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    The Antigua Convention, which was negotiated to 
strengthen and replace the 1949 Convention 
establishing the Inter-American Tropical Tuna 
Commission (IATTC), entered into force on 27 
August 2010. The IATTC is responsible for the 
conservation and management of the “stocks of tunas 
and tuna-like species and other species of fish taken 
by vessels fishing for tunas and tuna-like species” in 
the eastern Pacific Ocean, and also for the 
conservation of “species belonging to the same 
ecosystem and that are affected by fishing for, or 
dependent on or associated with, the fish stocks 
covered by [the] Convention.”  
    The members of the Commission and the 
Commissioners are listed in the inside back cover of 
this report.  
    The IATTC staff's research responsibilities are met 
with four programs, the Data Collection and Data 
Base Program, the Biology and Ecosystem Program, 
the Stock Assessment Program, and the Bycatch 
Program and International Dolphin Conservation 
Program.  
    An important part of the work of the IATTC is the 
publication and wide distribution of its research 
results. These results are published in its Bulletin, 
Special Report, Data Report series, and papers in 
outside scientific journals and chapters in books, all 
of which are issued on an irregular basis, and its 
Stock Assessment Reports and Fishery Status 
Reports, which are published annually.  
    The Commission also publishes Annual Reports 
and Quarterly Reports, which include policy actions 
of the Commission, information on the fishery, and 
reviews of the year's or quarter's work carried out by 
the staff. The Annual Reports also contain financial 
statements and a roster of the IATTC staff.  
    Additional information on the IATTC’s 
publications can be found in its web site.  

    La Convención de Antigua, negociada para 
fortalecer y reemplazar la Convención de 1949 que 
estableció la Comisión Interamericana del Atún 
Tropical (CIAT), entró en vigor el 27 de agosto de 
2010. La CIAT es responsable de la conservación y 
ordenación de las “poblaciones de atunes y especies 
afines y otras especies de peces capturadas por 
embarcaciones que pescan atunes y especies afines” 
en el Océano Pacífico oriental, así como de la 
conservación de “especies que pertenecen al mismo 
ecosistema y que son afectadas por la pesca de 
especies de peces abarcadas por la … Convención.”  
    En la contraportada del presente informe se alistan 
los miembros de la Comisión y los Comisionados.  
    Las responsabilidades de investigación del 
personal de la CIAT son realizadas mediante cuatro 
programas: el programa de recolección de datos y 
bases de datos, el programa de biología y 
ecosistemas, el programa de evaluación de 
poblaciones, y el programa de captura incidental y el 
Acuerdo sobre el Programa Internacional para la 
Conservación de los Delfines.  
    Una parte importante del trabajo de la CIAT es la 
publicación y amplia distribución de los resultados de 
sus investigaciones. Se publican los mismos en sus 
series de Boletines, Informes Especiales, Informes de 
Datos, y publicaciones en revistas científicas 
externas y capítulos en libros, todos de los cuales son 
publicados de forma irregular, y sus Informes de la 
Condición de las Poblaciones e Informes de la 
Situación de las Pesquerías, publicados anualmente.  
    La Comisión publica también informes anuales y 
trimestrales, los que incluyen acciones de política de 
la Comisión, información sobre la pesquería, y 
resúmenes de trabajo realizado por el personal en el 
año o trimestre correspondiente. Los informes 
anuales contienen también un estado financiero y una 
lista del personal de la CIAT.  
    Se presenta información adicional sobre las pu-
blicaciones de la CIAT en su sitio web.  
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1. EXECUTIVE SUMMARY 

Following recommendations from a recent workshop on methods for estimating marine mammal 
abundance (Johnson et al. 2018), the Inter-American Tropical Tuna Commission (IATTC), in 
coordination with the Comision Nacional de Acuacultura y Pesca (CONAPESCA) of the government of 
Mexico and with the support of the Instituto Nacional de Pesca y Acuacultura of Mexico (INAPESCA), 
the Mexican tuna industry, and the Centre for Research into Ecological and Environmental Modelling 
(CREEM) at the University of St Andrews (USTAN), is planning to undertake a ship-based survey, in 
conjunction with drones, to estimate the abundance of dolphin populations in the eastern tropical 
Pacific (ETP) Ocean and improve management of those populations and the ETP ecosystem. The 
project was designed to be carried out in two phases: a short trial survey, and a longer main survey. 
The purpose of the trial survey was to test the methodology developed by researchers at CREEM 
(Oedekoven et al. 2018) and the suitability of the equipment provided for the main survey. Specifically, 
in addition to evaluating the overall suitability of the research vessel and marine mammal observers 
for the project, the trial survey had two goals related to the use of drone equipment provided to the 
project: 1) test whether the drones can be used to detect dolphin schools directly ahead of the survey 
vessel that might be missed by ship-based marine mammal observers, data essential for estimating 
the trackline detection probability of ship-based observers, and 2) test whether the drones provided 
can be used to collect data on dolphin school size and species composition, data essential for 
calibrating estimates made by the ship-based observers (school size calibration). The drone equipment, 
cameras and drone personnel were selected for and provided to the trial survey project by Gtt 
NetCorp.  

To test the research plan, an international research team sailed out from Mazatlán, Mexico, aboard 
the R/V Dr Jorge Carranza Fraser, provided by the INAPESCA for the project, for a 14-day trial survey, 
from 17 – 30 November, 2019. The team was led by Dr Cornelia Oedekoven of USTAN and Dr Cleridy 
Lennert-Cody of IATTC, and composed of scientists, drone pilots and mechanics from four different 
countries (Mexico, United States, Germany and Chinese Taipei). The area off the Mexican coast 
between Manzanillo and Acapulco was selected as the study area because it has been shown to be 
the area with highest density of spotted and spinner dolphins within the ETP, regardless of season.  

The research vessel was outfitted with a special observation platform on the level above the bridge, 
called the flying bridge. A team of six experienced observers in a 2-hourly rotation with three observers 
on watch at any time during suitable conditions scanned the forward 180˚ for cetaceans and logged 
the required information according to the U.S. National Marine Fisheries Service (NMFS) survey 
protocol that has been consistently used during previous ETP surveys. This protocol prescribes that 
surveys are conducted in closing mode 1 . The protocol also includes a school size calibration 
component where the school size estimates of the observers are compared against true counts of 
dolphins in suitable schools (“calibration” schools). During previous surveys, true school size counts 
were obtained from aerial photography taken from helicopters carried on the survey vessel or shore-
based fixed-winged aircraft. During the trial survey, drones were tested for collection of video imagery 
that could be used for school size calibration.   

During the trial survey drones also were tested for collection of video imagery suitable for estimating 
trackline detection probability. The preferred method for estimating trackline detection probability is 

 
1  Closing mode means that upon detection of a cetacean school, the ship leaves the survey trackline and 
approaches the school to gather information on species identification, school composition and school size. The 
alternative to closing mode is to operate in passing mode where all information is gathered from a distance as 
the ship continues along the trackline. 
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mark-recapture distance sampling (MRDS). In contrast with conventional distance sampling where 
line-transect data are collected from a single platform, MRDS methods require double-observer 
platform data. For this survey, a drone served as platform 2 and was to survey the area in front of the 
ship covering a wide corridor across the ship’s transect line by flying in either a zigzag pattern or 
parallel lines while maintaining station at 5 nm ahead of the ship (hereafter referred to as “zigzag” 
flights). Detections of cetacean schools made via the drone were to serve as trials for the flying bridge 
(platform 1). Of interest was whether dolphin schools detected by the drone were later detected by 
the ship-based observers. Video footage captured by the drone during these zigzag flights was to be 
sent back to the ship for real-time monitoring by the drone observers and recorded on-board the 
drone for post-survey image analyses.  

Due to the extensive experience of the flying bridge observers, the implementation of the NMFS 
survey protocol on the Jorge Carranza was successful. The flying bridge equipment worked well, 
although a few fixes and alterations are needed for the main survey. The captain and the other ship 
officers were very effective and helpful at implementing the survey protocol including quick responses 
to requests made by flying bridge observers, maneuvering the ship in closing mode so school size and 
species composition estimates could be obtained. A total of 1,733.06 km of transect lines were 
surveyed, out of which 766.41 km were conducted in closing mode and 966.65 km in passing mode. 
All survey effort should have been conducted in closing mode, as that is the required mode for the 
main survey. However, after unsuccessfully attempting drone zigzag flights with the flying bridge 
operating in closing mode for two days, passing mode was used to facilitate the further testing of 
zigzag flights. A total of 215 sightings (205 on effort, 10 off effort) of 26 different species categories 
were made by the flying bridge observers. A comparison of estimated detection probabilities for 
spotted and spinner dolphins from the trial survey with previous surveys conducted on smaller 
research vessels revealed no significant differences between the vessels used in previous surveys and 
the R/V Dr Jorge Carranza Fraser.  

Despite some success with the use of the Seahawk drone for school size calibration (see below), results 
of the trial survey showed that a different drone system, including better cameras and antennas, will 
be necessary to evaluate trackline detection probability during the main survey. The drone team was 
able to launch and land drones in Beaufort sea states up to and including 5. Although one drone was 
lost at sea due to a sudden loss of satellite coverage, the drone team performed a total of 94 flights, 
for a total flight time of about 69 hrs. Of these 94 flights, 74 were pure zigzag flights, 15 flights were 
pure calibration flights and four were initiated as zigzag and then switched to calibration mode. While 
the drone team safely conducted up to an impressive 13 flights per day, this was not sufficient to cover 
the entire hours of operation of the flying bridge observers, given the short flight time of the Seahawk 
drone (< 1 hr) and the presence of only one highly skilled drone pilot on board. Based on the results 
from this survey, we estimate that, even with a second highly skilled drone pilot, full coverage of all 
daylight hours would require too many launches and landings during a 120-day main survey, which 
would be a major safety concern.  

Analysis of the video imagery collected by the drone during the trial survey revealed that a better 
method for archiving video data will be required for the main survey. Contrary to what was specified 
in the trial survey protocol, continuous recording of the video on-board the drone was not 
implemented by the drone company. Instead, the drone company elected to use screen capture of 
the transmitted video as the primary method to store video for post-survey image analyses. This 
screen recording process resulted in major reductions in video quality due to transmission loss, two 
layers of compression of the video, various artefacts, frequent pixilation, occasional complete loss of 
the video and a reduction in the frame rate compared to what was originally recorded by the camera 
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onboard the drone. Due to the screen recording process, the video footage from the zigzag flights was 
often of too poor quality to classify objects of interest as dolphins with certainty during real-time 
monitoring as well as during post-survey review and image analysis from the still frames. During post-
survey review by a human observer, large frame context helped in this regard, as well as motion of 
the animals through the video sequence.  

In addition to a better video data archiving procedure, much better resolution for the camera will be 
required for the zigzag flights during a main survey to cover a larger area and provide better ground 
resolution. The total length of all zigzag flight legs was 1,013.37 km; with a mean swath width of 154.62 
m, the total area covered by the drone during the zigzag flight legs amounted to < 1% of the area 
covered by the flying bridge observers within their survey strip. The small size of the area covered by 
the drone was a result of the poor video quality, forcing the drone to fly at low altitudes and at low 
speeds to be able to detect dolphins. The short flight times of the Seahawk and the rigid method used 
by the drone company for uploading waypoints onto the drone before each zigzag flight, without being 
able to change it mid-flight, were the main reasons why implementing the zigzag protocol during 
closing mode effort was not possible with the Seahawk drone. While the latter issue may be resolved, 
the short endurance of the Seahawk makes it unsuitable for implementing zigzag flights during closing 
mode effort. A different drone with longer endurance, and a more flexible flight plan editing 
procedure, will be required for implementing the zigzag flights during closing mode effort during the 
main survey. 

Despite the video quality issues noted above, three proof-of-concept machine learning models were 
developed for analysing data generated from the video footage collected during the trial survey. The 
first machine learning model used convolutional neural networks (CNNs) and the still images from the 
video footage. The second used clustering algorithms and the video footage from which velocities of 
objects in the frame were calculated using the optical flow technique. Both these models achieved 
about 75% balanced accuracy 2 on their validation datasets. A third model was developed which 
combined these two approaches and achieved better balanced accuracy of about 83%. This model 
performance was not sufficient to make useful detections in the video footage for either the zigzag or 
calibration flights. This is because, while detections of cetaceans could be made via video analysis, 
review of these detections by a human observer revealed that the false positive detections caused by 
poor video quality outweighed the cetacean detections. 

As a result of careful review of the video imagery by human observers, five detections of cetacean 
schools by the drone observers during zigzag flights could be confirmed, which demonstrates that 
detections of cetaceans could be made in real-time by the drone observers and, hence, using drones 
to collect MRDS data is possible. During real-time monitoring, drone observers logged 92 potential 
objects of interest; out of these, six were confirmed as detections of cetacean schools. Two of these 
were of the same school, giving a total of five data points (trials) for the MRDS analyses. For three of 
these trials the outcome was determined to be failure, i.e. flying bridge observers did not detect the 
same school, as none of the sightings made by the flying bridge was a potential duplicate. For the 
other two drone detections a potential match with respective to flying bridge detections could neither 
be confirmed nor excluded. New MRDS analysis methods need to be developed to incorporate this 
uncertainty in the duplicate matching as well as to accommodate closing mode effort.  

In spite of the poor performance of the Seahawk drone for zigzag flights, the trial survey demonstrated 
that this type of drone can be used successfully for school size calibration flights. However, a higher 
resolution camera is needed to identify all individuals to species and to ensure animals swimming in 

 
2 Balanced accuracy is the mean of the true positive rate and the true negative rate. 
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close proximity to each other can be distinguished. Both are required to obtain accurate counts by 
species. Recording multiple sweeps across a given calibration school with slightly varying angles 
proved important to alleviate potential glare issues. For six schools, all clusters were captured with 
the drone footage. Manual counts by a human observer were obtained for five of these schools and, 
hence, the schools are valid calibration schools. However, to reliably make detections from the 
calibration flights and obtain counts via image analysis, better quality video is needed (see following 
paragraph).  

Given the results of this trial survey, in the next phase of the project, different drone-camera systems 
with longer endurances and greater video resolution than those provided for the trial survey should 
be tested. Higher video resolution would also allow the drone to operate at higher altitudes while 
maintaining the same ground resolution. Increased altitude would also increase the area covered by 
the drone, and thus increase the sample size for the trackline detection probability assessment. These 
tests should be conducted in a short sea-trial on a vessel from which drones can be launched under 
similar conditions as the Jorge Carranza. We recommend that before such a trial, any potential drone 
provider should provide a detailed assessment of how they can accomplish the project goals. The 
duration of such a sea trial should be long enough to collect data suitable for improving image analysis 
algorithms. This requires that schools of dolphins will need to be captured with the video recorded 
during the zigzag flights flown using the parameters (i.e. the drone altitude and speed as well as the 
video resolution) required to implement a full coverage of the area 5nm ahead of the ship with a 
corridor half-width of 3nm. The necessity of conducting a further sea trial and post-trial image analyses 
needs to be factored into the timing of the main survey.  

2. BACKGROUND 

Following recommendations from a recent workshop on methods for estimating marine mammal 
abundance (Johnson et al. 2018), the Inter-American Tropical Tuna Commission (IATTC), in 
coordination with the Comision Nacional de Acuacultura y Pesca (CONAPESCA) of the government of 
Mexico and with the support of the Instituto Nacional de Pesca y Acuacultura of Mexico (INAPESCA), 
the Mexican tuna industry, and the Centre for Research into Ecological and Environmental Modelling 
(CREEM) at the University of St Andrews (USTAN), is undertaking a ship-based survey, in conjunction 
with drones, to estimate the abundance of dolphin populations in the eastern tropical Pacific Ocean 
(ETP) and improve management of those populations and the ETP ecosystem. The project was 
designed to be carried out in two phases: a short trial survey, and a longer main survey. The purpose 
of the trial survey was to test the methodology developed by researchers at CREEM (Oedekoven et al. 
2018) and equipment provided for the main survey. Specifically, in addition to evaluating the overall 
suitability of the research vessel and marine mammal observers for the project, the trial survey had 
two goals related to the use of drone equipment provided to the project: 1) test whether the drones 
can be used to detect dolphin schools directly ahead of the survey vessel that might be missed by ship-
based marine mammal observers, data essential for estimating trackline detection probability of ship-
based observers, and 2) test whether the drones provided can be used to collect data on dolphin 
school size and species composition, data essential for calibrating estimates made by the ship-based 
observers (school size calibration).  

To test the research plan, an international research team sailed out from Mazatlán, Mexico, aboard 
the R/V Dr Jorge Carranza Fraser, provided by the INAPESCA for the project, for a 14-day research trip, 
from 17 – 30 November, 2019. The team was led by Dr Cornelia Oedekoven of USTAN and Dr Cleridy 
Lennert-Cody of IATTC, and composed of scientists, drone pilots and mechanics from four different 
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countries (Mexico, USA, Germany and Chinese Taipei). The area off the Mexican coast between 
Manzanillo and Acapulco was selected as the study area for the trial survey because it has been shown 
(Reilly 1990) to be the area with highest density of spotted and spinner dolphins (Figure 1) within the 
ETP, regardless of season.  

 

FIGURE 1. Eastern spinner dolphins (left) and spotted dolphin (right). Photo credits: Paula Olson. 

In this report we present a summary of work undertaken during the trial survey and results based on 
detailed analysis of all the data collected during the trial survey. We discuss the implications of the 
outcome of the trial survey with regard to equipment, methods and timing of a main survey.  

3. OBJECTIVES TRIAL SURVEY 

As proposed by Oedekoven et al. (2018), the potential objectives of the main survey are:   

1. Estimate relative abundance of priority stocks such that the estimates are comparable as far 
as possible with past estimates from NMFS surveys. 

2. Estimate absolute abundance of the priority stocks.  

For this phase of the project it was assumed that the priority species included only the north-eastern 
offshore spotted dolphin and the eastern spinner dolphin; for a definition of priority stocks see 
Oedekoven et al. (2018; Section 2.2). Previous surveys in the ETP have been conducted on NOAA 
research vessels following a well-defined survey protocol (Kinzey et al. 2000). During these cruises, 
employing trained observers and high observer consistency within and between cruises contributed 
to the comparability of estimates from different years, as did repeated use of the same research 
vessels. Hence, to meet objective 1, it is necessary to maintain this comparability for the main survey 
with regards to the ship, observers and survey protocol. Furthermore, school size calibration has 
generally been a component of previous NMFS surveys in the ETP where suitable calibration schools 
were photographed from helicopters or fixed-winged aircraft. Using drones instead for this purpose, 
as proposed by Oedekoven et al. (2018), needs to be tested before a main survey.  

In order to address objective 2, Oedekoven et al. (2018) proposed to use drones to collect mark-
recapture distance sampling (MRDS) data. For this purpose, a drone should be flown ahead of the ship, 
preferably during all daylight hours of every survey day when flying bridge observers are on effort, i.e. 
during suitable viewing conditions with Beaufort sea states < 6, sufficient visibility and no rain. The 
drone should fly 5nm or more ahead of the ship covering the area widely in a zigzag pattern or with 
parallel lines. Video footage taken via the drone needs to be transmitted back to the ship for real-time 
monitoring by the drone observers as well as be recorded aboard the drone for post-survey image 
analyses. The drone needs to be flown at a suitable altitude and speed to video-capture a sufficiently 
large area in front of the ship to obtain a large enough sample size (number of detected cetacean 
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schools) for MRDS analyses. At the same time, the video footage should have sufficient resolution to 
allow the species of any dolphins detected to be identified.  

