Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

CIA

IATTC

Fishery Definitions for the Yellowfin Tuna Assessment

Yellowfin Tuna External Review, La Jolla, California, USA, 2-6 December 2019

Outline

- Background
- Data
 - Purse-seine
 - Japanese high-seas longline
- Methods
- Results
 - Purse-seine
 - Japanese high-seas longline
- Discussion

Background: fishery definitions SAC 10 model

- Previous fisheries constructed from port-sampling areas.
- Use length-frequency data to define • new fisheries.
- Rationale: want to take fleet catch • out of the correct sizes.

Pole-and-line-Caña

30 .

20-

10 -

20

30

41

150

140 130 120

10

I P

IATTC length-frequency sampling areas Fishery definition areas

IATT

Data

- Purse-seine
 - Length-frequency data collected by IATTC port-samplers during catch unloading.
 - Sample data associated with the unloading of individual wells (*i.e.*, not necessarily set-specific).
 - Years 2000 2018.
 - Three types of purse-seine sets:
 - Sets on dolphin-associated tuna ("DEL" sets);
 - Sets on floating-object-associated tuna ("OBJ" sets);
 - Sets on unassociated tuna schools ("UNA" sets).
 - Fork length measured to the nearest *mm* (but data processing based on lengths rounded to the nearest *cm*).
 - Ancillary data available: set type; date of the first set to fill the well; 5° latitude and 5° longitude.

Data

- Japanese high-seas longline
 - Length-frequencies (2 cm resolution; in numbers) by year x month x 5° latitude x 10° longitude.
 - Years 2000 2009.
 - Data from commercial vessels only; data not collected by observers.
 - Ancillary data available: year; month; 5° latitude; 10° longitude.

- Data processing
 - All length-frequency data grown/shrunk to the mid-month of each quarter (assessment has quarterly time step).
 - Counts of fish aggregated to larger size intervals, by quarter x year x area (5° square or 5° x 10° rectangle).
 - Larger size intervals: ≤ 39 *cm*; 40 49 *cm*; 50 59 *cm*; ... ; 150 159 *cm*; ≥ 160 *cm*.
 - Data for each gear (DEL sets; UNA sets; OBJ sets; longline) analyzed separately.
 - The data unit for the analysis was a quarter x year x area.

- A regression tree-type approach was used to explore spatial and seasonal structure in lengthfrequency distributions by gear type.
- Predictors: quarter; cyclic quarter; 5° latitude; 5° (10°) longitude (note: year not used as a predictor).
- Methodology is similar to CART, but with the following differences:
 - Multivariate instead of univariate response;
 - Different measure of heterogeneity used (not sum of squares);
 - Small tree is grown and not pruned.

- Multivariate response:
 - Proportion of individuals in each size interval

 $\{p_l(j), j=1,...,\# \text{ size intervals for "cell"}l\}$, where a cell = quarter x year x area.

- Measure of heterogeneity ("impurity") for a collection of cells $\{l\}$
 - Kullback-Leibler divergence: $I_{KLD} = \sum_{l} \sum_{j} p_{l}(j) log\left(\frac{p_{l}(j)}{\bar{p}(j)}\right)$
 - Puts more weight on discrepancies with greater proportions of fish.

- A small tree is grown by binary recursive partitioning.
- Branches with small amounts of sample data and catch usually were not further partitioned.
- The unpruned tree is used to explore options for candidate fishery strata, where candidate strata are compared based on the percent variability explained.

Results: DEL sets

NOTE: Branch length is uniform (i.e., NOT proportional to variance explained)

- Largest fish found south of 5N, and west of 120W north of 5N.
- Seasonality not present near top of tree.
- Highest variability explained with few partitions, compared to other set types and longline.

Results: DEL sets

	Strata*	% Variability
		explained
	2-area combination (initial partition)	
	Areas 1+2+3+4+5+; Areas 6+7	12.7%
	3-area combinations	
	Areas 1+2; Areas 3+4+5; Areas 6+7	18.5%
	Areas 1+2+3+4+5; Area 6; Area 7	14.1%
	4-area combinations	
	Area 1; Area 2; Areas 3+4+5; Areas 6+7	19.5%
	Area1+2; Area 3; Areas 4+5; Areas 6+7	22.1%
	Areas 1+2; Areas 3+4+5; Area 6; Area 7	20.0%
	5-area combinations	
	Area 1; Area 2; Area 3; Areas 4+5; Areas 6+7	23.0%
	Areas 1+2; Area 3; Area 4; Area 5; Areas 6+7	23.1%
	Areas 1+2; Area 3; Areas 4+5; Area 6; Area 7	23.5%
Selected:	All 7 areas	25.5%
	"Unorthodox" area combinations	
	Areas 1+6+7; Area 2; Area 3; Area 4; Area 5	22.6%

* Subjective decisions made in the selection of the 7 areas: not to further split Area 1, Area 2, Area 6 or Area 7 (based on sample size and seasonality of the fishery in those areas).

Results: UNA sets

- Largest fish found south of 5N, and west of 115W between 5N-15N (but sample size is small).
- Seasonality not present near top of tree.

