0$ - $B_{\rm RMS}/B_0$              | 0.24                    | 0.33            | 0.27             | 0.25    | 0.29          | 0.29    | 0.24      | 0.24    |  |  |
| $S_{\rm MSY}/S_0$ - $S_{\rm RMS}/S_0$              | 0.20                    | 0.30            | 0.26             | 0.20    | 0.22          | 0.22    | 0.20      | 0.20    |  |  |
| Crecent/MSY- Crecent/RMS                           | 0.97                    | 1.01            | 1.03             | 0.85    | 1.04          | 1.05    | 1.06      | 1.08    |  |  |
| Brecent/BMSY- Brecent/BRMS                         | 1.02                    | 0.80            | 0.29             | 1.25    | 0.47          | 0.41    | 1.01      | 0.86    |  |  |
| Srecent/S <sub>MSY</sub> -Srecent/S <sub>RMS</sub> | 1.08                    | 0.81            | 0.26             | 1.33    | 0.36          | 0.32    | 1.12      | 0.97    |  |  |
| F multiplier-<br>Multiplicador de F                | 1.05                    | 0.82            | 0.41             | 1.42    | 0.54          | 0.51    | 0.95      | 0.85    |  |  |



# Model uncertainty





Sensitivities (Overall)



# Summary



# Summary: key results



- Recovery trend since 2004 coinciding with beginning of IATTC tuna conservation resolutions
- But this recovery was not sustained since 2010 and biomasses were reduced to lowest historic levels at the start of 2013
- The recent decline may be related to series of below average recruitments coinciding with strong La Nina events (since 2007)
- However, at current fishing mortality levels, and average recruitment, SBR is predicted to stabilize at about SBR at MSY




#### Summary: key results (cont.)

- The recent fishing mortality rates are estimated to be below the level corresponding to MSY (*F*<sub>recent</sub> < *F*<sub>MSY</sub>)
- The recent levels of spawning biomass are estimated to be above the MSY level (S<sub>recent</sub> > S<sub>MSY</sub>)
- But the recent estimates are uncertain (low precision)



# Summary: key results (cont.)

However, these interpretations are highly sensitive about the following assumptions:

**Summary** 

IATT

- Steepness of stock-recruitment relationship
- Adult natural mortality levels
- Weighting assigned to the size composition data





#### • Results are more **pessimistic** with:

- The inclusion of a stock-recruitment relationship
- Lower rates of adult natural mortality (M)
- Up-weighting the size composition data (LL in particular)
- Higher L<sub>2</sub>
- Results are more optimistic with:
  - Higher rates of adult natural mortality (M)
  - Lower L<sub>2</sub>



## What is robust



- Relative trend
- Recent decline in biomasses
- Lower biomass compared to historic levels







#### Summary: key results (cont.)

 IATTC Tuna Conservation resolutions produced benefits (2004-2012)