Hence, for the two main survey objectives above combined, the purpose of the trial survey was to 
perform the following tests listed below.  

1 Test the research vessel as a suitable platform to conduct line transect surveys using NMFS 
protocol: 

a. Flying bridge setup; 
b. Observers; 
c. Ship and crew. 

2 Test the research vessel as a suitable platform to conduct drone operations: 
a. Platform for launching and landing during varying sea states; 
b. Drone operations; 
c. Drone team. 

3 Test the drone for collecting trackline detection probability data: 
a. Fly 5nm or more ahead of the ship in a zig-zag pattern or parallel lines covering a large 

area during closing mode effort; 
b. Collect high-resolution video of suitable quality for dolphin species identification and 

record on-board the drone; 
c. Real-time transmission of video back to the ship; 
d. Real-time monitoring by drone observers for cetacean sightings; 
e. Develop algorithms post-survey for automatic detection of cetacean schools using video 

recorded on board the drone. 
4 Test the drone for collecting school size calibration data: 

a. Navigate the drone over the calibration school; 
b. Fine scale manoeuvring when with the school; 
c. Collect high-resolution video of the school of suitable quality for species identification of 

each animal and record video on-board the drone; 
d. Real-time transmission of video back to the ship; 
e. Real-time monitoring by drone observers for cetacean sightings; 
f. Develop algorithms post-survey for automatically generating counts of cetacean groups 

using video recorded on board the drone. 

4. STUDY AREA AND ITINERARY 

Following Oedekoven et al. (2018), the study area for the trial survey was selected to be within the 
area of the ETP in which highest densities of the priority species, the north-eastern offshore spotted 
dolphin and the eastern spinner dolphin, would be expected (Reilly 1990). There were 16 pre-designed 
transect lines to be followed by the research vessel during the trial survey (Figure 2, Table 1). Transects 
1 and 16 were designed to lead out of and back to Mazatlán, while transects 2-15 were in the high-
density area (Figure 2). The scheduled dates for completing the transect lines are shown in Table 1. It 
is noted that for the purpose of this trial survey, it was not important to follow the transect lines 
exactly or to cover all lines within the survey. The lines served merely as examples to practice the 
protocol for the main survey.  
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FIGURE 2. Study area (shaded area) and transect lines designed for the trial survey. 

TABLE 1. Planned dates in 2019 for surveying each of the transect lines shown in Figure 2. 

Planned date Transect 
17 November 1 
18 November 2 
18 – 19 November 3 
19 – 20 November 4 
20 – 21 November 5 
21 – 22 November 6 
22 – 23 November 7 
23 November 8 
24 November 9 
24 – 25 November 10 
25 – 26 November 11 
26 – 27 November 12 
27 – 28 November 13 
28 – 29 November 14 
29 November 15 
30 November 16 
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5. METHODS: EQUIPMENT AND PROCEDURES 

5.1. Research vessel as a suitable platform to conduct line transect surveys using NMFS 
protocol  

5.1.1. Flying bridge installations 
To serve as a marine mammal survey vessel, the R/V Dr Jorge Carranza Fraser had to be outfitted with 
a special observation platform on the level above the bridge, called the flying bridge. This flying bridge 
included four sets of high-powered binoculars (bigeyes) mounted on pedestals, a data recorder station, 
a wind dam and a canopy for sun protection (Figure 3). The flying bridge setup included a recorder 
station with a waterproof box containing the keyboard and monitor connected to a PC located in the 
drone lab (shown below in Figure 6, Section 5.3.2). At any given time when flying bridge observers 
were on effort, three observers were simultaneously on watch, rotating at forty minute intervals from 
the port side bigeyes to the central observer station and then to the starboard bigeyes (more details 
in the next section). The observer at the center station (“recorder”) entered data on survey effort, 
viewing conditions and sightings using WinCruz software developed for previous NMFS surveys. 
Crucial information for initialising WinCruz software was the height of the binoculars mounted on the 
flying bridge above sea level (20.44m).  

The design of this flying bridge was based on instructions and examples provided by CSO with 
consultancy from JCS (full names corresponding to initials are provided in Table 2). Using these 
instructions, engineers at SENAV designed a blue-print and worked on the installation of the flying 
bridge before the survey. 

It is noted that the installation of the flying bridge according to the blueprint was never fully completed 
before the trial survey. This had several consequences. The metal platforms that were supposed to 
surround the pedestals were left as full rectangular platforms sitting behind the pedestals. This was a 
major problem as the observers needed to scan not only the area forward of the ship but also to the 
sides. The platforms were also not high enough to accommodate the observers for viewing through 
the bigeyes. The observer chairs were built too low so that the central observer sitting in the chair 
could not scan the waters near the ship (which is one of their main duties) while seated. Temporary 
fixes were implemented by JCS before the trial survey started (see Figure 3). These included holes cut 
into the metal platforms so that they could surround the bigeye pedestals, and stacks of wood to raise 
the height of the platforms. A safer solution to the latter issue will be needed for a main survey.  
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FIGURE 3. Observers on the flying bridge: three main observers, SY, EV and AB (for initials refer to 
Table 2) scan the forward 180˚ with big eyes binoculars and naked eye. Tracker BB, on the right, 
focuses on the central areas within 15° on either side of the ship. Note the wooden pieces used to 
increase the height of the platforms were only a temporary fix. This was required as the pedestals did 
not allow lowering the bigeyes enough for the observers. 

5.1.2. NMFS survey protocol: line transect surveys in closing mode  
During previous surveys, which were conducted by the NMFS, conventional distance sampling 
methods (e.g., Buckland et al. 2015) were used to estimate abundance of dolphins (Gerrodette et al. 
2008). During such surveys, the ship travelled sequentially along each transect line placed in the study 
area, and trained marine mammal observers recorded the location of cetacean schools using 
measurements of the radial distance to the dolphin schools from the ship and angle in relation to the 
ship’s heading (Figure 4), as well as the size and species composition of the dolphin schools (Kinzey et 
al. 2000). Radial distances were obtained with the use of the reticle scale in the right ocular of the 
bigeyes, and angles were read off the angle ring. The recorder entered the angle and reticle into 
WinCruz software which calculates a distance to the sighting using the reticle and height of the 
observer that made the sighting above sea level.  
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FIGURE 4. Bigeye binoculars (25 x 150 powered): the angle ring and pointer as well as the reticle scale 
in the right ocular allowed determination of the angle and radial distance of the detected dolphin 
school in relation to the ship. 

Previous ETP surveys were conducted in closing mode where, in the case that the flying bridge 
observers detected a school within 3nm perpendicular distance from the transect, they stopped 
search effort when the sighting was made and turned the ship to approach the detected school in 
order to obtain species identification, group composition and group size estimates. These approaches 
were directed from the observers on the flying bridge in direct communication via VHF radio to the 
bridge. When all the necessary data on the school were collected, the flying bridge would resume 
search effort from their current location while the ship continued along the transect or on a track 
parallel to the original transect, if the approach had taken them away from the original transect. 
Further details can be found in (Kinzey et al. 2000).  

The alternative to closing mode is passing mode where the observers collect all information on the 
school from a distance while the ship passes the school without changing course or speed. Using the 
data collected during a survey in the ETP dedicated to reveal potential differences between closing 
mode and passing mode estimates, Schwartz et al. (2010) demonstrated that closing mode encounter 
rate estimates were on average lower than passing mode estimates. Passing mode, on the other hand, 
can result in negatively biased school size estimates and poor species identification.  

Species are always identified to the lowest taxonomic level possible using NMFS species codes (Kinzey 
et al. 2000). If, for example, a group of dolphins was too far away to be seen well enough, the species 
code entered for the group could be one of the following options: 077 (unid. dolphin), 177 (unid. small 
delphinid), 277 (unid. medium delphinid). In some areas, subspecies distributions overlap, which may 
result in the use of specific codes to indicate that the group could not be identified to any particular 
subspecies (e.g. 090: Stenella attenuata unid. subsp.).  

The NMFS survey protocol further includes a special protocol for obtaining group size estimates as 
there is a considerable amount of uncertainty and potentially bias in the observer estimates. For every 
school, each observer on watch makes an independent estimate of the group size, including best, high 
and low estimates, as long as they were confident that they saw the entire school. In the case of 
multispecies schools, observers also estimate the percentage of the school represented by each 
species. Each observer records estimates in their own notebook, without exchanging any information 
on numbers with other observers. The cruise leader transfers the estimates into the WinCruz data files 
at the end of each day. At the analysis stage, estimates are adjusted by an observer-specific calibration 
factor with the intent to correct potential biases in each observer’s estimates (e.g. Gerrodette et al. 
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2018). This factor is obtained for each observer by comparing their school size estimates for specific 
schools, called calibration schools, against the true counts for these schools. Calibration schools are 
those schools for which aerial photographs were taken, capturing the entire school, and thus true 
counts could be obtained. In this way, the calibration schools are used to calibrate each observer, i.e. 
compare each observer’s estimates with the true counts and estimate an observer-specific calibration 
factor. Observers are never told what their calibration factor is while they are active observers, i.e. 
before retirement, in order to maintain consistency across years.  

5.1.3. Observers  
Out of the 12 scientific personnel who participated in the trial survey, eight have extensive experience 
conducting marine mammal surveys using the NMFS survey protocol (rows 1 - 8 in Table 2) of which a 
large proportion took place in the ETP. Six of these (rows 3 - 8 in Table 2) formed the key flying bridge 
observer team rotating through two-hourly watches (40 min at each position: port side bigeyes, 
recorder, starboard bigeyes) throughout all daylight hours. The survey coordinator and visiting 
scientist stood drone observer watches and trained the two junior observers in their duties. Two junior 
observers (rows 9 - 10 in Table 2) were recruited from the IATTC observer pool and have extensive 
experience of monitoring marine mammals in the ETP. These were trained in both drone observer and 
flying bridge duties. For the latter, they stood tracker watches, tracking sightings on the bigeyes, and 
evaluated in situ if their sightings matched any of those made by the main team of flying bridge 
observers.  
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TABLE 2. Scientific personnel on board the trial survey (not including INAPESCA personnel). 

# Initials Title Name Tasks 

1 CSO Chief scientist / cruise leader Dr Cornelia Oedekoven 

Supervision and coordination of all teams, 
communication with command, drone directing 
during calibration schools, daily science meetings, 
daily data editing and backup 

2 JCS Survey coordinator/lead drone observer Mr Juan Carlos Salinas 
Drone station and flying bridge watches, data entry 
and proofing, logistics, hardware and software 
maintenance, final flying bridge setup 

3 PO Flying bridge observer Ms Paula Olson 
Flying bridge watches, sighting forms, data entry 
and proofing, photo-id, schedule 

4 SY Flying bridge observer Ms Suzanne Yin 
Flying bridge watches, sighting forms, data entry 
and proofing, training new personnel, WinCruz 
software installation 

5 AB Flying bridge observer Ms Andrea Bendlin 
Flying bridge watches, sighting forms, data entry 
and proofing, photo-id 

6 CH Flying bridge observer Mr Christopher Hoefer 
Flying bridge watches, sighting forms, data entry 
and proofing 

7 DB Flying bridge observer Ms Dawn Breese 
Flying bridge watches, sighting forms, data entry 
and proofing 

8 EV Flying bridge observer Mr Ernesto Vazquez 
Flying bridge watches, sighting forms, data entry 
and proofing 

9 RDL Jr observer/drone observer Mr Ramon De Leon 
Drone station watches, tracker watches flying 
bridge 

10 BB Jr observer/drone observer Mr Braulio Bernal 
Drone station watches, tracker watches flying 
bridge 

11 CLC Visiting scientist/lead drone observer/assistant cruise leader Dr Cleridy Lennert-Cody 
Drone station watches, assisting cruise leading (see 
tasks above) 

12 AS Host country observer Dr Alvin Suarez Logistical coordination 
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5.1.4. Ship and crew 
Closing mode effort required that the ship generally traveled at a constant speed of 10 knots along 
the transect line; however, when flying bridge observers detected a school of cetaceans they 
requested changes in course and speed from the bridge officer on duty via VHF radio. An efficient 
approach of the school depends on the rapid responses of the officers to these potentially frequent 
requests, and on the general manoeuvrability of the ship, i.e. how well it accelerates/decelerates and 
turns.  

5.1.5 Estimating detection probabilities and comparison with previous surveys 
Detection probabilities were estimated by fitting a half normal detection model to the observed 
perpendicular distances with a truncation distance 𝑤𝑤 (largest distance included in analyses) of 5.5 km. 
Models were estimated for spotted and spinner dolphins where data for all subspecies were combined 
for the respective species to increase the sample size for the analyses (Buckland et al. 2015). For more 
robust estimation, we used multiple covariate distance sampling (MCDS) methods where data from 
spotted and spinner dolphins were combined in a single analysis with species as a covariate for the 
detection function model (Marques et al. 2007). This provided species-specific estimates of the 
detection function, its parameters and various quantities that can be derived from the detection 
function, such as the average detection probabilities 𝑝𝑝 within the search strip of half-width 𝑤𝑤 or the 
probability density function of observed distances evaluated at distance zero 𝑓𝑓(0) where 𝑓𝑓(0) = 1

𝑝𝑝𝑝𝑝
.  

We compared these estimates with those from previous surveys (1979-2000) using the estimates of 
𝑓𝑓(0) for the northeastern offshore spotted dolphin and the eastern spinner dolphin from (Gerrodette 
and Forcada 2005). For a more formal investigation on whether significant differences between ships 
or between present and previous surveys in general exist, MCDS analyses should be done using all 
data from previous and present surveys combined with ship or year as a covariate. However, data 
from previous surveys were not available.  

5.2 Research vessel as a suitable platform to conduct drone operations 
5.2.1 Drone platform 
The vessel was outfitted with a special platform on the stern for launching and landing the drone 
(Figure 5). This platform was a temporary construction providing a T-shaped flat surface spanning the 
full width of the ship and elevated from the back deck, thereby reducing the amount of metal 
obstructions that could be hazardous to launching and landing operations, especially on a moving 
vessel. Ropes were fitted across the platform that the drone team used to tie themselves to the 
platform via harnesses for safety.  
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FIGURE 5. Platform for launching and landing drones on the back deck of the R/V Dr Jorge Carranza 
Fraser with a Seahawk S drone operated by pilots from Gtt NetCorp ready for take-off. 

5.2.2 Drone operations 
Drones were supposed to be flown during all daylight hours when flying bridge observers were on 
effort, i.e. during Beaufort sea states up to 5. The feasibility of this was to be tested during the trial 
survey, as well as successful completion of flights. The two different types of drone operations 
required for the various objectives (Section 3) posed different challenges which are described in the 
following sections (Sections 5.3 and 5.4). Hereafter, for the sake of brevity, we will refer to the flights 
conducted with the purpose of collecting data on trackline detection probability as “zigzag” flights and 
the flights conducted for school size calibration as “calibration” flights.  

5.2.3 Drone equipment and personnel  
The equipment and personnel were selected for and provided to the trial survey project by Gtt 
NetCorp. Three Seahawk S drones (Geodrones, www.geodrones.com, referred to as Seahawk in the 
following for brevity) were made available, of which two were complete systems with a camera each, 
and one was without camera (see Appendix for drone specifications). The personnel provided 
consisted of five drone pilots and engineers and one liaison and logistics support person (Table 3). The 
primary pilot, LCY, was the only 1st pilot and responsible for all launches and landings. The relief pilots 
(2nd pilots) took over while the drone was in the air. TW was the team leader and responsible for 
communications with the scientific personnel. The operations manager, CO, executed fast change-
overs between drone flights.  
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TABLE 3. Drone team members provided by Gtt NetCorp. 

Initials Title Name Tasks 

LCY 1st (main) Pilot / Engineer 
Mr Lu Cheng-Yuan 

(Kevin) 
Responsible for all take offs and landings from ship; hand over to other pilots 
cruising mode 

TW 2nd (relief) pilot Mr Travis Wiginton 
Support flying helicopters while cruising; hand over the take-off and landing, 
communication with chief scientist and at daily science meetings 

LYM 
Support C3 Engineer & 

Language; 2nd (relief) pilot 
Mr Lin Yi-Min 

Support flying helicopters while cruising; hand over when take-off and 
landing 

LJH 
Support C3 Engineer & 

Language; 2nd (relief) pilot 
Mr Lin Jia-Huei (Jason) 

Support flying helicopters while cruising; hand over when take-off and 
landing 

CO 
Operations Manager and 

Support C3 Logistics 
Mr Carlos Orellana Drone maintenance, change-over of drones between flights 

VT 
Liaison language support; C3 

Logistics Coordination support 
Ms. Violeta Trigueros Assist drone team, attend daily science meetings 
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5.3 Trackline detection probability 
5.3.1 Mark-recapture distance sampling (MRDS) with drones as a second observer 
During line transect surveys, observers are allowed to miss dolphin schools that pass the ship at some 
distance from the transect line. However, it is assumed that observers detect all schools directly on 
the transect line (Buckland et al. 2015). If schools on the transect line pass undetected, the resulting 
abundance estimates will be biased low. As the dive intervals of the dolphin species of interest are 
relatively short, it has generally been assumed that all schools on the transect lines are detected, 
regardless of weather conditions (Gerrodette and Forcada 2005). However, a recent analysis of 
previous survey data (Barlow 2015) provided evidence that this may not be the case (hereafter 
referred to as the “g(0) issue”), and that the probability of missing schools on the transect line 
increased when wind speeds increased and viewing conditions deteriorated.  

During the trial survey, we tested if the drones provided could be used to collect data for estimating 
trackline line detection probability. The preferred method for addressing the g(0) issue for the ETP 
survey is mark-recapture distance sampling (MRDS, e.g. Borchers 2012). In contrast with conventional 
distance sampling where, e.g., line-transect data are collected from a single platform, MRDS methods 
require double-observer platform data. Here, detections made from one platform, say platform 2, 
represent trials for the other platform, say platform 1. In this context, trial outcomes (successes or 
failures) refer to whether or not platform 1 detects a group of dolphins initially detected by platform 
2. Here it is crucial that the two observation platforms are such that platform 2 does not influence the 
observers on platform 1.  

5.3.2 Testing zigzag flights 
For this survey, a drone would serve as platform 2 (see previous section) and survey the area in front 
of the ship by flying a zigzag pattern, covering a wide corridor across the transect line while 
maintaining station at 5 nm ahead of the ship. Video footage captured by the drone would be sent 
back to the ship for real-time monitoring by the drone observers (Figure 6) and recorded onboard the 
drone for post-survey image analyses. The sightings made via the camera equipment aboard the drone 
(using detections made by both real-time observation and image analyses) would represent the trials 
for the flying bridge observers (platform 1). The drone should survey sufficiently far ahead of the ship 
so that dolphins will not have reacted to the ship at the time they are detected by the drone. This 
distance was to be investigated during the trial survey.  
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FIGURE 6. Drone observers CLC and JCS monitor the drone video footage transmitted back to the ship 
in real-time. Drone engineer LJH of Gtt NetCorp, on the left, ensures that video footage and GPS data 
are recorded. 