Results: UNA sets

Strata	% Variability explained
2-cell combination (initial partition)	
Areas 1+2+3; Areas 4+5	5.5%
3-cell combinations	
Area 1; Areas 2+3; Areas 4+5	7.2%
Areas 1+2+3; Area 4; Area 5	9.2%
4-cell combinations	
Areas 1+2+3; Area 4; Area 5,Q1; Area 5,Qs2-4	10.8%
Areas 1+2+3; Area 4, Qs1-2; Area 4, Qs3-4; Area 5	10.5%
Area 1, Qs4-2; Area 1, Q3; Areas 2+3; Areas 4+5	8.7%
Area 1; Area 2; Area 3; Areas 4+5	8.0%
Area 1; Areas 2+3; Area 4; Area 5	10.9%
5-cell combinations	
Area 1; Area2; Area 3; Area 4; Area 5	11.7%
Area 1; Areas 2+3; Area 4; Area 5, Q1; Area 5 Qs2-4	12.4%
Area 1; Areas 2+3; Area 4, Q1-2; Area 4; Q3-4; Area 5	12.1%
Area 1, Qs4-2; Area 1, Q3; Areas 2+3; Area 4; Area 5	12.3%
All 8 cells	
Area 1, Qs4-2; Area 1, Q3; Area 2; Area 3; Area 4,Qs1-2; Area	16.0%
4,Qs3-4; Area 5,Q1; Area 5, Qs2-4	
"Unorthodox" cell combinations	
Area 1; Areas 2+4; Area 3; Area 5	11.5%

Results: OBJ sets

YFT OBJ, aggregated 5 by 5 with 14 l-f intervals, 2000-2018

- Largest fish found south of 10S.
- Seasonality present near top of tree.

IATT

Results: OBJ sets

Strata	% Variability explained
2-cell combination (initial partition)	
S of 10S; N of 10S	5.2%
3-cell combinations	
S of 10S; N of 10S Qs 1,4; N of 10S Qs 2,3	7.6%
S of 10S Qs 1,4; S of 10S Qs 2,3; N of 10S	7.0%
4-cell combinations	
S of 10S Qs 1,4; S of 10S Qs 2,3; N of 10S Qs 1,4; N of 10S Qs 2,3	9.4%
S of 10S; N of 10S Qs 1, 4 & W of 95W; N of 10S Qs 1,4 & E of 95W; N of 10S	8.4%
Qs 2,3	
S of 10S; N of 10S Qs 1,4; N of 10S Qs 2,3 & S of Equator; Qs 2,3 & N of	9.0%
Equator	
5-cell combinations	
S of 10S Qs 1,4; S of 10S Qs 2,3; N of 10S Qs 1, 4 & W of 95W; N of 10S Qs 1,4	10.1%
& E of 95W; N of 10S Qs 2,3	
S of 10S Qs 1,4; S of 10S Qs 2,3; N of 10S Qs 1,4; N of 10S Qs 2,3 & S of	10.7%
Equator; Qs 2,3 & N of Equator	
S of 10S; N of 10S Qs 1, 4 & W of 95W; N of 10S Qs 1,4 & E of 95W; N of 10S	9.7%
Qs 2,3 & S of Equator; Qs 2,3 & N of Equator	
All 6 cells	CLAT
S of 10S Qs 1,4; S of 10S Qs 2,3; N of 10S Qs 1, 4 & W of 95W; N of 10S Qs 1,4	11.5%
& E of 95W; ; N of 10S Qs 2,3 & S of Equator; Qs 2,3 & N of Equator	IATTO

۲

YFT LL L-F, aggregated 5 by 10 with 14 l-f intervals, 2000-2009

Results: Longline

- To choose one of the two 5-cell stratifications:
 - Select that which explains the most variability in the 1986-1991 data.
- % Variability explained, 1986-1991 data: 5-cell: 6.5%
 "Unorthodox" 5-cell: 6.9%
- Following the above, we would choose the "Unorthodox" 5-cell stratification.

Strata*	% Variability
	explained
2-cell combination (initial partition)	
W of 90W; E of 90W	5.0%
3-cell combinations	
W of 120W; 90W-120W; E of 90W	7.2%
A-cell combinations	
4-cell combinations W of 120W/ 8 S of 5S: 90W-	8.7%
120W/ E of 90W/	0.270
120W, E 01 50W W of $120W, 90-120W, 0s 1.4, 90-120W, 0s 2-3, E of$	8.6%
0.000 12000 , $50-12000$ 0.3 $1,4$, $50-12000$ 0.3 $2-3$, 100	0.070
5-cell combinations	
W of 120W & S of 5S; W of 120W & N of 5S; 90-120W	9.7%
Qs 1,4; 90-120W Qs 2-3; E of 90W	
"Unorthodox" 5-cell combination	
W of 120W Qs 1,4; W of 120W Qs 2-3; 90-120W Qs	9.8%
1,4; 90-120W Qs 2-3; E of 90W <uses quarter="" split<="" td=""><td></td></uses>	
instead of 5S split, west of 120W; this makes	
everything seasonal within each E/W block because	
data east of 90W are almost all from quarters 2-3>	CLAT

Discussion

YFT models: definition of the fisheries

North reference model

South reference model