## Likelihoods



|                           | Appendix-Anexo         |             |                  |          |               |          |           |          |  |
|---------------------------|------------------------|-------------|------------------|----------|---------------|----------|-----------|----------|--|
|                           |                        | A           | E                | 3        | С             |          |           |          |  |
| Data                      | Base case<br>Caso base | h = 0.75    | Adult M-M adulto |          | $\lambda = 1$ |          |           |          |  |
| Data                      |                        |             | Sens M1          | Sens M5  | LL            | LL       | PS        | LL       |  |
|                           |                        |             |                  |          | All-Todas     | 14-17    | All-Todas | 2        |  |
| CPUE                      |                        |             |                  |          |               |          |           |          |  |
| 1                         | 195.84                 | 195.156     | 191.852          | 196.099  | 192.452       | 192.688  | 193.958   | 195.94   |  |
| 2                         | -44.5238               | -44.2195    | -42.9116         | -44.1636 | -45.0213      | -44.6798 | -42.2471  | -44.3206 |  |
| 3                         | 6.13                   | 6.06965     | 7.26421          | 8.30431  | 8.73637       | 6.91472  | 8.30835   | 4.91525  |  |
| 4                         | 212.75                 | 211.7       | 217.657          | 212.022  | 217.036       | 216.482  | 213.66    | 216.769  |  |
| 5                         | 6.90                   | 7.96826     | 12.2763          | 5.51157  | 8.96672       | 10.0219  | 11.433    | 11.0729  |  |
| 12                        | 56.04                  | 57.3324     | 51.7447          | 57.1805  | 57.0969       | 50.7934  | 65.1018   | 56.0167  |  |
| 13                        | 164.45                 | 168.757     | 150.042          | 161.369  | 148.791       | 154.081  | 267.705   | 216.091  |  |
| 14                        | -67.60                 | -67.6281    | -67.34           | -67.6288 | -63.3868      | -63.202  | -66.7725  | -67.5925 |  |
| 15                        | -66.62                 | -66.4128    | -66.01           | -66.8958 | -57.2769      | -58.7199 | -50.6992  | -55.2851 |  |
| 16                        | -98.09                 | -98.1472    | -97.67           | -98.0399 | -94.6007      | -94.6036 | -97.8979  | -98.0853 |  |
| 17                        | -131.43                | -131.139    | -131.43          | -131.505 | -128.296      | -128.197 | -123.58   | -130.666 |  |
| 18                        | 17.80                  | 17.2513     | 16.25            | 17.6372  | 16.9751       | 20.9719  | 13.4457   | 17.5684  |  |
| 19                        | 172.00                 | 169.689     | 191.80           | 169.001  | 197.656       | 186.622  | 172.701   | 174.137  |  |
| Total                     | -363.751               | -363.327    | -362.444         | -364.070 | -343.560      | -344.723 | -338.950  | -351.629 |  |
| Size composit             | <u>ions</u> – Comp     | osición por | talla            |          |               |          |           |          |  |
| 1                         | 55.0732                | 55.05       | 55.1812          | 54.93    | 56.4414       | 56.27    | 159.095   | 55.0937  |  |
| 2                         | 25.1443                | 25.12       | 28.3671          | 25.47    | 27.8636       | 26.52    | 299.884   | 279.032  |  |
| 3                         | 41.7469                | 41.79       | 43.5306          | 41.62    | 45.6855       | 43.25    | 328.801   | 43.2651  |  |
| 4                         | 43.3528                | 43.16       | 43.30            | 43.19    | 45.5335       | 45.08    | 77.3006   | 44.1171  |  |
| 5                         | 27.8305                | 27.76       | 32.00            | 27.87    | 32.7235       | 29.78    | 203.996   | 26.8177  |  |
| 6                         | 38.1199                | 38.17       | 38.25            | 38.17    | 38.4488       | 38.24    | 124.149   | 38.1183  |  |
| 7                         | 55.7242                | 55.43       | 55.61            | 55.68    | 59.8478       | 59.14    | 131.071   | 55.7707  |  |
| 12                        | 12.6024                | 12.61       | 12.66            | 12.60    | 31.5795       | 13.01    | 13.7197   | 12.6066  |  |
| 13                        | 25.8381                | 25.70       | 26.01            | 25.60    | 61.4318       | 25.51    | 27.8317   | 27.3964  |  |
| 14                        | 24.6072                | 24.60       | 24.82            | 24.62    | 34.0475       | 33.27    | 23.2526   | 24.6     |  |
| 15                        | 35.8985                | 37.19       | 37.69            | 31.21    | 49.2388       | 48.95    | 41.4491   | 36.1078  |  |
| 16                        | 16.233                 | 16.34       | 16.03            | 16.34    | 40.5502       | 40.44    | 16.7004   | 16.2187  |  |
| 17                        | 19.8067                | 20.57       | 22.31            | 16.08    | 120.932       | 122.08   | 23.0363   | 19.4529  |  |
| 18                        | 19.6126                | 19.61       | 19.65            | 19.60    | 53.4593       | 19.26    | 19.5067   | 19.6119  |  |
| 19                        | 29.5176                | 29.44       | 29.77            | 29.54    | 60.7296       | 30.62    | 30.1652   | 28.936   |  |
| Total                     | 471.108                | 472.529     | 485.188          | 462.523  | 758.513       | 631.422  | 1519.958  | 727.145  |  |
| Recruitment-Reclutamiento |                        |             |                  |          |               |          |           |          |  |
|                           | -55.0666               | -54.7508    | -37.4801         | -56.6466 | -42.2957      | -42.2957 | -27.6621  | -43.0154 |  |
| Total                     | 52.290                 | 54.451      | 85.264           | 41.807   | 372.657       | 244.404  | 1153.347  | 332.501  |  |