Detections of dolphin schools and their locations were to be compared with those made by the flying 
bridge observers. Details of the drone protocol and the equipment provided to the project can be 
found in the Appendices. Given the drone protocol, the following tests of the use of Seahawk drones 
and cameras were to be conducted:  

1) Fly a zigzag pattern 5 nm ahead of ship covering a wide corridor continuously during all 
daylight hours when the flying bridge observers are on effort (Figure 7a);  

2) Transmit video in real-time to the ship and provide a real-time feed of drone GPS into 
computer system used by the drone observers; archive video, GPS and altitude 
information on board the drone;  

3) Fly two drones at the same time to provide continuous coverage of the ship’s trackline 
during all hours when flying bridge observers are on effort; and,  

4) When the ship turns on a sighting made by the flying bridge observers, the drone turns to 
the location of the sighting and continues the zigzag flight from there on a projected 
transect line (Figure 7b). 
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FIGURE 7. Zigzag flight of the drone (green-white symbol) in relation to the ship (black polygon) where 
green and black bubbles represent the recent track of the drone and ship, respectively. Light blue lines 
represent 0˚, 90˚, 180˚ and 270˚ from the ship, black circles are concentric distance rings around the 
ship, each 1nm apart, red dot is a dolphin sighting made by flying bridge observers. a) Drone covers 
area in front of the ship while maintaining 5nm distance to the ship; b) Drone continues zigzag from 
the location of the sighting along a projected transect while the ship works the sighting. Once the ship 
resumes effort, the areas immediately in front of the ship and out to 5nm ahead of the ship were 
covered already by the drone. Projected transect here is the course of the transect from the location 
of the sighting. 

5.3.3 Real-time monitoring and review 
Lead and junior drone observers conducted real-time monitoring of the drone footage in teams of two 
with at least one lead observer present at any time while the drone was in the air. Drone observers 
tracked the progression of the drone along its path in the map view of the drone-WinCruz software, 
which was a version of WinCruz specifically modified for the trial survey to monitor drone and ship 
tracks simultaneously. This software allowed drone sightings to be entered, as well as flying bridge 
sightings, to evaluate the spatial proximity of potential duplicate sightings made by the two platforms. 
Drone observers also kept a written log of notes relating to effort and objects of potential interest 
detected in real-time in the video, i.e. potential schools of cetaceans. Most of these objects of 
potential interest were reviewed in the same evening, and all were reviewed again in St Andrews.  

5.3.4 Video analysis 
During the trial survey, the Seahawk drones recorded about 69 hours of video footage. Due to the 
amount of footage recorded in these types of studies, it is generally not practical to enlist a human 
observer to review the entire footage again post-survey in order to make detections of cetacean 
schools and to count individuals within each detected school recorded in the video footage. Thus, the 
aim of this project was to develop image and video analysis methods for these purposes. Specifically, 
a novel two-pronged approach was developed to address this problem. The two-pronged approach 
used both the still frames that the video is composed of and the video itself to calculate the velocity 
of objects or shapes within these frames. The image and video analysis component of this project can 
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be split up into two main sections: 1. dataset generation, and 2. design and implementation of 
supervised3 and unsupervised4 machine learning models. 

5.3.4.1 Video Data 
Departures by the drone company from the survey protocol on video capture and storage led to 
suboptimal imagery. The camera on board the drone recorded video at a resolution of 1920 x 1080 
pixels. However, the drone then streamed the video data to a computer on the ship, instead of saving 
it to disk on the drone, contrary to specifications in the trial survey protocol. This process of streaming 
the video from the drone to the ship caused a vast reduction in video quality due to the video 
compression required to stream the video. The video was then captured via screen recording on the 
computer on the ship, instead of saving straight to disk, also contrary to specifications in the protocol. 
This again vastly decreased the quality of the video because the video was compressed as it was 
captured.  

In addition to these two layers of video compression, the screen capturing process introduced several 
other artefacts. The first was the toolbar added to the right of every frame in all the footage (Figure 
8). This meant that a portion of the video was lost for analysis. Next, occasionally a mouse cursor 
(Figure 8) or the computers desktop was captured, which again meant a loss of some or all of the 
image for analysis for some periods of time. Additionally, the computer’s screen resolution was 2040 
x 1036 pixels, which meant that the video footage was stretched, causing the computer to use 
interpolation on the video to approximate the extra pixels. Finally, another consequence of screen 
recording was that the original frame rate of the video captured by the drone was lost, meaning that 
the motion data was not as accurate as it would have been were the footage captured and saved to 
disk on board the drone. To illustrate the problem caused by this compression, distortion and 
interpolation, Figure 9 shows what a dolphin looked like when the section of the still frame containing 
the dolphin was enlarged. Human expert observers had difficulty identifying dolphins when viewing 
enlarged image section without the context of the larger image or video footage. 

 

FIGURE 8. Example of still frame from drone video footage. The top left corner shows the current 
zoom level. Top right shows the date and time. Toolbar on the right side of the image is due to the 

 
3 Supervised learning is a machine learning task where the machine determines a predictive model based on 
data with known outcomes. 
4 Unsupervised learning is machine learning task where the model looks for previously unseen relationships in 
data with little to no human supervision. 



 
 

20 
 

video being screen recorded. Below the larger cluster of dolphins in the middle of the image, a mouse 
cursor is present. 

 

 

FIGURE 9. Example of the quality of the data demonstrating the poor pixel resolution. The enlarged 
section on the left shows the dolphin enclosed in the green box within the large frame. Without 
context of the large frame (or the video, not shown here), the object in the enlarged section is almost 
impossible for a human observer to identify accurately as a dolphin and it is entirely impossible to 
identify its species. 

5.3.4.2 Dataset Generation 
As the supervised portion of the machine learning model required labelled5 data, we first needed to 
generate a dataset that could be labelled by an expert human observer (see Section 5.3.4.2.1 for 
details). A subset of the overall video footage was chosen based upon the drone observer notes, which 
detailed the types of animals observed, and when they appeared in the drone footage. Video 
segments were chosen so that they included some instances of all animals observed (dolphins, whales, 
turtles, birds), objects (trash, boats, logs), and different sea conditions. This was done to ensure that 
the final model would not confuse any other object with the target, the dolphin. Still frames were 
extracted from these video segments, with one frame taken every 25 frames (video frame rate is 
approximately 25 frames per second, so this equated to one frame every second). This process yielded 
around 8,000 frames for dataset generation. The frames were then fed into a computer vision 
algorithm specifically designed for this project. Figure 10 shows the main steps of this algorithm. 

The first stage of the algorithm was to open the image and then acquire the magnification and altitude 
data from the still imagery and other data sources. The video equipment recorded a magnification 
factor (zoom) in each frame, and the drone team recorded the drone’s GPS position and altitude while 
recording the video footage. A script was created to parse the GPS and altitude information, and assign 

 
5 Labelled data is data that has been tagged or classified with labels that identify certain properties or features 
or contained objects. Here it is used to classify groups of pixels. 
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a GPS position and an altitude to each frame. Due to the poor resolution and the distortion of the 
video footage, it was not feasible to use simple Optical Character Recognition (OCR) (Mori et al. 1999) 
to obtain the magnification number (see upper left corner of Figure 8) in each still image. Therefore, 
a simple neural network was trained on the well-known handwritten numbers dataset, MNIST (LeCun, 
Bottou et al 1998), and then used to read the magnification number in the video footage. 

In order to be able to screen all frames, a relationship between magnification and altitude, and dolphin 
size was obtained from still images with confirmed dolphins. The measurements of confirmed dolphins 
were obtained with ImageJ (Rasband 2008) software using the line measurement tool to measure 
from beak tip to end of the tail. These measurements were carried out on frames which contained 
several dolphins that were readily observable to ensure that any errors in the measurements were 
minimised. A straight line was fitted to the data which related altitude and magnification to dolphin 
length (Figure 11). 

FIGURE 1. Overview of computer vision algorithm for the generation of dolphin objects for labelling 
by a human expert. 
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The next step in the algorithm was to pre-process each of the 8,000 frames. This involved cropping 
the image of each frame to remove the time, magnification and toolbar (Figure 8).  

Once the images were pre-processed, they were further analysed to identify dolphin objects. The type 
of analysis depended on the magnification level because it was found through experimentation that 
for higher levels of magnification a different method performed better than the method used for 
lower levels of magnification. If the magnification level was greater than or equal to 4x, only the red 
channel of the frame was analyzed, as cetaceans appear redder when compared to the sea (Marie, 
Mejias et al. 2013). The red channel was thresholded which yielded a set of possible-dolphin objects 
from the video footage with magnification greater or equal to 4x. If the magnification was less than 
4x, some further pre-processing was carried out to remove noise, and to mask areas where sun glare 
was prominent. This yielded a set of possible-dolphin objects from the video footage with 
magnification of less than 4x. These possible-dolphin objects were then processed to remove low 
brightness pixels that were not connected to the object or fell below a certain brightness threshold, 
thereby removing non-dolphin objects from the dataset. The final step of the algorithm was to reduce 
the number of objects that would be incorrectly classified as dolphins during analysis of the imagery 
by taking into account the size of possible-dolphin objects. To this end, the expected size of a dolphin 
within each frame was estimated from the altitude and magnification data. This allowed a comparison 
of the expected size with the size of the objects that were identified by the algorithm as possible 
dolphins within these frames. These would then be removed if they were too small or too large to be 
a dolphin, thereby reducing the number of objects that would be incorrectly classified as dolphins 
during analysis of the imagery. 

This algorithm yielded a set of 248,879 possible-dolphin objects for labelling (classification) by a human 
expert observer, of which about 10% were labelled (see following subsection).  

5.3.4.2.1 Manual object classification 
A set of 20,195 objects, from the 248,879 possible-dolphin objects selected by the computer vision 
algorithm from the drone videos (Section 5.3.4.2), were reviewed by a human observer. The objects 
were of different sizes (i.e., varying number of pixels), potentially included one or more dolphins, and 

FIGURE 2. Straight line fit for relating dolphin length to magnification and drone altitude. Mean 
measured dolphin lengths for a given magnification/altitude are shown as stars (mean), whiskers 
reach out to 1 SD from the respective mean. The straight line fit yielded the equation shown in the 
legend, where y is the measured dolphin length, and x = magnification / altitude. 
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showed the full extent or only a section of the individual(s). An observer manually reviewed the 
selected objects by viewing them individually using a graphical user interface (GUI) designed 
specifically for this project. The GUI contained a set of options that facilitated the classification of each 
object. Specifically, for each possible-dolphin object, the GUI presented the observer with three panels. 
The first panel showed the full still frame in which the possible-dolphin object was detected with the 
object surrounded by a bounding box. This panel was very useful for context, e.g. to see if other 
dolphins were nearby. In a second panel, the object was enlarged, which was useful for identifying the 
shape of the object. In the third panel, a short video sequence was provided, which contained the full 
still frame in the middle of the sequence. The video sequence proved to be very useful for classification 
as it allowed the user to follow the movement of the object through a series of frames.  

Eleven classes were defined for object classification. Classes were based on only one type of wildlife 
being captured within the box surrounding the object, e.g. dolphin (or multiple dolphins), or bird. In 
cases where more than one classification was in theory possible, cetaceans took priority over non-
cetaceans and dolphins took priority over whales. For example, if one dolphin was captured swimming 
under a log, the object was classified as dolphin. The ability to classify an object depended on the 
altitude of the drone, the magnification level of the drone camera, the quality of the footage and the 
environmental conditions during which it was recorded. A conservative classification approach was 
adopted, i.e. objects were only classified as dolphin, or other specific animal or object when it was 
possible to do so with certainty, and one of the unknown categories was used otherwise. The most 
important division in view of the machine learning models was between dolphin, multiple dolphins, 
whales on the one hand and the other classes on the other hand. Classes were defined as follows: 

Dolphin - This class was used when one dolphin could be identified as dolphin with certainty within 
the box. This included all delphinid species. If small sections of other individuals were present within 
the box they were to be ignored. The object could be an entire animal or a section of it; the dolphin 
could be underwater, surfacing or completely airborne (e.g. when leaping or spinning). As long as one 
dolphin could be identified, this dictated the object classification as dolphin. This also applied to jumps 
when the dolphin could be seen among the splash, regardless of the amount of water captured.  

Multiple Dolphins - This class was used when two or more dolphins could be clearly identified as 
dolphins, or the entirety or large sections of more than one dolphin were present within the box. This 
included all delphinid species. The object could be entire animals or sections of them. The dolphins 
could be underwater, surfacing or airborne. Dolphins could be close together or apart; they could be 
overlapping making it look like one continuous animal (either aligned or side by side).  

Whale - This class was used when one or more whales could be clearly identified as whales within the 
box. The object could be entire animals or sections of them. The whale(s) could be underwater, 
surfacing or airborne (breaching). No dolphins were to be present within the box or else the object 
would be classified as dolphin; other wildlife, on the other hand could be present. 

Bird - This class was used when one or more birds could be clearly identified as birds within the box. 
The birds could be flying, diving or sitting on the water, on other wildlife or on an object floating at 
the surface. In the case that a dolphin or whale was also visible within the box, the object was to be 
classified as dolphin or whale instead, respectively. In the case that a bird was sitting on a turtle, the 
object was to be classified as turtle. In the case that a bird is sitting on a log, the object was to be 
labelled as bird.  
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Turtle - This class was used when one or more turtles could be clearly identified as turtles within the 
box. The object to classify was generally the entire animal(s). The turtle(s) could be underwater or 
surfacing, swimming or resting.  

Fish - This class was used when one or more fish (e.g. shark, tuna) could be clearly identified within 
the box. The object to classify could be entire animal(s) or sections of such. The fish could be 
underwater or, less likely, surfacing or even airborne. No cetaceans were to be present within the box.  

Boat - This class was used when a ship, boat or a section of either, could be seen within the box. No 
wildlife was to be present. 

Rubbish/Log - This class was used when a floating object could be identified (e.g. log, plastic object). 
No wildlife were to be present. 

Unknown - This class was used when nothing in particular could be identified but the presence of a 
dolphin or other cetacean could not be excluded within the box. This may be the case when, for 
example, a dolphin had created a splash but it is not clear if the dolphin was still within the box. Other 
examples include when there was not enough definition in the still frame or video sequence to make 
a classification (e.g. the image was blurry or pixilated). 

Unknown, not cetacean - This class was used when cetaceans were definitely not identifiable within 
the box (e.g. the image was excessively pixelated or blurry, or too dark).  

Water - This class was used when nothing in particular could be identified within the box and only 
water features were observed, such as glare, waves or whitecaps. This could also include splashes 
created by dolphin jumps where the animal was no longer associated with the splash, and only 
water/splash can be seen within the box. 

5.3.4.2.2 Regrouping of classes  
The majority of objects (15,841) were labelled as water, the second most frequently assigned class 
was dolphin (2,704 objects), while five classes were only assigned five times or less (Figure 12), 
indicating that the labels were greatly unbalanced6. This typically results in machine learning models 
that predict poorly when applied to new (unseen) data. Therefore, the 11 classes were regrouped into 
two classes: dolphin, and not dolphin. The dolphin class was made up of the dolphin and multiple 
dolphin classes. The not dolphin class was made up of the remainder of the classes. The binary 
classification problem was easier than the multi-class problem, as there was more data for each of the 
labels, allowing the supervised machine learning models to better learn from the data, and therefore 
better predict on unseen data. 

 
6 An unbalanced dataset is a dataset where one or more labels is significantly underrepresented or 
overrepresented in the dataset. For example, a dataset containing the labels dog, duck, and cat which have 10, 
1000, and 34 entries respectively. This dataset would be said to be unbalanced as the duck label has 
significantly more entries that the other labels. 



 
 

25 
 

 

FIGURE 12. Distribution of classes from the labelled dataset: all original 11 classes (top pie chart); and, 
re-classified to the binary class case (bottom pie chart), where dolphin and multi-dolphin are one class, 
dolphin, and all other classes are in the not dolphin class. 

For both the supervised and unsupervised machine learning models, the dataset needed to be split 
into train, validation and test sets (Table 4). This split was required as the supervised machine learning 
models needed training data to train the models. The validation data was for tuning the model to find 
the free parameters (hyperparameters) that give the best performance. Finally, the test data would 
serve to assess the models performance on unseen data at the end of the training/tuning cycle. 
However, at the time of the report, models were not sufficiently tuned to analyse the test data set. 
Hence, only preliminary results for the validation data set are presented here. A ratio of 60%/20%/20% 
was used for splitting the labelled dataset into training/validation/test datasets, respectively. 

TABLE 4. Percentage of dolphins and the ratio of dolphin to not dolphin objects, in the training, test 
and validation data subsets. 

Subset Percentage of dolphins  Ratio dolphins/not dolphins 

Train 12.1% 1,602/11,688 ≈ 0.14 

Validation 16.4% 566/2,885 ≈ 0.20 

Test 15.5% 536/2,918 ≈ 0.18 

 

To ensure that no data was leaked from the training data set into the validation or test datasets (which 
could cause an artificial performance boost), the full dataset was first divided by assigning the different 
videos, i.e. from a specific flight on a specific date, to one of the three groups. This meant that the still 
frames from a single video were found only in one subset, e.g., still frames from video XYZ were only 
in the training subset whereas still frames from the video ABC were only in the validation subset. For 
each subset the ratio of dolphin to not dolphin labels was kept as close as possible to the ratio in the 
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full data set, i.e. about 13% of the labels were dolphin (Table 4). Each of these data subsets were then 
used to train, tune and test the supervised and unsupervised machine learning algorithms. 

5.3.4.3 Design of supervised and unsupervised machine learning models 
From an early age, humans are adept at recognising and labelling moving objects. However, despite 
how simple it may be for humans, training a model to recognise and correctly label an object in an 
image remains an open problem (Zhang et al. 2019). Therefore, to detect and count the number of 
dolphins in a given frame, a combination of image data and motion data derived from the video 
footage were used to create an overall model that can detect dolphins from video footage. The aim 
was to broadly replicate the way that primates detect and identify objects with their visual sense 
(Hubel and Wiesel 1968).  

There are two different problems we can potentially solve with an automatic detection model: 
classification and object detection. The classification problem essentially consists of showing an image 
to the model and the model returning a positive or negative response as to whether it thinks the one 
or more objects of interest (i.e., one or more objects of the “target class”) are present in the image. 
The classification problem is computationally much easier to solve than the object detection problem. 
The object detection problem is the same as the image classification problem, but with the added task 
that the object must be localised within the image (see Figure 13). Therefore, object detection models 
are naturally more computationally complex and, as a result, harder to train. We focused on the first 
problem, classification, to assess whether it was feasible to create an automatic dolphin detection 
model for this dataset. The second of these problems, object detection, was beyond the scope of this 
report. 

 

FIGURE 13. Example of classification versus object detection. The left image shows an example of a 
classification task. The right image shows an object detection task. The object detection task involves 
first identifiyng the object in the image then drawing a box that fully encapsulates that object.  

For the classification problem, Convolutional Neural Networks (CNNs) (Geron 2019) were used for the 
still image data, and several unsupervised and supervised machine learning models were used for the 
motion data: Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) 
(Mcinnes et al. 2017), and Support Vector Machines (SVM) (Geron 2019). For both of these parts of 
the model, each image was cropped to just the region of interest (ROI). The ROI was defined as the 
area which included the possible-dolphin objects detected by the computer vision algorithm described 
above and depicted in Figure 10. These ROIs tended to be small, on the order of 350 pixels squared 
(pixels2), with sides of ≈ 15 pixels. The models were trained on and predicted on these ROIs.  
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Before discussing the various machine learning models implemented, we must discuss how to 
measure the performance of these models. Several metrics were used to track the performance of the 
algorithms as they train, including confusion matrices, accuracy and balanced accuracy. The latter two 
metrics are derived from entries of the confusion matrix.  

A confusion matrix is composed of the number of true positives (TP), true negatives (TN), false 
positives (FP) and false negatives (FN) for each class, displayed in the form of a matrix. In the two-class 
classification problem, dolphins (positives) versus not dolphins (negatives), the diagonal elements are 
the TP and TN entries, which are the objects that were correctly classified either as dolphins or not 
dolphins. FP are those objects that were falsely identified by the models as dolphins when they are 
not dolphins, and FN are those objects that were falsely identified by the algorithms as not dolphins 
when they were dolphins. If the classification models worked perfectly, the off-diagonal entries, the 
FP and FN, would be 0. 

Accuracy was defined as the ratio of TP to the total number of predictions for all classes, be this within 
the dolphin class or within the not dolphin class. Balanced accuracy is the mean of the TP rate 
(TP/(TP+FN)) and the TN rate (TN/(TN+FP)). 

 
5.3.4.3.1 Image analysis - Supervised Learning 
CNNs were first developed for studies of the brain's visual cortex and have been used in image 
recognition since the 1980's (Geron 2019) (Hubel and Torsten 2004). CNNs have been used to great 
effect in medical image analysis to detect tumours (Moshen et al. 2018) for facial recognition (Bartlett 
et al. 2004), and for animal detection (Maire et al. 2014) (Norouzzadeh et al. 2018).  

In brief, CNNs work by learning what filters to apply to an image to generate feature maps of the image 
that best describe the object within the image. These feature maps represent the features of the 
object. For instance, when a human identifies an animal such as a dolphin they may look for the fins, 
beak, tail, etc. A CNN will learn these and possibly other features by using various filters. The CNN then 
feeds these features to the neural network portion of the model. A neural network is a network of 
artificial neurons that were originally designed to try to mimic the brain (Geron 2019). The different 
artificial neurons in the neural network then “fire” depending on the input features. The network as a 
whole will learn which neurons fire for which inputs and eventually can classify the input image (Geron 
2019). Figure 14 shows an example of a CNN. 

 

FIGURE 14. Example of a CNN classifying a hand drawn number. The image of the number is fed into 
the CNN (bottom layer). The convolution layers generate the feature maps which are then shrunk by 
the max pooling layers before the features are fed into the fully connected layers (neural network). 
The fully connected layers then classify the image correctly (result layer, not shown). 
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Several state-of-the-art CNN models, which are readily available and can come pre-trained 7  on 
ImageNet (Deng et al. 2009)8, were trialled for this study: VGG16 (Simonyan and Zisserman, 2014), 
Densenet (Huang et al. 2017), and Resnet (He et al. 2016). The performance of these CNNs was 
compared using the metrics described above and it was found that Densenet gave the best accuracy 
on the validation dataset. The hyperparameters of DenseNet were then tuned to further improve the 
performance. 

Despite the further tuning of hyperparameters of the DenseNet model, the model’s performance on 
the test data set was relatively poor (Figure 15). In particular, whilst almost all the dolphins were 
identified (only about 12%, 67/(507+67), missed), there were too many FP; approximately 68% of 
dolphin detections (= 1104/(1104+507)) were FP. This was likely due to how the model was trained 
with certain hyperparameters, and the poor quality of the video footage.  

To increase the overall accuracy of the model, data augmentation and biasing of the weights in the 
loss functions was carried out. Data augmentation was achieved by using a weighted sampler and 
several transforms on the frames. The weighted sampler preferentially chose the dolphin class over 
the not dolphin class when choosing samples to train the model. In practice this meant that the 
unbalanced dataset became balanced by oversampling the underrepresented class (dolphin). Several 
transforms were randomly applied to each image before it was fed through the CNN. These transforms 
included colour jittering, random rotation (0 - 180°), and random horizontal flipping. Finally, the 
weights in the loss function9 were changed to more heavily penalise misclassification of dolphins.  

Using data augmentation and biasing the weights of the loss function, a balanced accuracy of 
approximately 75% was achieved on the validation dataset (equal to the mean of 507/(507+67) and 
1762/(1104+1762), Figure 15). By comparison, without these modifications, the model only achieved 
a balanced accuracy of 50% (not shown). 

 
7 Due to the complexity of some CNN models, pre-training them allows better performance when it comes to 
using the CNN on a new problem (He et al. 2019). 
8 ImageNet is a large database of over 14 million images with more than 20,000 categories. 
9 The loss function (or cost function) is the function that is minimized by the CNN, whilst training. 
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FIGURE 15. Confusion matrix for Densenet CNN model run on the validation data. The TP (507) and 
TN (1,762) are the diagonal entries. The off diagonals are the FP (1,104) and FN (67). The Densenet 
model was biased towards classifying the images it received as input as dolphins. 

5.3.4.3.2 Motion analysis 
For the motion analysis model (see Figure 16), it was first necessary to convert the motion of objects 
in the video into a measure of velocity. This was achieved by using the optical flow technique which 
calculates the velocity of objects by tracking the movement of their boundaries (e.g., corners, edges) 
between consecutive frames (see Figure 17). More specifically, the Lucas-Kanade (Lucas and Kanade 
1981) optical flow technique was used. This method is more efficient at calculating the optical flow of 
objects as it includes tracking of pixels. Applying the optical flow technique yielded a velocity in pixels 
per second (p/sec), which was converted to meters per second (m/sec) using the previously described 
length scale from the GPS and magnification data (see Section 5.3.4.2).  
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FIGURE 16. Overview of the motion analysis model. Green boxes indicate input data, blue boxes relate 
to training, the red box indicates the final predictive model, and the yellow boxes are the output labels. 

 

FIGURE 17. Example of optical flow between two still frames. The optical flow tracks the moving object 
(circle) by tracking its pixel intensity, I, as it moves. The pixel intensity of the object in the left image 
I(x, y,t) is the same in the right image I(x+dx, y+dy, t+dt). Thus, we can calculate the velocity of that 
pixel, knowing the time step between the two frames.  

Before applying optical flow to the video data, it was necessary to pre-process the video to remove 
noise and format the data correctly. The first step in this process was noise removal, which consisted 
of a background subtraction and then applying a threshold (Figure 18) which only captured those 
pixels which had significant motion compared to the rest of the frame (Shaikh et al. 2014). In the next 
step, contours were drawn around pixels with similar intensities (colour); contours were the required 
input for the optical flow algorithm.  
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FIGURE 18. Example of the pre-processing of one still frame before it was fed into the optical flow 
algorithm. The bottom image shows the results of background subtraction and thresholding applied 
to the top image. 

The velocities calculated by the optical flow algorithm were unclassified and could belong to dolphins 
or other objects such as, e.g. waves or sun glare, or could represent apparent motion caused by the 
motion of the drone itself. To aid the machine learning model, we used an unsupervised clustering 
technique to cluster similar instances of velocities. The technique employed to this end, was 
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) (Mcinnes et al. 
2017). Here, all velocities from all analysed frames were first separated into high and low density 
clusters, where density referred to how densely points were distributed in velocity space. Next, 
HDBSCAN built a hierarchy of the initial density clusters to determine which density peaks merged or 
separated based on a given local threshold lambda (see right panel in Figure 19). Finally, HDBSCAN 
used this hierarchical structure to determine the optimal way to cluster the input data. This 
hierarchical method makes HDBSCAN particularly tolerant to noisy data when compared to other 
clustering techniques such as K-Means (Gujunoori and Oruganti 2017). 
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FIGURE 19. Example of the HDBSCAN algorithm clustering data. The left image shows the data where 
each cluster was given a different colour based on which cluster it belonged to. The right image shows 
the dendrogram for the data on the left. The five clusters were taken from parts of the dendrogram 
with the largest leaves. The largest leaves in this example are circled in red. Here, lambda (λ) is the 
local threshold value. 

The HDBSCAN algorithm assigned a cluster number to each velocity measurement. However, the 
cluster number does not carry any readily accessible information, and it was necessary to train a 
supervised machine learning model to assign a label (dolphin or not dolphin) to these cluster numbers. 
Several methods including SVM (Geron 2019), random forests (Geron 2019), K-nearest neighbours 
(Altman 1992) were trialled to label the cluster numbers. It was found that SVMs gave the best 
performance, after extensive hyperparameter tuning (see below). To achieve this performance, a 
method which oversamples the classes which are underrepresented, and under-samples the 
abundant classes, was used in conjunction with SVM. The oversampling method also generated some 
synthetic samples as part of this process (Batista and Monard 2004). 

SVM is a method capable of linear or nonlinear classification, regression, and outlier detection. The 
SVM achieves this by fitting a hyperplane in N-dimensional space (where, e.g. in two dimensional 
space, a hyperplane is a line) that distinctly classifies the data points and maximises the margin 
between the hyperplane and the data points. Figure 20 shows an example of an optimal hyperplane 
(H1) which separates the two classes of points with the largest margin, represented by the small lines 
perpendicular to H1. By comparison, while hyperplane H2 also separates the two classes, it has a small 
margin represented by the small lines perpendicular to H2. H3 does not separate the two classes.  
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FIGURE 20. Example of classification using SVM including three hyperplanes, H1, H2, and H3, that 
could be used to define the two classes of points (black and white). H3 does not separate the classes. 
H2 does separate the classes but with only a small margin. H1 separates the classes with the optimal 
margin. 

The confusion matrix from application of the HDBSCAN and SVM methods to the validation data 
(Figure 21) showed that the majority of dolphin objects were correctly classified as dolphins, only 
misclassifying about 14% (80/(80+493)). However, as for the image analysis (Figure 15), a large 
proportion, about 68% (1053/(493+1,053)), of the predicted dolphins were FP. Overall, the model 
achieved a balanced accuracy of about 75% (equal to the mean of 493/(493+80) and 
1828/(1,053+1,828), Figure 21).  

 

FIGURE 21. The confusion matrix for the motion model run on the validation data, with TP (493) and 
TN (1,828) on the diagonal, and FP (1,053) and FN (80) on the off-diagonal. 

5.3.4.3.3 Combined model: “Triton” 
As each of the two methods, the image and motion models, achieved a balanced accuracy of about 
75% (Table 5), they were combined into one model that is referred to hereafter as ‘Triton’, after the 
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half-human half-fish Greek demigod of the sea (Britannica 2020). Triton follows the paradigm of multi-
input and mixed data. Here the multi-input refers to the images that are fed into the CNN model and 
the velocity data that is fed into the motion model. The advantage of using this paradigm was that the 
overall model had more data to learn from, and thus was expected to have increased performance in 
comparison to that of the constituent models by themselves. 

An overview of the Triton model is presented in Figure 22. The data pipeline for the motion analysis 
portion of the model remained unchanged. The image analysis part of the model was slightly changed 
in that the classification stage of the CNN was removed, and instead the model outputted several 
features (as described in Section 5.3.4.3.1). The features from the CNN model and the cluster label 
from the motion analysis part of the pipeline were concatenated (joined) together. The concatenated 
output was then fed into a small neural network (the fully connected layers in Figure 22). As described 
in Section 5.3.4.3.1, the neural network then classified each of the inputs into a class, in this case either 
dolphin or not dolphin. 

 

 

FIGURE 22. Diagram showing the Triton model, including the data pipeline. The video was split up into 
individual frames and fed into the model. The frames took two distinct paths through the model: the 
motion data analysis is shown in the lower path and the image analysis is shown in the upper path. 
These paths were joined at the concatenation stage, and then fed through the fully connected layers 
for classification. 

The confusion matrix for Triton (Figure 23) showed a vast improvement over the individual models. 
Triton achieved an 8% increase in performance, giving a balanced accuracy of about 83% (equal to the 
mean of 454/(454+120) and 2,493/(373+2,493)). This was accomplished via Triton’s vast improvement 
in the FP rate compared to the image model and the motion model (Table 5). However, this 
improvement came at a cost; Triton had a greater FN rate as compared to that of either of its 
constituent models. Thus, the Triton model was slightly biased towards classifying the images it 
receives as dolphin. Given that the purpose of the model was to classify dolphins in the imagery, this 
increase in the FN was acceptable.  

 

TABLE 5. Balanced accuracy, given as a percentage, FP and FN for the three machine learning models: 
image, motion and the Triton model which combines image and motion analysis.  

Model Balanced accuracy FP FN 
Image ≈75 1104 67 

Motion ≈75 1053 80 
Triton ≈83 373 120 
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FIGURE 23. The confusion matrix for the combined model run on the validation data, Triton. The TP 
(454) and TN (2,493) are the diagonal entries and the FP (373) and FN (120) are on the off-diagonal.  

5.3.5 Comparing real-time with image analysis detections 
The efficiency of detecting schools of cetaceans via real-time observations, as compared with video 
analysis, can be explored by comparing the detections made by each method. As a first step, real-time 
observations were confirmed in a post-hoc review. This was necessary as drone observers often only 
logged in real-time approximate times, i.e. not to the exact second, and vague statements, e.g. object 
of possible interest (see Section 5.3.3). Using the video time of the frames with these detections and 
the location of the detected objects within the frames, would allow for a direct comparison between 
the two methods; however, due to the poor video quality, the video analysis models were not 
sufficient to make detections from the zigzag flight videos. Hence, a list of drone detections was 
compiled only using the detections confirmed as cetaceans during post-hoc review.  

5.3.6 Matching sightings between platforms: flying bridge sightings with detections made via drone 
This step of the analysis served to determine whether duplicate detections were made between the 
flying bridge and the drone. Duplicate detections were identified as such when it could be determined 
with a high degree of certainty that a given detection made via the drone was the same school as one 
of the flying bridge detections. For this purpose, each detection from the list of detections from the 
previous step (Section 5.3.5) was matched against the flying bridge detections. Information used for 
this purpose was primarily the separation in space and time between two candidate detections, one 
detection from the drone and one from the flying bridge, that were potential duplicates (Figure 24). 
However, the species id, group composition, behaviour and, if applicable, direction and speed of travel 
were also used, whenever available.  
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FIGURE 24. Schematic representation of ship and drone survey tracks with two dolphin detections 
that are a potential duplicate detection between the two observation platforms. 

5.3.7 MRDS analysis methods  
As described in Section 5.3.1, the key for collecting MRDS data were the trials set up by observer 2 
(drone) for observer 1 (flying bridge) (see Figure 25 for a schematic representation). The trials 
represented all detections made by via the drone. Out of these trials, the successes were those schools 
that were identified as duplicate detections, as described in Section 5.3.6. Those trials that did not 
match any detections made by the flying bridge were the failures. These data (trials with successes 
and failures), along with the perpendicular distances from the transect line completed by the ship, 
were the data required for MRDS analysis (Borchers et al. 1998). In comparison to conventional 
distance sampling methods where only the perpendicular distances are used for fitting a detection 
function (the DS model) and to estimate average detection probabilities, the trial data are also used 
to fit a mark-recapture (MR) model. The MR model is a binomial generalised linear model (GLM) fitted 
to the trial data using the perpendicular distances as a covariate. This model estimates the conditional 
detection probabilities of observer 1 detecting a school given that observer 2 also detected the same 
school. Depending on the level of independence between the two platforms, either the MR model or 
a combination of the MR and DS models is used (Burt et al. 2014 ). AIC can be used to determine the 
appropriate level of independence (Rankin et al. 2020).  
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FIGURE 25. Schematic representation of an MRDS survey along a transect. 

The additional difficulty for analysing MRDS data that was collected during closing mode effort 
(Section 5.1.2) was the disruption of simultaneous search that occurred when the flying bridge  
interrupted general search effort to approach a school before the observers had fully exploited all 
their chances to detect a different school that was detected by the drone. In the example shown in 
Figure 26, the ship turned to the right to approach sighting FB1 made by the flying bridge observers. 
At that point, the drone had already made two detections (D1 and D2). D1 was a potential duplicate 
with FB1 and would count as a full trial as the observers were on effort the entire time the school was 
within visible range (from when it entered the horizon until it passed the ship’s beam). However, as 
the search effort of the flying bridge was interrupted to approach FB1 while D2 was within visible 
range, the chances of the flying bridge to detect D2 were reduced which needed to be accounted for 
in the analysis. Furthermore, when the ship resumed effort from the location of FB1, the perpendicular 
distance to D2 was different than before the turn. Methods to account for these issues do not 
currently exist and will need to be developed.  
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FIGURE 26. Schematic representation of ship track (black bubbles) and drone track (green bubbles) 
along with locations of schools detected by flying bridge (red) and drone (green). Black concentric 
circles represent distance rings around the ship at 1nm increments. 

5.4 School size calibration 
Estimating the number of individuals in a school of dolphins accurately poses a challenge when 
estimating dolphin abundance. Dolphin schools seen during ETP surveys vary in size from a few 
dolphins to several hundred animals (Gerrodette et al. 2019). For observers who are tasked with 
estimating school size, it is unknown how many animals are below the surface at any given time, 
making it difficult to obtain accurate estimates of school size. Marine mammal observers that have 
participated in previous NMFS surveys in the ETP have been calibrated by comparing their estimates 
against the true number of dolphins for a subset of schools (e.g., Gerrodette et al. 2019). This true 
number can be obtained from counts of dolphins in high resolution imagery (video or photo) of the 
school taken from above. In order to be able to capture the whole school and to identify each dolphin 
to species, it is required that the imagery is taken from a relatively high altitude that allows the whole 
dolphin school to be observed for some time while ensuring adequate ground resolution. To this end, 
the purpose of the calibration flights during the trial survey was to test if it was possible to use the 
Seahawk drone to obtain high resolution imagery of calibration schools from which true counts by 
species could be obtained. 

5.4.1 Testing calibration flights 
Flying bridge observers alerted the cruise leader whenever a potential calibration school was detected, 
i.e. a school of dolphins whose formation was a compact, single cluster; schools that consisted of 
several clusters or were spread out over a large area were not suitable calibration schools. To obtain 
imagery of a potential calibration school, the drone had to be flown out to the school, and either try 
to capture the whole school in a single frame or, if the school was too large, by slowly sweeping across 
the school.   

To test the school size calibration protocol (Appendix 1), the following tasks were to be implemented 
by the drone pilots and engineers in coordination with the drone and flying bridge observers:  

1) manoeuver the drone to directly above a dolphin school seen by the flying bridge observers; 
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2) collect video of the entire dolphin school to be used for obtaining the true number of the 
school size and species identification of each dolphin within the school. 

5.4.2 Real-time monitoring  
The real-time monitoring for the calibration flights served a different purpose compared to the real-
time monitoring conducted during the zigzag flights. Here, observers needed to both observe and 
direct the drone pilots where to fly, using the information received from the flying bridge observers. 
After a few test runs, it was found that the best constellation was if CSO and JCS served as the drone 
observers placed at the drone observer station in the lab, CLC communicated directly with the drone 
pilots at the drone pilot station outside, and 2nd pilot LYM was stationed on the flying bridge and 
communicated in Chinese with flying bridge observer SY (which helped bridge the language barriers 
between the drone and science teams). Once the school was located by the drone, the drone hovered 
above the school for several minutes in order to ensure each individual would be visible at the surface 
at least once in the imagery. In the case that the school was too large to be captured in one frame, 
several slow sweeps were flown across the school or, if the school was travelling, the drone hovered 
while the school passed underneath the drone. It should be noted that even if the real-time 
monitoring for the zigzag flights is to be dropped from the next phases of the project, real-time 
monitoring is essential for the calibration flights for finding the schools and ensuring suitable footage 
is collected.  