## Average effective sample sizes

|               |                        | Appendix-Anexo |                  |           |           |        |           |        |  |
|---------------|------------------------|----------------|------------------|-----------|-----------|--------|-----------|--------|--|
|               |                        | А              | В                |           | С         |        |           |        |  |
| Data<br>Datos | Base case<br>Caso base | h = 0.75       | Adult M-M adulto |           | λ = 1     |        |           |        |  |
|               |                        |                | Sens M1          | Sens M5   | LL        | LL     | PS        | LL     |  |
|               |                        |                |                  | 00000 100 | All-Todas | 14-17  | All-Todas | 2      |  |
| 1             | 19.91                  | 19.92          | 20.00            | 19.97     | 19.16     | 19.25  | 21.42     | 19.93  |  |
| 2             | 66.30                  | 66.44          | 54.63            | 66.79     | 56.13     | 60.93  | 77.24     | 78.29  |  |
| 3             | 54.77                  | 55.11          | 47.20            | 55.27     | 50.31     | 54.92  | 67.06     | 58.23  |  |
| 4             | 6.49                   | 6.61           | 6.44             | 6.53      | 5.99      | 6.11   | 6.98      | 6.59   |  |
| 5             | 49.29                  | 49.74          | 35.29            | 50.46     | 37.23     | 40.26  | 59.25     | 52.68  |  |
| 6             | 19.84                  | 19.86          | 20.20            | 19.78     | 19.47     | 19.12  | 30.15     | 19.84  |  |
| 7             | 14.25                  | 14.03          | 14.38            | 14.06     | 14.55     | 14.65  | 14.08     | 14.06  |  |
| 12            | 73.37                  | 73.58          | 73.04            | 73.65     | 71.75     | 68.71  | 67.02     | 73.27  |  |
| 13            | 44.43                  | 44.96          | 41.65            | 44.97     | 48.67     | 42.11  | 40.52     | 42.21  |  |
| 14            | 69.91                  | 69.82          | 70.95            | 70.22     | 101.13    | 112.09 | 76.22     | 70.00  |  |
| 15            | 243.30                 | 109.62         | 58.02            | 85.04     | 97.40     | 103.80 | 34.35     | 156.76 |  |
| 16            | 158.32                 | 157.29         | 165.03           | 156.23    | 197.21    | 198.38 | 157.77    | 158.88 |  |
| 17            | 114.08                 | 100.90         | 101.35           | 183.07    | 173.96    | 173.52 | 86.95     | 114.40 |  |
| 18            | 86.96                  | 86.84          | 86.86            | 87.34     | 90.48     | 87.57  | 86.07     | 86.95  |  |
| 19            | 76.12                  | 76.48          | 74.56            | 76.01     | 81.95     | 66.08  | 74.32     | 78.48  |  |
| Average-      |                        |                |                  |           |           |        |           |        |  |
| Promedio      | 73.16                  | 63.41          | 57.97            | 67.29     | 71.03     | 71.17  | 59.96     | 68.70  |  |



Sensitivities (Overall)