5.4.3 Video analysis 
To get a count of the dolphins in each calibration school, the video will be fed through the Triton model 
(once the object detection capability of this model is fully operational). The output of the model is a 
count of dolphins per frame. It is assumed that the model will not give 100% accurate counts, with 
counts fluctuating from frame to frame. Therefore, noise removal in the form of sigma-clipping will be 
employed to remove outlying counts. After the frames with the outlying counts are removed, the 
model output contains counts as a function of time for the entire video of the school. It will be possible 
to assess the size of the school from the distribution of these counts, and to provide a best estimate 
as well as upper and lower bounds on the estimate.  

5.4.4 Manual counts 
For the manual counts, we focused our efforts on those schools for which all clusters were captured 
by the drone footage and, hence, were potentially valid calibration schools, if true counts could be 
obtained. Manual counts were done by first identifying sweeps: sections of the video during which 
the drone did not double back over the school. Most calibration flights contained multiple sweeps for 
which counts could be compared, as long as the entire school was captured within the sweep. The aim 
of the manual counts was to obtain true counts of the school. Hence, these counts were done by 
identifying individual dolphins or small groups of dolphins swimming together and tracking these 
through the sweep, including those times when they were subsurface and out of sight.  

5.4.5 Comparison of image analysis counts with manual counts 
Once counts of dolphins are obtained with both methods, i.e. manually and video analysis, they can 
be compared in two ways:  

1. Comparison of counts of dolphins in single frames  
2. Comparison of best counts for a cluster or entire school across a frame sequence 

The first method is straightforward as it only requires counting the visible dolphins in the respective 
frames. The second method is more complex as it requires accounting for those dolphins that are not 
visible at or near the surface throughout the entire frame sequence. This requires tracking individual 
dolphins or small groups of dolphins swimming together while they are submerged out of sight and 
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estimating the fraction of time that dolphins are at the surface. While this could be done manually, at 
least with some degree of certainty, models need to be developed to do this via image analysis. Using 
the estimated fraction of time dolphins are at the surface, image analysis or manual counts from the 
first method can then be adjusted to obtain estimates of true counts. Developing these methods is 
beyond the scope of this report.  

 

6 RESULTS 

6.1 Research vessel as a suitable platform to conduct line transect surveys using NMFS 
protocol 

6.1.1 Flying bridge setup 
All the required equipment for implementing the NMFS survey protocol was present, i.e. four sets of 
bigeye binoculars mounted on pedestals with reticle scales and angle rings, observer chairs, recorder 
station with, canopy and wind dam. However, as the installation was never completed before the trial 
survey (see Section 5.1.1), several modifications will be required for the main survey to ensure the 
safety of the observers and successful completion of the survey. A full list of recommendations and 
requirements will be made available for the next phase of the project. Nonetheless, observers were 
able to implement the survey protocol as outlined in Section 5.1.2. We note that the binocular height 
on the flying bridge of the Jorge Carranza, at 20.44m, is much higher than those of previous ETP 
surveys. Binocular heights ranged between 10.4 and 10.7m (RV David Starr Jordan, Townsend 
Cromwell, McArthur I, and Endeavor) before the RV McArthur II with 15.2m was used as the second 
survey vessel in 2003 and 2006. A height of 10.7m results in a maximum ship-to-horizon viewing 
distance of 6.3nm, 15.2m in 7.5nm and 20.4m in 8.7nm. Whether this had an influence on detection 
probabilities was investigated by comparing detection probabilities of the trial survey with those from 
previous survey years (see below Section 6.1.7).  

6.1.2 Observers 
Due to the extensive experience of the flying bridge observers, the implementation of the NMFS 
survey protocol on the Jorge Carranza was successful. Details on the completed survey effort and 
flying bridge sightings can be found in Sections 6.1.4 and 6.1.5. The lead roles for the drone observer 
team were taken by CLC and JCS (and CSO for directing calibration flights) as a deep understanding of 
the requirements was essential during the testing phase. The IATTC observers were trained in both 
drone and flying bridge observing. For taking the lead in drone observing or taking a full position as a 
flying bridge observer, further training will be necessary. However, both IATTC observers were 
valuable team members which we recommend for the main survey.  

6.1.3 Ship and crew 
The captain and the other ship officers were very effective and helpful at implementing the survey 
protocol, including quick responses to requests made by flying bridge observers, maneuvering the ship 
in closing mode so school size and species composition estimates could be obtained, and assisting 
with planning and implementing changes to the transect lines due to weather and changes in data 
collection needs. In particular, the captain stood out in terms of his ship handling skills and willingness 
to accommodate the science and drone teams. We note that the Jorge Carranza has diesel-electric 
engines with three generators. For implementing the NMFS survey protocol with a cruising speed of 
10 nm and rapid speed and direction changes, more than one generator was required. However, while 
maintaining a cruising speed of about 9.5 nm, only one generator is required, which is more 
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economical. Overall, the R/V Dr Jorge Carranza Fraser performed very well as a marine mammal survey 
vessel.  

6.1.4 Survey effort 
A total of 1,733.06 km of transect lines were surveyed during the 14-day trial survey, out of which 
766.41 km were conducted in closing mode and 966.65 km in passing mode (Table 6). It was not the 
goal of the trial survey to complete all 16 transects; for conducting the required tests, it was more 
important to remain in high density areas. Hence, completed tracklines (Figure 27) deviated from the 
plan (Table 1).  

 

FIGURE 27. Completed survey effort (black) with flying bridge sightings (red), and planned tracklines 
(blue). 

All survey effort should have been conducted in closing mode as that is the required mode for the 
main survey. However, after unsuccessfully attempting drone zigzag flights with the flying bridge 
operating in closing mode for two days (17-18 November), it was decided to switch to passing mode 
to facilitate the testing of the zigzag flights (see Section 6.2.2 for more details). It was not possible to 
implement the zigzag flights during closing mode effort as the flight duration of the Seahawk was too 
short. However, for testing calibration flights it was necessary to find good calibration schools, which 
was easier when the flying bridge was operating in closing mode. Hence, depending on the priority of 
a given day, the effort mode changed.  
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TABLE 6. Kilometers of survey effort conducted by the flying bridge per day. Effort only includes times 
when observers were actively searching and logged as on effort. 

Date Closing Passing Combined 
17 November 46.98 0.00 46.98 
18 November 189.86 0.00 189.86 
19 November 0.00 130.28 130.28 
20 November 8.03 176.00 184.03 
21 November 11.00 112.02 123.02 
22 November 128.89 0.00 128.89 
23 November 108.51 0.00 108.51 
24 November 59.53 0.00 59.53 
25 November 44.28 45.69 89.97 
26 November 67.65 95.71 163.36 
27 November 70.11 99.52 169.63 
28 November 5.93 97.16 103.08 
29 November 14.39 135.79 150.19 
30 November 11.26 74.47 85.73 

Total 766.41 966.65 1,733.06 
 

Viewing conditions during the 14-day trial survey varied with Beaufort sea states ranging between 1 
and 5 and swell heights ranging between 1 and 6 feet (Table 7). Sighting rates of the flying bridge 
observers generally decreased with increasing Beaufort sea state or swell height.  

TABLE 7. Flying bridge survey effort and sighting rate, in number of sightings per km effort, for each 
Beaufort sea state (left) and swell height (right) encountered during the trial survey.  

Beaufort Effort (km) Sighting rate Swell (feet) Effort (km) Sighting rate 
0 0.00 -.- 0 0.00 -.- 
1 158.94 0.28 1 30.06 0.23 
2 471.32 0.14 2 257.04 0.15 
3 424.86 0.10 3 707.84 0.14 
4 564.55 0.07 4 378.24 0.08 
5 113.39 0.08 5 272.88 0.07 
6 0.00 -.- 6 87.01 0.08 

 

6.1.5 Sightings  
During the 14-day trial survey, a total of 215 sightings (205 on effort, 10 off effort) were made by the 
flying bridge observers (Table 8, Figure 28-Figure 33).  
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TABLE 8. Summary of marine mammal sightings made by flying bridge observers: number of pure 
and mixed schools, where mixed schools were included once for each species or species category in 
the mixed school; size is the mean school size across observers of their best estimates of total school 
size for pure schools, and in the case of mixed schools, their best estimates of subgroup size. 
Summaries are provided for closing and passing mode, as well as for both modes combined. The 
column “SWFSC Code” provides the NMFS species code (see Kinzey et al. 2000).  

SWFSC 
Code Species / species category 

Pure Mixed 
Total 

Survey 
mode Number Size Number Size 

001 Mesoplodon peruvianus 3 3 0 -- 3 combined 
001  0 -- 0 -- 0 closing 
001  3 3 0 -- 3 passing 
002 Stenella attenuata (offshore) 22 30 4 68 26 combined 
002  7 13 3 42 10 closing 
002  15 38 1 148 16 passing 
006 Stenella attenuata graffmani 3 21 0 -- 3 combined 
006  2 26 0 -- 2 closing 
006  1 10 0 -- 1 passing 
010 Stenella longirostris orientalis 6 140 13 108 19 combined 
010  4 181 6 102 10 closing 
010  2 56 7 113 9 passing 
015 Steno bredanensis 9 7 1 7 10 combined 
015  2 10 1 7 3 closing 
015  7 7 0 -- 7 passing 
017 Delphinus delphis 9 126 0 -- 9 combined 
017  3 128 0 -- 3 closing 
017  6 125 0 -- 6 passing 
018 Tursiops truncatus 8 8 2 3 10 combined 
018  4 10 2 3 6 closing 
018  4 7 0 -- 4 passing 
021 Grampus griseus 1 33 0 -- 1 combined 
021  0 -- 0 -- 0 closing 
021  1 33 0 -- 1 passing 
032 Feresa attenuata 4 42 0 -- 4 combined 
032  2 33 0 -- 2 closing 
032  2 52 0 -- 2 passing 
033 Pseudorca crassidens 4 19 1 16 5 combined 
033  3 13 1 16 4 closing 
033  1 36 0 -- 1 passing 
037 Orcinus orca 1 16 0 -- 1 combined 
037  0 -- 0 -- 0 closing 
037  1 16 0 -- 1 passing 
048 Kogia sima 3 1 0 -- 3 combined 
048  1 1 0 -- 1 closing 
048  2 1 0 -- 2 passing 
049 ziphiid whale 7 4 0 -- 7 combined 
049  3 4 0 -- 3 closing 
049  4 4 0 -- 4 passing 
051 Mesoplodon sp. 11 3 0 -- 11 combined 
051  4 4 0 -- 4 closing 
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051  7 2 0 -- 7 passing 
061 Ziphius cavirostris 1 2 0 -- 1 combined 
061  0 -- 0 -- 0 closing 
061  1 2 0 -- 1 passing 
070 Balaenoptera sp. 1 1 0 -- 1 combined 
070  1 1 0 -- 1 closing 
070  0 -- 0 -- 0 passing 
075 Balaenoptera musculus 2 2 0 -- 2 combined 
075  0 -- 0 -- 0 closing 
075  2 2 0 -- 2 passing 
076 Megaptera novaeangliae 9 1 0 -- 9 combined 
076  2 1 0 -- 2 closing 
076  7 2 0 -- 7 passing 
077 unid. dolphin 13 13 2 2 15 combined 
077  4 12 2 2 6 closing 
077  9 14 0 -- 9 passing 
078 unid. small whale 3 1 0 -- 3 combined 
078  2 1 0 -- 2 closing 
078  1 1 0 -- 1 passing 
079 unid. large whale 5 1 0 -- 5 combined 
079  2 2 0 -- 2 closing 
079  3 1 0 -- 3 passing 
090 Stenella attenuata (unid. 

subsp.) 
26 26 6 30 32 combined 

090  7 41 2 24 9 closing 
090  19 21 4 33 23 passing 
096 unid. cetacean 1 2 0 -- 1 combined 
096  1 2 0 -- 1 closing 
096  0 -- 0 -- 0 passing 
099 Balaenoptera borealis/edeni 4 1 0 -- 4 combined 
099  2 1 0 -- 2 closing 
099  2 1 0 -- 2 passing 
177 unid. small delphinid 31 15 6 18 37 combined 
177  9 22 4 6 13 closing 
177  22 13 2 41 24 passing 
277 unid. medium delphinid 11 8 0 -- 11 combined 
277  3 13 0 -- 3 closing 
277  8 6 0 -- 8 passing 
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FIGURE 28. Spotted dolphin sighting locations. 

 

FIGURE 29. Eastern spinner dolphin sighting locations. 
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FIGURE 30. Short-beaked common dolphin sighting locations. 

 

FIGURE 31. Sighting locations of species belonging to the blackfish family. 
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FIGURE 32. Dwarf sperm whale (Kogia sima) and beaked whale sighting location. 

 

FIGURE 33. Baleen whale sighting locations. 
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Out of the 215 sightings, 198 were single species schools and 17 were mixed (Table 9). Nine of the 
mixed schools were composed of spotted and spinner dolphins, one was composed of spotted and 
rough-toothed dolphins. The latter, as well as the remaining seven mixed schools, contained clusters 
or individuals that were not seen well enough to identify to species and, hence, these sightings include 
a fraction of unidentified delphinids.  

TABLE 9. Species composition of mixed species schools detected by the flying bridge observers. SWFSC 
codes refer to the following species: 002: Stenella attenuata (offshore); 010: Stenella longirostris 
orientalis; 015: Steno bredanensis; 018: Tursiops truncatus; 033: Pseudorca crassidens; 077: 
unidentified dolphin; 090: Stenella attenuata (unidentified subsp.); 177: unidentified small delphinid. 

Species 1 Species 2 Species 3 Number of Sightings 
002 010 -- 4 
010 090 -- 5 
010 177 -- 4 
015 090 177 1 
018 077 -- 1 
018 177 -- 1 
033 077 -- 1 

 

6.1.6 Potential biases in closing versus passing mode  
Schwarz et al. (2010) provided evidence that surveys conducted in closing and passing mode may have 
different biases with regards to school size estimates (negative bias for passing mode) and encounter 
rate estimates (negative bias for closing mode), as well as species identification (more unidentified 
schools during passing mode). For the 14-day trial survey, we found no evidence of negative bias in 
school size estimates made during passing mode (Table 8). However, the number of sightings per 
1,000 km of effort was higher for passing mode (134.49) than for closing mode (97.86). There were 
more schools detected in passing mode for which at least a fraction of the individuals were 
unidentifiable to species or subspecies (Table 10).  

TABLE 10. Number of sightings recorded as an unidentified single-species school, by effort mode 
(closing or passing mode). In the case of the closing mode sightings, only four of the SWFSC code 177 
sightings were outside the turning range of 3 nm perpendicular distance from the trackline and thus 
not approached to obtain species identification; all others were closed on for species identification. 

SWFSC 
Code 

Taxonomic 
categories 

Closing Passing 
Sightings Sightings/1,000km Sightings Sightings/1,000km 

077 unid. dolphin 4 5.22 9 9.31 
078 unid. small whale 2 2.61 1 1.03 
079 unid. large whale 2 2.61 3 3.10 
090 Stenella attenuata 

(unid. subsp.) 
7 

9.13 19 19.66 
096 unid. cetacean 1 1.30 0 0.00 
177 unid. small delphinid 9 11.74 22 22.76 
277 unid. medium 

delphinid 
3 

3.91 8 8.28 
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6.1.7 Comparison of detection functions with previous surveys 
Estimates of f(0) for the trial survey were smaller for eastern spinner dolphins compared to spotted 
dolphins; however, 95% confidence intervals overlapped (Table 11). Accordingly, the shape of the 
estimated detection function, was generally wider for eastern spinner dolphins compared to spotted 
dolphins (Figure 34)  

 

FIGURE 34. Histogram of perpendicular distance and half normal detection function with species 
(spotted versus spinner) as a covariate shown for spotted and spinner dolphins where n is the sample 
size and dots represent the estimated detection probabilities for the observed distances. 

TABLE 11. Estimated f(0) for spotted and spinner dolphins from the MCDS model with species as a 
covariate fitted to trial survey data shown with coefficient of variation (CV), lower (LCI) and upper 
(UCI) bounds of 95% confidence intervals and sample size (n). 

Species f(0) CV LCI UCI n 
Spotted 0.42 9.66 0.34 0.50 61 
Spinner 0.33 16.64 0.23 0.46 18 

 

Estimated detection probabilities within the 5.5km strip half-width were similar between the trial 
survey and previous surveys 1997-2000 (Gerrodette and Forcada 2005) (Figure 35). Confidence 
intervals for estimates from the trial survey overlapped with confidence intervals from previous 
surveys in all but three years for spotted dolphins and in all but one year for spinner dolphins.  

 

FIGURE 35. Estimates of f(0) and 95% confidence intervals, for spotted and spinner dolphins. Estimates 
from 1979-2000 were sourced from Gerrodette and Forcada (2005), 2019 estimate from model fitted 
to trial survey data (Table 11). 
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6.2 Research vessel as a suitable platform to conduct drone operations 
6.2.1 Drone platform: launches and landings in relation to Beaufort sea state 
During the 14-day trial survey, we conducted 94 drone flights. Launches and landings occurred within 
Beaufort sea states ranging from 1 to 5 (Table 12). The number of landings was less than the number 
of launches due to flight 9 on 21 November, which ended in a drone crash after 22min of flight time 
due to a loss of satellite coverage. The drone platform was suitable for launching and landing the 
Seahawk drone. Launches and landings were performed without major incidents, although one minor 
incident occurred when a 2nd pilot, who was practicing landing the drone, landed the Seahawk with 
one rail of the landing gear on a safety rope, causing the drone to tilt over to one side and with the 
blades hitting the drone platform. The resulting damage to the drone was fixed by replacing the 
blade(s). Most launches and landings were done while the ship was cruising at survey speed of 10 
knots. While it was at the discretion of the drone pilots to ask for a change in course and speed of the 
ship to ensure safe operations, only during a few occasions during higher Beaufort sea states did they 
ask for a reduction in speed.  

TABLE 12. Number of drone launches and landings by Beaufort sea state. 

Beaufort Launches Landings 
0 0 0 
1 9 6 
2 33 33 
3 23 24 
4 26 25 
5 3 5 
6 0 0 

Total 94 93 
 

6.2.2 Drone team and equipment 
The drone team members were good to work with and worked hard towards the goals of the project 
with the equipment provided. In particular, 1st pilot, LCY (see Table 3 for reference), stood out in terms 
of his drone handling skills, launching and landing the drone with ease while the ship was underway 
(see Section 6.2.1). TW was a good team leader who was proactive in trying to find solutions to 
problems. The drone team was able to turn around a drone between consecutive flights within about 
5min. However, with only one 1st pilot on board, it proved impossible to fly two drones simultaneously, 
which was contrary to what was specified in the drone protocol (Appendix 1). As the mean flight time 
of the drone was under 1hr (Table 13), this meant that the goal of flying drones during all daylight 
hours or during closing mode effort was not accomplished. While the drone team safely conducted up 
to an impressive 13 flights per day (Table 14), this was not sufficient to cover the entire hours of 
operation on the flying bridge.  

TABLE 13. Summary of total duration (hh:mm:ss) of flights by flight mode. 

Mode Min 1. Quartile Median Mean 3. Quartile Max 
Zigzag 00:08:35 00:41:10 00:49:43 00:45:41 00:55:19 01:04:31 

Calibration 00:13:27 00:31:28 00:33:43 00:36:09 00:44:07 00:54:00 
Mixed 00:46:44 00:49:37 00:52:06 00:51:17 00:53:47 00:54:14 

Combined 00:08:35 00:36:57 00:48:25 00:44:24 00:54:29 01:04:31 
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TABLE 14. Comparison of daily hours of operation (hh:mm:ss) between the flying bridge and the 
drones. 

Date Flying bridge Number of flights Total flight duration 
17 04:48:40 3 01:26:09 
18 12:00:46 13 08:15:20 
19 10:55:11 10 08:54:03 
20 10:53:59 10 07:11:10 
21 10:59:44 9 06:45:25 
22 11:05:11 0 00:00:00 
23 11:04:43 5 02:38:22 
24 09:03:37 1 00:46:10 
25 10:40:47 8 05:49:56 
26 10:51:01 6 05:29:59 
27 11:04:18 7 05:43:14 
28 11:09:02 11 07:51:28 
29 10:15:16 6 04:52:42 
30 07:13:47 5 03:51:06 

 

Collection of high-quality drone imagery proved problematic because of the equipment provided to 
the project. Only one of the two drones in operation had a camera that was capable of recording the 
video footage on board the drone. This was the drone that was lost into the sea on 21 November. Also, 
recording on board the drone had to be manually operated by one of the drone team members and 
restarted at regular intervals of about 3min. When this was forgotten, no recording on board the drone 
took place. This resulted in only very few short video clips actually being recorded on board the drone 
before the drone crash and none after. As a result, no on board recorded video footage capturing 
cetaceans exists for any of the calibration flights and only during one zigzag flight during which a drone 
detection was made was footage recorded on board capturing a single cetacean swimming 
underwater (drone detection 4, see Section 6.3.7). Hence, what was originally thought of as the 
backup mechanism for recording video, the screen capture of the transmitted video, became the main 
source of the video available for post-survey image analyses for the entire duration of the trial survey. 
Naturally, this video suffered from transmission loss and compression issues which caused frequent 
pixilation and complete loss of the video (see Section 5.3.4.1). The antennas that the drone team 
installed on the ship were also not sufficient to receive transmissions from great distances. Whenever 
zigzag flights at 5 nm ahead of the ship were attempted, transmission loss increased substantially.  

6.2.3 Drone operations: effort conducted during zigzag and calibration flights 
The total flight time of the 94 flights combined was 69 hr 26 min and 32 sec (Table 15). Out of the 94 
flights, 74 were pure zigzag flights, 15 flights were pure calibration flights, and four were initiated as 
zigzag and then switched to calibration mode during which it was at least attempted to find the school 
using the drone. It is worth noting that during two of the flights in the latter category, the potential 
calibration school was found with the drone; however, the effort did not result in a valid calibration 
school as the entire school could not be captured by video. During 69 pure zigzag flights at least one 
zigzag leg and up to nine zigzag legs were flown. During three occasions, the zigzag effort on a given 
leg was interrupted and the drone stopped and redirected to investigate a potential sighting. Out of 
all 19 flights that were at least in part dedicated to calibration, the potential calibration school was 
found in 15 occasions (see Section 6.4). We further divided the flights into different effort modes, e.g. 
whether the drone was in outbound transit to the first waypoint during a zigzag flight, on effort on a 
zigzag leg or on inbound transit back to the ship. During any given flight, more than one effort mode 
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was usually conducted. A typical calibration flight would consist of ‘outbound transit’, ‘with school’ 
and ‘inbound transit’. In Table 15 we summarise the different effort modes for the drone flights, along 
with their average times and Beaufort sea states encountered. These are explained in more detail in 
the following sections on zigzag and calibration flights (Sections 6.3 and 6.4). The effort mode ‘other’ 
was logged during three flights (Table 15) and represents: 1. the random flight path that the drone 
took on 21 November before it was lost into the sea; 2. the test flight that followed the crash on 23 
November; and, 3. the one occasion during which the drone took public relations footage of the ship. 

TABLE 15. Effort modes, total number of flights containing each mode of effort, mean and total 
duration of each effort mode across flights (hh:mm:ss), as well as mean, minimum and maximum 
Beaufort (Bf) sea states encountered. *: The calculation of the mean only applies to the flights during 
which the respective effort mode occurred. 

Effort mode Total Mean time per flight* Total time Mean Bf Min Bf Max Bf 
Zigzag 

Transit outbound 78 00:13:50 17:59:50 2.96 1 5 
On effort  69 00:24:02 27:38:19 2.98 1 5 
Transit inbound  75 00:09:09 11:27:02 2.94 1 5 
Checking 3 00:09:03 00:27:10 2.52 2 3 
Total time   57:32:21    

Calibration 
Transit outbound  19 00:15:57 05:03:04 1.90 1 3 
With school  15 00:18:12 04:33:09 2.01 1 3 
Transit inbound  19 00:04:15 01:21:01 2.17 1 4 
Total time   10:57:14    

Other 
Other 3 00:18:59 00:56:57 2.56 2 4 
Total time   00:56:57    
Total time   69:26:32    

 

6.3 Test drone for collecting trackline detection probability data 
6.3.1 Zigzag flight effort modes and coverage 
The three main effort modes (transit outbound, on effort and transit inbound; Table 15) refer to the 
transit out to the first zigzag leg, the time on effort in search mode while on the zigzag legs (e.g. Figure 
36) and the inbound transit back to the ship, respectively. During either transit, the camera was 
generally pointing forward at an angle of approximately 50˚, where 0˚ would indicate parallel to the 
ocean surface and 90˚ would indicate pointing directly down. While on effort, the camera was 
generally pointing directly down (but see below in this section) and the drone was moving along the 
zigzag leg at a steady pace. The effort mode checking refers to time spent by the drone investigating 
an object of interest, i.e. a potential sighting that was spotted by the drone observers during the real-
time observation; it represents “off effort” time for the drone. Transit outbound and inbound 
durations were, on average, 14 min and 9 min, respectively, while the average on effort time per flight 
was 24min (5.5min per leg, 300 legs total, Table 15); i.e., only 1 min longer than the average combined 
transit time. Checking on a potential object of interest occurred only three times, with average 
duration of 9 min.  
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FIGURE 36. Example zigzag flight showing the different effort modes of the drone. TO: outbound 
transit, TI: inbound transit and on effort in search mode during 5 zigzag legs. Red dashed line indicates 
the ship track while flying bridge was on effort in passing mode. Green and red dots indicate the 
location of the drone during take-off and landing, respectively. Date and flight number given in the 
title. Units for UTM coordinates are meters. 

As noted above, it was not possible to test the operation of two drones simultaneously during the trial 
survey. However, flight statistics from the trial survey make it possible to put forward theoretical 
considerations about requirements for continuous drone zigzag effort by a Seahawk drone during all 
daylight hours while the flying bridge observers were on effort, which was a requirement specified in 
the drone protocol (Appendix 1). Consider a survey day with 12-hours of daylight during which the 
sunrise and sunset are, say, at 06:00 and 18:00, respectively. The first drone, drone 1, would need to 
be launched at 05:46 in order to reach the first waypoint of leg 1 at sunrise after 14 min of outbound 
transit (Table 15), which, in this example, is ~3.52 nm ahead of the ship, as that was the mean distance 
ahead of the ship that was accomplished within the mean transit times (see below in Section 6.3.3. 
Target 1). Drone 1 would then spend 26 min surveying the zigzag legs before it had to start its return 
journey of 9 min (Table 15) inbound transit at 06:26 to be safely back on board after 49 min of flight 
time (Table 13) at 06:35. In order to have uninterrupted drone coverage ahead of the ship, the second 
drone, drone 2, would have to be launched at 06:12 in order to be 3.52 nm ahead of the ship when 
drone 1 had to return at 06:26. Drone 2 would then survey zigzag legs for 26 min until 06:52 before it 
had to return to the ship and arrive there at 07:01. Drone 1 would have to be launched again at 06:38 
in order to reach 3.52 nm ahead of the ship at 06:52 to relieve drone 2, and so on. This means that 
each drone would have to be launched again 3 min after it had returned from its last flight. It also 
means that during all daylight hours, a drone would have to be launched and landed every 26 min. 
With an average of 12 hr of daylight during the main survey, this would result in approximatley 28 
launches and landings per day, and for a 120 sea-day survey (Oedekoven et al. 2018), 120 x 28 = 3,360 
launches and landings would be required. Such an undertaking would require sufficient personnel to 
operate the drones safely, and raises major concerns about safety while being far offshore. 
Furthermore, while the above example may in theory be feasible (and in theory only), it is noted that 
with a target distance of 5 nm ahead of the ship (instead of the 3.52 nm used in the example), even 
two drones would not be sufficient as the outbound and inbound transit times would increase by over 
40% each, making the total transit times per flight longer than the time the drone could spend on the 
zigzag legs.  

The GPS locations and altitude of the drone were recorded by the drone team on a system on board 
the ship in high resolution both in time and space, with about four records per second (altitude in mm 
and latitude and longitude to the 7th decimal degree). Zigzag legs were flown at a height of 133.82 m 
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on average, ranging between 66.70 m and 224.18 m (Table 16). With a camera aperture angle of 60˚, 
and assuming the camera was pointing straight down, this resulted in an estimated swath width of 
154.62 m on average (range: 77.02 – 258.86 m) captured by the drone video footage. The lengths of 
the individual zigzag legs were 3.38 km on average (range: 0.08 – 4.31 km), with a total length of 
1,013.37 km of zigzag legs surveyed during the two weeks. The total area covered was 157 km2 with 
an average of 0.53 km2 per leg (range: 0.01-1.05 km2). It is noted that these calculations were based 
on the assumption that while on effort, the camera was generally pointing directly down. However, 
camera angles were not recorded automatically and sometimes this angle was adjusted to improve 
viewing conditions (e.g., to reduce glare). The drone observers logged the camera angles when these 
were reported by the drone pilots. As there was no strict protocol in place during which the drone 
pilots reported all angle adjustments immediately (which would for both drone pilots and observers 
be extremely impractical and subject to a high error rate), exact angles for the entire duration of each 
flight were not available. In addition, as the absolute viewing angle of the camera in relation to the 
ocean surface also depends on the pitch and roll angle of the drone, it is not sufficient to record a 
single camera angle but the orientation of the camera in three dimensions would be required, in 
addition to the pitch and roll of the drone. Hence, the estimates of swath width and area covered by 
the drone shown in Table 16 represent approximations. 

TABLE 16. Summary of the altitude, swath width and length, and area covered, for the 300 zigzag legs. 
For altitude and swath width, the summaries presented in the table are based on the average of those 
quantities for each leg, and it was assumed that the camera was pointing directly down (see text for 
details). 

Flight parameter Mean Min Max Total 
Altitude (m) 133.82 66.70 224.18 NA 

Swath width (m) 154.62 77.02 258.86 NA 
Length (km) 3.38 0.08 4.31 1,013.37 

Area covered (km2) 0.53 0.01 1.05 157.50 
Time (hh:mm:ss) 00:05:31 00:00:23 00:12:46 27:38:19 

 

It is estimated that the area searched by the drone during zigzag flights represents only 0.83% of the 
area searched by the flying bridge observers. The length of all transect lines covered by the flying 
bridge was 1,733.06 km (Table 6). Observers were able to make detections out to the horizon at 8.3nm 
(see Section 6.1.1). However, data are usually truncated at 5.5 km for analysis, which corresponds 
roughly to the turning radius specified in the NMFS protocol (Section 5.1.2). Using this truncation 
distance, the area covered by the flying bridge was 19,063.66 km2. By comparison, the drone covered 
an area of 157.50 km2 or 0.83% of the area covered by the flying bridge.  

6.3.2 Zigzag flights: altitude vs speed 
Several flight altitudes and speeds were tested, but only at lower altitudes and slower speeds was it 
possible for drone observers to review the video in real-time. On the first day of the trial survey test 
flights were flown with zigzag legs at relatively high speed and low altitude (Figure 37). As this 
combination resulted in the video rushing by too quickly for real-time reviewing, a wider range of both 
altitudes and speeds was tested on the second and third days (18 and 19 November). It was concluded 
that due to the poor quality of the transmitted video, the altitude should be kept at about 100 m and 
the drone speed at about 30 km/hr. Only at this combination was it feasible for the drone observers 
to conduct real-time monitoring. At higher speeds the objects of interest were rushing by too quickly, 
which, in theory, could be alleviated by flying at higher altitudes; however, at higher altitudes the 
dolphins were too small to detect with any confidence.  
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FIGURE 37. Drone altitude and speed distributions, by day, for the 300 zigzag legs. Horizontal bars 
represent medians, boxes the interquartile ranges and whiskers reach to the extreme values. 

 

6.3.3 Zigzag flights: flight path assessment 
The success of the drone at achieving the pre-determined flight path was evaluated using four metrics. 
During the zigzag flights for the main survey, the drone is supposed to maintain station ahead of the 
ship at a distance, 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖, of 5nm or more (see Section 5.3.2). The target for these flights is to cover the 
trackline surveyed by the ship out to a distance 𝑤𝑤 = 3 nm on either side of the trackline (Figure 38), 
i.e. matching the maximum perpendicular distance at which cetaceans detected by the flying bridge 
observers are within the turning radius of the ship for approaching the animals (see Section 5.1.2). 
Hence, the targeted width of the corridor covered by the drone 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐  should be 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 = 2𝑤𝑤 = 6 nm. 
For a perfectly symmetrical flight path, this would further entail that the mid-points of the zigzag legs, 
except of the first and last legs per flight, would be on the ship’s trackline and that the perpendicular 
distance of the drone to the trackline, 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚, should be zero (as shown in Figure 38) where the Χs fall 
directly on the transect line). In order to conduct a zigzag flight according to a given combination of 𝑤𝑤 
and 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖, the drone team estimated the locations of the ship along a projected trackline based on 
the course and speed of the ship at the time of launch and the time until the drone would reach 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖. 
Using this projected trackline, they determined the waypoints of the zigzag flights and uploaded these 
onto the drone before launch. How successfully the targets were met can be measured in the following 
ways, considering both the projected trackline and the trackline that was actually completed by the 
ship. It is noted that these tracklines (including the timely progression along the respective trackline) 
often varied due to slight variations in course and speed of the ship. They varied substantially during 
closing mode when the ship turned on sightings. 
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FIGURE 38. Diagram of theoretical drone flight path consisting of five zigzag legs in relation to the ship 
transect line. Not shown are the outbound and inbound transits from and to the ship. 

1. Target: at the mid-points of the zigzag legs the drone should be 5nm ahead of the ship (𝑫𝑫𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 
5nm)  

Two problems were encountered when attempting to achieve a 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖 of 5 nm. To estimate the actual 
values of 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖 during each flights, we measured the distances between the drone’s position at its leg 
mid-points and the concurrent positions of the ship (Figure 39). We excluded the first and last legs of 
each flight from these calculations as these were not expected to cross the ship’s trackline. The first 
problem was that the collection of video imagery at a 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖  of 5nm for was not possible. Video 
transmission errors increased substantially at values of 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖 larger than about 4 nm, and hence, for 
the majority of flights, shorter distances, e.g. 3 nm, 3.5 nm or 4 nm, were actually targeted resulting 
in a mean 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖 across all flights of 3.52nm (SD=0.90). The second problem was that these shorter 
values for 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖  generally could not be met with precision. If these were met with precision, the 
distribution of 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖 would show distinct peaks at the targeted distances of e.g. 3 nm, 3.5 nm or 4 nm 
in Figure 40. For example, the mid-points of legs 2-5 in the left example of Figure 39 were at 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖 = 
2.50, 2.66, 2.84, 3.02 nm, i.e. increasing during the flight instead of being constant at the targeted 
value for that flight. Similarly, the mid-points of legs 2-4 in the example on the right were also 
increasing with 𝐷𝐷𝑠𝑠ℎ𝑖𝑖𝑖𝑖 = 3.92, 4.17, 4.40 nm. The more striking feature of this example, however, was 
that the drone did not cover the area of the ship’s proposed trackline during this flight, which we 
address below. This was likely due to a combination of factors, foremost the rigidity of using uploaded, 
and hence fixed zigzag waypoints, which could not be adjusted during the flight. Slight variations in 
the ship’s course and speed may have also contributed to this (compare, e.g. the projected with 
completed trackline in Figure 39). 
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FIGURE 39. Two example flight paths of the drone (black lines) in relation to the completed ship track 
surveyed by the flying bridge observers (red line) and projected trackline of the ship given the ship’s 
course just prior to launching the drone (green line). Open green and red squares indicate the launch 
and land locations of the drone, respectively. Coloured triangles indicate the mid-leg locations of the 
drone for each leg except the first and last of the flight; coloured dots indicate the location of the ship 
when the drone was at the respective mid-point. Date and flight number are given in the title. Units 
for UTM coordinates are meters. 

 

FIGURE 40. Frequency distribution of estimates of Dship. 

2. Target: the width of the corridor surveyed by the drone ahead of the ship is 6nm 

The achieved width of the corridor surveyed by the drone in front of the ship, 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐, was much less 
than 6 nm, with a mean of 1.93 nm when measured with respect to the completed trackline, and a 
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mean of 1.71 nm when measured with respect to the projected trackline (Table 17). 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐  was 
calculated as follows:  

𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐 = |𝑚𝑚 × 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑚𝑚 × 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒|                    (1), 

where 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒  are the perpendicular distances from the start and end points of a given leg, 
respectively; 𝑚𝑚 = −1 if the location of the start/end point was to the left of the trackline and 𝑚𝑚 = 1 
if it was to the right.  

The reduction in 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐  was mostly due to a decision made at the start of the trial survey: a reduced 
target for 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐  of 3 nm was necessary to facilitate the initial testing of the drones, with a potential to 
widen it if tests were successful. As even this reduced target distance was never achieved, 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐  could 
never be increased to 6nm during the trial survey. Hence, for all legs, except the first and last of each 
flight, 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐  was targeted to be 3 nm, i.e. 1.5 nm to either side of the trackline (see Figure 38). Despite 
the reduced target for 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐, the achieved width of the corridor was much less with a mean of 1.93 nm 
when measured with respect to the completed trackline and a mean of 1.71 when measured with 
respect to the projected trackline (Table 17). The most likely reason that 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐  was less than 3 nm was 
that a reduction in 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐   was required due to the poor video quality. To try to improve the video quality, 
the drone had to fly at low altitudes and, therefore, at low speed (see Section 6.3.2). As a result of this, 
the width of the corridor had to be reduced in order for the drone to maintain position ahead of the 
ship.   

TABLE 17. Summary statistics for 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐  (equation 1). 

 𝐰𝐰𝐜𝐜𝐜𝐜𝐜𝐜 (nm) 
wstart and wend measured to: 1st Quartile Median Mean 3rd Quartile 
Completed trackline 1.72 1.88 1.93 2.22 
Projected Trackline 1.70 1.81 1.71 1.88 

 

3. Target: the drone should be on the trackline at the leg mid-points (𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎 = 0) 

Overall, the estimates of 𝐷𝐷𝑚𝑚𝑚𝑚𝑑𝑑  varied considerably within and among flights (Table 18), ranging from 
10 – 6,018 m and 2 – 6,002 m for the completed and projected trackline, respectively. 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  was 
estimated by measuring the shortest distances of the leg mid-points to the completed and projected 
tracklines, excluding the first and last leg of each flight. The projected trackline is the course of the 
ship at the time the drone was launched. The two examples shown in Figure 39 are on opposite ends 
of the observed spectrum of meeting this target. In the example on the left, the mid-points of legs 2-
5 were at 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  = 18, 28, 46 and 74 m from the completed trackline and at 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  = 187, 240, 304 and 
358 m from the projected trackline. In the example on the right, the waypoints seem to have been set 
up based on the wrong course of the ship. Here, the mid-points of legs 2-4 were at 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  = 2,470, 3,088 
and 3,336 m from the completed trackline and at 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  = 2,331, 2,781 and 3,159 m from the projected 
trackline.   

 

TABLE 18. Distances Dmid (m) from the drone at leg mid-points to the completed and projected 
tracklines of the ship. 

Distance to: Min 1. Quartile Median Mean 3. Quartile Max 
Completed trackline 10 208 534 952 1,220 6,018 
Projected Trackline 2 187 535 817 1,036 6,002 
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4. Target: the start and end points of the zigzag legs (excluding the first and last of a flight) should 
be on opposite sides of the trackline 

Out of all 61 flights with more than two zigzag legs, the target was achieved for 45 flights with regards 
to the completed trackline and for 46 flights with regards to the projected trackline (Table 19). 
However, for 11 flights, this target was missed completely. In the example on the left in Figure 39 this 
target was achieved, when the start and end points of legs 2-5 were on opposite sides of the trackline 
(both completed and projected). By contrast, for the example on the right, the start and end points of 
legs 2-4 were on the same side of the trackline (both completed and projected).  

TABLE 19. Number of flights by the percentage of legs per flight (excluding first and last legs) that met 
the target, relative to completed and projected tracklines. 

Percentage of legs covered 0 1-19 20-39 40-59 60-79 80-99 100 
 Number of flights 

Completed trackline 11 0 1 0 3 1 45 
Projected trackline 11 0 1 0 2 1 46 

 

6.3.4 Real-time transmission of video back to the ship and monitoring by drone observers for 
cetacean sightings 

As mentioned in Section 5.3.4.1, the imagery obtained from the real-time transmission of the video 
was often of poor quality, with frequent pixilation (Figure 41) and video freezes or complete 
transmission loss. These issues were likely, at least in part, a result of the antenna that the drone team 
mounted on the ship for receiving information from the drone. The drone team tried to improve 
transmission by mounting the antenna in different locations on the ship during the survey, without 
much improvement. The quality of the transmission was a function of how far the drone was away 
from the ship, where 5 nm was deemed to be too far, with too many issues to make real-time 
monitoring viable. Hence, for the main survey, where the drone will be required to operate at least 5 
nm ahead of the ship, a better antenna system will be necessary.  

 

FIGURE 41. Screenshot of video footage with pixilation and compression issues throughout most of 
the frame. 
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6.3.5 Video analysis 
6.3.5.1 Manual classification 
Most of the 20,195 objects of potential interest that underwent manual classification (Section 
5.3.4.2.1) were assigned the class water, with dolphin the second most common class (Table 20); the 
dataset in general was very inhomogeneous. The majority of classes had a relatively large standard 
deviation in all measurements, indicating that the size of the labelled objects had a large variability. 
The dolphin class objects were relatively square which was unexpected, and may indicate that either 
dolphins were predominantly picked up swimming diagonally relative to the camera or that the 
computer vision algorithm padded the objects size.  

During all effort modes of the zigzag flights combined, drone observers logged objects that could be 
of at least potential interest during 92 occasions. During post-hoc review, six of these were confirmed 
as cetacean detections. 

TABLE 20. Summary of the dataset classified by the human observer: frequency, mean area, width 
and height, along with the standard deviation (SD) of each (except for the count). The mean area refers 
to the mean area of the boxes that fully enclosed each object within each class. Similarly, the mean 
width and mean height are the mean of the widths and heights of the box that encloses the objects in 
each class. Each measurement (except for the count) is also presented with its standard deviation. 

Label Count Mean 
area 

Area 
SD 

Mean 
width 

Width 
SD 

Mean 
height 

Height 
SD 

Dolphin 2,704 350.8 1,243.7 14.2 14.5 14.9 15.0 
Bird 26 99.7 50.3 9.1 2.7 10.7 3.1 
Multiple Dolphins 151 873.2 2,193.1 23.8 22.8 22.9 20.3 
Whale 0 0 0 0 0 0 0 
Turtle 0 0 0 0 0 0 0 
Unknown 913 215.3 963.5 13.6 7.7 11.6 7.2 
Unknown not 
cetacean 554 183.3 281.4 13.3 7.7 11.6 7.2 

Boat 5 388.0 426.1 11.8 7.9 25.0 14.0 
Fish 0 0 0 0 0 0 0 
Trash 1 3795 0.0 69.0 0.0 55.0 0.0 
Water 15,841 250.4 425.3 16.8 11.1 12.6 7.3 

 

6.3.5.2 Machine learning models 
As mentioned in Section 5.3.4.3, we first investigated the problem of image classification, as this was 
the easier problem to solve. The image classification problem consisted of presenting an image to the 
trained model and the model labelling the image based on the object or objects the model thinks are 
contained in the image. The model achieved this by assigning a likelihood value to each object class 
(Section 5.3.4.3.1) based on how confident the model was that the class was in the image. The class 
with the highest likelihood was thus the class chosen by the model.  

This simplistic process had to be modified in order to run the image analysis model over the video 
footage either as the stand alone model described in Section 5.3.4.3.1 or as part of Triton described 
in Section 5.3.4.3.3. First, a still image was taken from the video footage. This image was then broken 
down into patches of size 25 x 25 pixels. This patch size was chosen as this was larger than the mean 
size of the dolphin labels in the manual classification stage (see Section 5.3.4.2) to ensure that any 
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dolphin in the image would be fully enclosed by the patch. A patch was taken from the image every 
25 pixels in each direction, with constant padding added to each side of the image as required to fit 
integer patches in each dimension. Each patch would then be passed to the model and the model 
would predict to which class the patch belonged. At the time of writing this report, the motion and 
Triton models required additional fine-tuning before they can be used for this purpose; hence, only 
results from the image model are included in this report.  

Due to the issues mentioned in the sections above relating to the quality of the video data, we were 
not able to make reliable detections of dolphins with the video analysis models. Three different 
likelihood thresholds were chosen to illustrate the point that the current model cannot be used to 
detect dolphins due to the poor video quality (Figure 41). All dolphins were detected at the 50% and 
65% likelihood threshold (upper panels in Figure 41). However, the rate of false positives was too high, 
rendering the usefulness of this to nil. Even at 90% likelihood (bottom left panel in Figure 42), which 
was meant to signal that the model was certain that the current patch is a dolphin, this situation did 
not really improve. Although there were less false positives, none of the dolphins were detected. 

 

FIGURE 42. Example output from the image model. The bottom right panel shows the input image 
before patches were created. Top left (threshold of 50%), top right (threshold of 65%) and bottom left 
(threshold of 90%) panels summarize the output from the model using different likelihood thresholds. 
The green boxes indicated the patches that were labelled by the model as dolphins.  

6.3.6 Comparison real-time (including review) with image analysis detections 
At the time of writing this report, the limits of what can be achieved with the models on the existing 
footage was reached. However, new footage with better resolution would allow fine-tuning existing 
models. Then, we expect to achieve better results and to reliably obtain dolphin detections from the 
zigzag flights.  

6.3.7 Matching sightings between platforms: flying bridge sightings versus drone detections 
Of the six confirmed drone detections, two detections were of the same school (see below this 
section), reducing the number of trials for the flying bridge to five. Detections 1 (Figure 43) and 2 
(Figure 44) were too far from the nearest flying bridge sightings to be a potential match. Even though 
detection 4 (Figure 45) was within less than 3km of flying bridge sighting 058, it was concluded that 
these were not a potential match based on auxiliary information: 1. drone detection 4 was a single 
dolphin (species undetermined) swimming underwater while changing directions and flying bridge 
detection 058 was a group of about 10 bottlenose dolphins (species code 018) that approached the 
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ship to bow ride; 2. It would have required the group of bottlenose dolphins to travel at a speed of 
about 10 knots for about 8 min to get from the location they were detected by the flying bridge to the 
location they were detected at drone considering the time lapse between the detections. It was 
deemed very unlikely behaviour for this group of bottlenose dolphins to be travelling away from the 
ship at high speed after first approaching and bow riding. Hence, these detections were not candidates 
for duplicate detections, and, thus, it was inferred that detections 1, 2, and 4 represent trials that were 
failures (see Section 5.3.1). 

 

FIGURE 43. Location of drone detection 1 (black dot) in relation to flying bridge detections (stars) 
within a 10km radius, here only FB# 15 (177: unidentified small delphinids). Distance and time lapse 
between detections made by drone and flying bridge are given in the legend, where negative time 
means drone detection occurred before flying bridge detection. Drone track in black (with gaps in the 
GPS log), ship track as dashed line (red: on effort in passing mode, green: off effort). Units for UTM 
coordinates are meters. 

 

FIGURE 44. Location of drone detection 2 (black dot) in relation to flying bridge detections (stars) 
within a 10km radius, here FB# 55 (078: small whale) and 56 (090: spotted dolphin, unidentified 



 
 

63 
 

subspecies). Distance and time lapse between detections made by drone and flying bridge are given 
in the legend, where positive/negative time means drone detection occurred after/before flying 
bridge detection. Drone track in black, ship track as dashed line (red: on effort in passing mode). Units 
for UTM coordinates are meters. 

 

FIGURE 45. Location of drone detection 4 (black dot) in relation to flying bridge detections (stars) 
within a 10km radius, here FB# 57 (075: blue whales) and 58 (018: bottlenose dolphins). Distance and 
time lapse between detections made by drone and flying bridge are given in the legend, where positive 
time means drone detection occurred after flying bridge detection. Drone track in black, ship track as 
dashed line (red: on effort in passing mode, green: off effort). Units for UTM coordinates are meters. 

For the remaining two detections, no determination could be made about their status. Drone 
detection 12 made during flight 3 on 21 November was detected about 12 min before the flying bridge 
sighting 71 and their respective locations were approximately 4.6 km apart (Figure 46). To cross a 
distance of 4.6 km in 12 min requires travelling at a speed of about 12.6 knots. Hence, it seems very 
unlikely that these detections represent a duplicate unless the dolphins detected by the drone were 
travelling at high speed directly towards the ship. The species identification made by the flying bridge 
observers for sighting 071, offshore spotted dolphin, would also be possible for drone detection 12 
based on approximate size and behaviour (but impossible to confirm due to poor video quality). 
However, the travel direction of the dolphins sighted from the drone (Figure 47) was not in the 
direction towards the location of the flying bridge sighting. The dolphins sighted from the drone were 
travelling at slow to moderate speed with some porpoising behaviour, and could loosely be described 
as two subgroups with a total of five individuals. The dolphins spotted from the flying bridge were 
described as two tight subgroups with a mean best estimate of five individuals across the three on-
watch observers, and were approaching the ship from the right of the ship to ride the bow (note that 
at the time of these detections, the heading of the ship was to the South, putting drone detection 12 
on the right side of the ship; Figure 46). During the approach their behaviour was described as low and 
slowly swimming at about 2knots, with some porpoising. In conclusion, there is some probability that 
flying bridge sighting 71 was the same as drone detection 12 (based on numbers and aggregation), 
although spatial separation and direction of travel provided strong evidence against this. Species 
identification could provide the key information to make a better judgment. The analysis of this type 
of data where detections made by the two platforms cannot be matched with certainty would require 
new methods for incorporating uncertainty about duplicate identification.  
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FIGURE 46. Location of drone detection 12 (black dot) in relation to flying bridge detection (star) within 
a 10km radius, here FB# 71 (002: offshore spotted dolphins). Distance and time lapse between 
detections made by drone and flying bridge are given in the legend, where negative time means drone 
detection occurred before flying bridge detection. Note that the drone detection was made during the 
second zigzag leg while the drone flew southeast. Drone track in black, ship track as dashed line (red: 
on effort in passing mode, green: off effort). Units for UTM coordinates are meters. 

 

FIGURE 47. Screenshot of video footage taken during flight 3 on 21 November during drone detection 
12. Red circle outlines the location of the detected dolphins, red arrow the direction of travel of the 
dolphins where an arrow pointing up would indicate the same direction as the drone was flying. Left 
panel shows the same image rotated to match the direction that the drone was travelling at the time 
of the detection (see Figure 46).  

Lastly, from Figure 48 we infer that drone detections 71 and 72 were of the same school as their 
locations overlapped. Detection 71 was a large school with a loose formation, spread over a few 
hundred meters, and only two minutes had passed between the two detections during which time the 
drone had essentially double backed over the path it took while observing 71. Hence, detections 71 
and 72 represent a single trial and will be treated as such below. Detection 71 was also displaying 
aerial behaviour, some of which may have been spinning (but poor video quality did not allow 
classifying the behaviour or the species identification) and had a few associated birds. Out of all the 
flying bridge sightings made within a 10 km radius, drone detections 71 and 72 may have also been of 
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the same school as flying bridge detection 170 based on the location and time lapse information. 
However, flying bridge sighting 170 was a mixed school of spotted and eastern spinner dolphins in a 
tight and clumped formation with spinner dolphins at the centre surrounded by the spotted dolphins. 
They were described as travelling at slow speed, initially of ~2 knots with a direction of 280˚ relative 
to the ship’s bow, showing no reaction to the ship. No aerial behaviour was observed or any associated 
animals (e.g. birds) detected. Using all information available, it does not seem likely that drone 
detections 71 and 72, which are assumed to be the same school, were a match with flying bridge 
sighting 170, although this cannot be determined with enough certainty as key information (species 
identification and classification of aerial behaviour) was not available.   

 

FIGURE 48. Location of drone detections 71 (black dots) and 72 (grey dots) in relation to flying bridge 
detections (stars) within a 10 km radius, here FB# 169-175 (large stars) and resights (small stars). 
Distance and time lapse between detections made by drone and flying bridge are given in the legend, 
where negative time means drone detection occurred after flying bridge detection. Species codes 
refer to unid. medium delphind (277), eastern spinner dolphins (010), unid. small delphinid (177), 
spotted dolphins (unid. subspecies, 090), short-beaked common dolphin (017) and Risso’s dolphin 
(021). Units for UTM coordinates are meters. 

 

6.3.8 MRDS data 
Out of the five confirmed trials, three were failures and two could not be confirmed as successes or 
failures due to lack of sufficient information (see previous section). A sample size of five trials was not 
large enough for an MRDS analysis. Nonetheless, the perpendicular distances of the trials and their 
corresponding observation conditions are summarised in Table 21. The Beaufort sea state and swell 
height were taken from the information. The three failures ranged in perpendicular distance from 134 
m to 5961 m.  
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TABLE 21. Summary of MRDS trials: drone detection number, trial outcome, perpendicular distance 
to the trackline completed by the ship, Beaufort sea state and swell height recorded by the flying 
bridge observers at the time of the drone detections at the time of the drone detections. 

Detection Trial outcome Perpendicular distance (m) Beaufort Swell (feet) 
1 Failure 654.26 2 4 
2 Failure 5960.53 2 3 
4 Failure 134.23 4 3 

10 Uncertain 1274.80 2 4 
71 Uncertain 1247.90 3 3 

 

6.4 Test drone for collecting school size calibration data 
6.4.1 Calibration flight effort modes and altitude 
The calibration flights can be broken down into three effort modes: 1. outbound transit during which 
the drone was searching for the school; 2. with the school, when the drone was taking footage of the 
school; 3. inbound transit, when the drone was returning to the ship after all necessary video footage 
was taken (Figure 49). The average outbound transit time was about 16min (Table 15) while it took 
about 18 min on average to take calibration video footage. Inbound transit times were short (about 4 
min) for calibration flights as the drone was kept at relatively short distances to the ship. The altitude 
of the drone when with a school was between 60 and 240 m, with an average altitude of 112 m. Most 
of the flight time when with a school was spent at 100 m.  

 

FIGURE 49. Example path of a calibration flight showing different modes with TOC: outbound transit 
(searching for school), WS: with school, and TIC: inbound transit (returning to the ship). Green and red 
dots indicate the locations of the drone during launch and landing, respectively. Green stars indicate 
the location of the initial sighting (big star) and resights (small stars). Date and flight number are given 
in the title. Units for UTM coordinates are meters. 
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6.4.2 Calibration flights: assessment of approach method 
There were multiple challenges with regards to the calibration flights. The objective for the calibration 
flights was to obtain suitable video footage that would allow obtaining true counts of the calibration 
schools. In practice, the first challenge to meet this objective was to position the drone over the school. 
This required the direct coordination between the drone observers, flying bridge observers, drone 
pilots and the bridge. As the systems of flying bridge and drone pilots were not connected, this was 
not simply solved by using the GPS location of the flying bridge sighting as a waypoint for the drone. 
When this was attempted, it was found that by the time this location was relayed to the drone pilots, 
the schools had moved too far. Instead, the flying bridge observers continuously tracked the school 
and relayed information on bearing and distance from the ship to the drone observers and pilots. 
Using this information, the drone observers then directed the drone pilots as to which course and 
speed the drone should take and which angle the camera should be at. Flying bridge observers also 
directed the ship to stay at relatively close distance to the school without causing the school to react 
to the ship. We found that, given the equipment we had, the most effective method to get the school 
within view from the drone was to start with the ship pointing at the school with the school at a 
distance of 1nm. We then aligned the drone with the ship and flew out at slow speed in the direction 
of the school with the camera at an angle of 50˚ until the drone reached the school. Given the poor 
resolution of the video, it was not possible to detect dolphins at a great distance. With this in mind, 
we kept the altitude between 60 and 130m. For example, at an altitude of 60m above sea level, the 
ocean surface in the centre of the camera at 50˚ is at a distance of 93m. This increases to 155m if the 
drone is at 100m and to 202m if the drone is at 130m.  

The flight depicted in Figure 50 shows our first attempt of trying to get the drone over a school, in this 
case killer whales. We note that in this example, we did not use the method described above 
immediately when the drone started the search of the school after realigning with the ship. The school 
was found but lost again as we only saw the school from a distance with a camera at an angle. After 
that, we used the method described above to relocate them with the drone.  
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FIGURE 50. Path of example flight with initial zigzag effort which changed to calibration effort. TO: 
outbound transit to the first zigzag waypoint; TOC/TIC: outbound/inbound transit to/from calibration 
school; WS: with school; Leg 1 of zigzag flight component. Stars: locations of initial sightings (large) 
and resights (small) of flying bridge sightings 027 (purple, rough-toothed dolphins) and 028 (blue, killer 
whales). Green and red dot indicate the launch and land locations of the drone, turquoise dot the 
location of the ship when drone started the outbound transit towards the calibration school. Dashed 
line: ship track (red: flying bridge on effort in passing mode, green: off effort). Date and flight number 
given in title. Units for UTM coordinates are meters. 

6.4.3 Video analysis 
As stated in Section 6.3.5, at the time of writing this report, it has not been possible to obtain accurate 
counts for any of the video footage. This was mostly due to the poor quality of the video footage (see 
Figure 9 and Figure 41). The video quality recorded by the camera was recorded in full HD (1920 x 
1080 pixels). Thus, for a camera aperture of 60 degrees, and a drone altitude of 100 m, the width of 
the ocean surface covered was 115m. Hence, we expected a ground resolution of about 6cm per pixel 
(11500 cm/1920 pixels=5.99 cm/pixel), which would in principle be adequate to classify objects of 
potential interest as dolphins and count these. However, this resolution was much reduced by the 
video data collection process which included transmission, compression and screen recording (see 
Section 5.3.4.1). A ground resolution of 6cm/pixel would have allowed for detection of dolphins with 
a much higher success rate, while a ground resolution of 2 cm/pixel would generally allow for the 
identification of the species of the individual dolphins.    

6.4.3.1 Manual counts 
For six schools we were able to capture all clusters with the drone footage (Table 22). Manual counts 
were obtained for five of these schools and, hence, are valid calibration schools. The sixth school was 
too large to be counted manually with too many animals moving in and out of sight to keep track of 
individuals with a sufficient degree of confidence. The sweeps counted were less than the sweeps 
recorded (see Section 5.4.4) for two schools as it was uncertain if the entire school was visible within 
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the sweep due to glare issues, thus, emphasizing the need for recording footage during multiple 
sweeps.  

TABLE 22. Summary of counts for the six schools for which the entire school was captured with the 
drone video and, hence, would be valid calibration schools if true counts could be obtained. Sweeps 
refer to the parts of a drone flight during which the entire school was captured at least once. A final 
count of NA indicates that the school could not be counted manually. Date is shown as day.month. 

Date Flight Species Sighting 
number 

Could 
manual 

counts be 
obtained? 

Sweeps 
recorded 

Sweeps 
counted 

Final 
count 

24.11 1 010 119 No 4 3 NA 
25.11 2 090 122 Yes 5 5 55 
27.11 4 015 157 Yes 1 1 10 
27.11 7 015 159 Yes 1 1 9 
28.11 6 021 175 Yes 6 3 56 
28.11 7 032 178 Yes 5 5 36 

 

6.4.3.2 Comparison of image analysis counts with manual counts 
At the time of writing this report, the limits of what can be achieved with the models on the existing 
footage was reached. However, new footage with better resolution would allow fine-tuning existing 
models. Then, we expect to achieve better results and to reliably obtain dolphin detections from the 
calibration flights and obtain counts of dolphins within the schools.  

 

7.  CONCLUSIONS 

In summary, as regards preparation for a main survey, the following conclusions about equipment 
and methodology can be drawn from the trial survey project: 

• The Jorge Carranza can be used as a survey vessel for the next ETP survey upon which our team 
of experienced observers, in combination with the ship’s command, were able to implement the 
NMFS survey protocol. 

• Flying bridge equipment worked well, although a few fixes and alterations are needed for the 
main survey. 

• No significant differences in detection probabilities between observation platforms of the Jorge 
Carranza and previous ETP survey vessels could be identified.  

• The Jorge Carranza with its custom-made drone platform can be used for conducting drone 
operations; drones could be launched and landed in Beaufort sea states up to and including 5. 

• We were not able to show that the zigzag flights could be successfully implemented with the 
Seahawk drone, which was not the drone of our choice but was provided to us for the project. In 
particular, for implementing zigzag flights during closing-mode effort a drone with much longer 
endurance is needed. 

• Even with additional highly skilled pilots and crew on board the survey vessel to man multiple 
launches and landings, the Seahawk drone does not have the endurance necessary to make it a 
viable option for the zigzag flights during the main survey, and its use during a main survey for 
zigzag flights would be a major safety concern. 
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• A more flexible solution compared to uploading fixed waypoints pre-flight is needed for directing 
the drone along zigzag survey legs, including the option to adjust the flight plan and waypoints 
easily in-flight.  

• Detections of cetaceans via the drone could be made both via real-time observation and via video 
analysis and geo-referencing the detections with drones is generally possible; hence, using drones 
to collect MRDS data is possible during the main survey, as long as much better cameras and 
video data collection and transmission systems are used than during the trial survey.   

• To achieve the required sample size for assessing trackline detection probability during the main 
survey, cameras with much better resolution will be needed for the zigzag flights to cover a larger 
area and provide better ground resolution. Higher resolution video would also allow the drone 
to operate at higher altitudes while maintaining the same ground resolution. Increased altitude 
would also increase the area covered by the drone and thus increasing the sample size of 
detected schools for the trackline detection probability assessment. 

• The video data collection (for which the main source was on-screen recording of transmitted 
video, contrary to our protocol) and transmission systems used during the trial survey will not be 
adequate for a main survey, and these must include continuous on board recording of high-
resolution video imagery and ancillary data.  

• Recording of camera angles in three dimensions (in addition to pitch and roll of the drone) on 
board the drone is required for obtaining accurate assessments of the swath width and area 
covered by the drone during the zigzag flights as well as estimated lengths of objects of potential 
interest for the image analyses.  

• Flying bridge survey protocol should incorporate logging more resights while the drone is 
conducting zigzag flights in order to improve matching of duplicate detections. This could be done 
by the main observers, in the case they resight the schools during their regular scanning, or by an 
additional observer on bigeyes.  

• A more rigorous protocol for note taking by the drone observers is needed, in combination with 
suitable software for log-keeping for both zigzag and calibration flights to ensure essential 
information along with its sources (e.g. flying bridge, bridge, drone observers, pilots) is logged.  

• There is a need for an alternative to drone-Wincruz software, e.g. simple note-taking software 
that would automatically record the time and which source the information comes from, as well 
as allow tracking ship and drone GPS and the sightings made by either platform simultaneously.  

• Calibration flights can be completed successfully with the Seahawk drone; however, a higher 
resolution camera is needed to identify all individuals to species (which is not possible by zooming 
in with the drone camera) and to ensure animals swimming in close proximity to each other can 
be distinguished.  

• Recording multiple sweeps across a given calibration school with slightly varying camera angles 
is important to alleviate potential glare issues 

• For video analysis models, using image data or motion data alone does not yield as good a result 
as using both in one combined model. Hence, for a given resolution, video is preferred over only 
recording still frames. Video also adds the advantage that it allows tracking individuals through 
the frame, an essential feature used for manually counting the calibration schools during this 
project. However, should the resolution of the still frames improve sufficiently for the next phase 
of the project, the image-only models applied to single frames might be sufficient to detect 
dolphins and obtain counts reliably.  

• Using a polarising filter on the drone camera helps alleviate some of the glare issues in the videos. 
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8.  RECOMMENDATIONS 

We recommend that, prior to a main survey, a different drone-camera system with longer endurances 
and greater video resolution than the Seahawk should be tested in a short sea-trial on a vessel from 
which drones can be launched under similar conditions to those aboard the Jorge Carranza. We 
recommend that before such a trial, any potential drone provider should provide an assessment of 
their services, taking into account the following: 

A. For the zigzag flights, they should aim to provide a 100% coverage of a corridor with half-width 
𝑤𝑤 =  5.5 km while maintaining a ground resolution of 5 cm/pixel in the video and while 
maintaining station ahead of the ship at 5 nm or further.  

B. For the calibration flights, drones should be flown that can be easily manoeuvred to and 
hovered above the calibration school as well as be flown in slow sweeps across the school 
with cameras taking video footage of 2 cm/pixel ground resolution that is both recorded on-
board the drone and transmitted back to the ship.  

C. Drones should be able to fly at the height and cruising speed required for A. for a minimum of 
4hrs in order to implement zigzag flights during closing-mode effort; endurances of 1hr are 
sufficient for drones flying the calibration flights.  

D. Drone providers should demonstrate their ability to fly the drones in a zigzag pattern (or 
parallel lines) while maintaining station at 5nm ahead of the ship, and to adjust their flight 
plan mid-flight to accommodate flexible flight paths required when the flying bridge operates 
in closing-mode effort and turns on sightings.   

E. For all flights, the video footage must be saved to the disk on the drone with minimal 
compression. 

F. Drone providers should suggest solutions for dealing with glare issues on the ocean surface, 
e.g. use of polarised filters.  

G. Information about the drone and camera should be continuously recorded, including GPS, 
altitude, pitch and tilt of the drone, camera angle in three dimensions and focal length. 

The duration of such a sea trial should be long enough to collect data suitable for improving video 
analysis models. This requires that schools of dolphins should be captured with the video recorded 
during the zigzag flights flown using the parameters required to implement A. (i.e. the drone altitude 
and speed as well as the video resolution). This will require the capability for at-sea review of the video 
imagery after the drone has returned to the ship, and the necessary software and hardware to conduct 
the post-flight video review should be made available by the potential drone provider. The necessity 
of conducting a further sea trial and post-trial image analyses will need to be factored into the timing 
of the main survey.  
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DESIGN OF A SURVEY FOR EASTERN TROPICAL PACIFIC DOLPHIN STOCKS

Protocol for drone operations

Cornelia S. Oedekoven1 and Stephen T. Buckland1

1 Centre for Research into Ecological and Environmental Modelling, University of St Andrews, The
Observatory, Buchanan Gardens, KY16 9LZ, UK

Goals for using the drone
Estimate absolute abundance of the priority stocks
One of the critical assumptions for estimating absolute abundance using the conventional distance
sampling methods that were used previously during eastern tropical Pacific line transect surveys for
cetaceans (e.g. as in Gerrodette et al. 2008) is that all schools on the transect line are detected.
However, questions have been raised concerning whether probability of detection of schools on the
transect line – often referred to as g(0) – is close to one in all sea states up to Beaufort 5 (Barlow 2015).
Therefore, to meet Objective 2 (Estimate absolute abundance of the priority stocks, Oedekoven et al.
2018), methods are needed to estimate this probability, and how it varies by sea state. Given that
some schools that were initially close to the line may be evading detection, these methods should
accommodate responsive movement and behavioral responses.

We propose to use the drone to collect data that will allow us to estimate g(0) (the probability that
schools on the trackline are detected). The preferred method for addressing the g(0) issue for the ETP
survey is mark-recapture distance sampling (MRDS, e.g. Borchers 2012). In comparison to
conventional distance sampling where, e.g., line-transect data are collected from a single platform,
MRDS methods require double-observer platform data. Here, detections made from one platform, say
platform 2, represent trials for the other platform, say platform 1. In this context, trial outcomes refer
to whether or not platform 1 detects a group of dolphins initially detected by platform 2. It is crucial
that the two observation platforms are such that platform 2 does not influence the observers on
platform 1 and that sightings are matched across platforms correctly.

For this survey, a drone would survey the area in front of the ship during all daylight hours while flying
bridge observers are on-effort, likely beyond the maximum sighting range of the observers, and serve
as platform 2. A drone observer monitors the video footage from the drone transmitted back to the
ship in real-time. The sightings made by the drone observer represent the trials for the flying bridge
observers on platform 1. An observer monitoring images in real-time identifies duplicate detections –
those detected by both drone and observers. It is crucial, that sightings are matched and identified
as duplicates correctly. The drone will also record high-resolution video and still images for later
analysis. Recordings of the video footage might allow detecting additional schools during post-cruise
image analysis.

School size calibration
During previous ETP surveys, calibration of school size estimates for ETP observers was done by
comparing estimates to counts from aerial photographs taken from manned helicopter or fixed-wing
aircraft (e.g. Gerrodette et al. 2018). For this survey, we propose to replace the helicopter or fixed-
wing aircraft with a drone to collect equivalent still photographs or video of the dolphin groups. During
the trial, we need to assess the practicality of using such a drone as the aerial platform for collecting
suitable high-resolution imagery. Video and still camera equipment aboard the drone will record the
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high-resolution imagery, which will allow the drone to operate at a height where disturbance of the
dolphins is highly unlikely. This is not possible with observers on an aircraft.

With these goals in mind, the video footage that is transmitted back to the ship in real-time needs
to be good enough to detect dolphin schools, including those that consist of only a few animals,
while providing good coverage of the trackline (see below). The imagery (video and/or stills) that
is recorded on the drone for calibration purposes needs to be good enough to determine species
identification of individual dolphins while covering the entire school with only a few passes over
the school.

Drone operations
The drones will be operated from the vessel whenever the primary observer teams on the flying bridge
are on-effort, i.e. during all daylight hours when the Beaufort sea state is below 6. On-effort generally
entails that the ship moves along the transect lines at a constant speed of 10 nm. However, when the
primary team detects a school of cetaceans, the ship closes on the school for obtaining school size
estimates and species id which generally requires course and speed changes of the ship (see Diagram
1 below for an example of closing mode without drone operations). As g(0) is likely to be lower in poor
conditions, the drone would ideally need to operate up to Beaufort 5, and it would need to be able to
stay aloft for extended periods, to ensure that it is searching for most of the time that the observers
are on effort. Weather and drone technology permitting, the drone will be launched at sunrise just
before flying bridge observers begin daily effort and retrieved at sunset at the conclusion of effort.
This will provide maximum time use of the drone and minimal interruptions for the survey effort of
the primary observer team which requires constant speed of 10 knots (at least 8 knots). It is at the
discretion of the drone pilots to request changes in speed of the ship for launching and landing of the
drone.

Should the drone not allow for such long uninterrupted airtime (~12 hours), two or three drones
operating in shifts need to be operated in rotation. For example, if the drone only allows for one hour
of flight uninterrupted flight time before recharging, a second drone needs to be launched in time to
replace the former before it needs to return to the ship to allow uninterrupted monitoring of the areas
in front of the ship. The drone flying in the zig-zag pattern across the transect line is always identified
as the main drone. In this example the first drone is the main drone until it is replaced by the second
drone; then, the second drone becomes the main drone until it is replaced again by the former, and
so on until the end of operations for the day. It is always the main drone that will be recording and
transmitting the video and GPS locations back to the ship. If two drones are scheduled to operate in
rotation, it is important to have sufficient batteries and chargers on board to allow for this rotation
schedule.

The main drone will operate several km ahead of the vessels, flying in either a zig-zag pattern or in
parallel lines back and forth across the trackline out to a defined distance, e.g. ~3nm (the exact
distance depends on the flight speed of the drone and the targeted coverage probability on the
trackline and should be determined during the trials) either side of the line, with the angle of the zig-
zag or the distance between the parallel lines determined to allow the drone to maintain station ahead
of the ship (see Diagram 2 below for an example). It will fly at an altitude that is unlikely to generate
a response from the dolphins. It will be part of the trials to determine the best flight pattern and the
altitude at which the drone will be flying.

High-resolution video will be recorded on the drone to allow examining the footage for species
identification, school composition and obtaining (at least approximate) true school size counts used
for observer calibration at the analysis stage. This imagery will also be transmitted to the ship in real-
time and monitored by drone observers on the vessel. If a school is detected by the drone observer
monitoring the drone footage, they will alert the cruise leader (but not the flying bridge observers),
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and if the flying bridge observers subsequently detect the same school, both the drone and the ship
will close on the school to secure better data on school size and species present, and to record any
movement of the school towards or away from the line following initial detection by the drone. If it is
considered feasible for the drone to monitor a school without alerting shipboard observers, it will do
so for schools detected from the air, until either the shipboard observers detect the school or it passes
abeam; however, to avoid cueing observers, it is likely that the drone will need to remain some
distance ahead of the vessel unless the shipboard observers detect the school, as any change in flight
pattern when a school is detected by the drone might cue observers to the presence of a school.

Drone coverage probability on the trackline
We did a preliminary evaluation of what the coverage probability of the drone (the proportion of the
transect line that would be captured by the drone footage) would be based on a zigzag flight pattern
of the drone intersecting the transect line at a constant distance ahead of the ship. This constant
distance depends on the behavior of the dolphin schools and will be determined during the trials. The
aim is to capture the dolphin schools with the drone footage before they reacted to the presence of
the ship.

Here we used an endurance speed of the Flexrotor drone of 85km/hr and the ship survey speed of
18.5km/hr (10knots). If the drone is to survey in a zigzag pattern out to 4km to either side of the
transect line, the drone is expected to cross the transect line at approximately 1.78km intervals. If the
drone flies at 300m above sea level where the strip width in wide-angle mode is 368m (Table 9), the
resulting coverage probability of the transect line is 0.21 (0.368km/1.78km). If the drone flies at 500m,
the resulting coverage probability of the transect line is 0.34 (0.613km/1.78km). It is important,
however, that the drone footage will provide enough ground resolution to detect dolphin schools.

TABLE 1. Drone flight height, resulting survey strip width covered by the video footage as well as
ground resolution (cm per pixel) using 720 x 1280 video (GR1280px) and 1080 x 1920 video (GR1920px)
shown for the maximum and minimum angle of the Trillium camera Orion HD50
(http://w3.trilliumeng.com).

Wide angle: 63˚ Narrow angle: 2.2˚ 

Height (m) Strip width (m) GR1280px (cm) GR1920px (cm) Strip width (m) GR1280px (cm) GR1920px (cm)

100 123 9.6 6.4 4 0.3 0.2

200 245 19.2 12.8 8 0.6 0.4

300 368 28.7 19.2 12 0.9 0.6

400 490 38.3 25.5 15 1.2 0.8

500 613 47.9 31.9 19 1.5 1.0

600 735 57.5 38.3 23 1.8 1.2

700 858 67 44.7 27 2.1 1.4

800 980 76.6 51.1 31 2.4 1.6

900 1103 86.2 57.5 35 2.7 1.8

1000 1226 95.8 63.8 38 3 2.0

Capturing footage for school size calibration will bring further challenges in that these images require
both a ground resolution good enough for species or stock identification as well as a wide enough strip
to cover the school with as few as possible passes. We acknowledge that using the drone for our
purposes will be a challenge, in particular with regards to school size calibration. However, it is the
purpose of the trial to determine the feasibility of these operations.

General closing mode effort
In this section we describe the NMFS closing mode procedure (Kinzey et al. 2000) by illustrated
example.
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Diagram 1 showing an example of closing mode effort without considering the drone. Black
polygon in the centre is the ship at the current position where the direction of current travel is
always pointing directly up in the image (as in program WinCruz, the line transect data collection
software) and small black circles are recent ship positions, black concentric circles indicate increasing
distance to the ship in 1nm increments, red dot indicates sighting position in relation to the ship.

1. Ship transits along the transect
line, observers on effort.

2. Observers on the flying bridge
spot a school (red dot). Note that
all sightings are closed on that fall
within a 3nm perpendicular
distance from the transect line
(or rather from the projected
transect line given that it may
change due to closing mode
effort – see 5. in this diagram for
details).

3. Ship turns to approach the
school. Observers are logged off-
effort. All on-watch observers
focus on the school.
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4. Ship closes on school for school
size estimates and species id. This
may require more than one pass
through the school.

5. After finishing with the
sighting, the ship continues along
a course parallel to the transect,
without returning to the transect
line first, and observers resume
search effort. Note that if the
sighting or a sequence of
sightings has taken the ship
>10nm away from the transect
line, the ship resumes searching
on a 20° course back to the
original transect.

Flight path of the drone during closing mode effort
Here, we illustrate a possible flight path of the drone in relation to the ship while the ship is in
closing mode effort. Note that the feasibility and suitability needs to be tested in the field. For
illustration purposes we used the following parameters for the drone flight in this example, but
these will likely need to be updated:

1. The drone flies in parallel lines out to 3nm on either side of the trackline (3nm perpendicular
distance of a detected school from the transect is the maximum distance for the ship to
close on; however, the width of the zig-zag will depend on the speed of the drone and the
coverage probability on the trackline we aim for, Table 1).

2. The drone flies 5nm ahead of the ship. This distance will depend on the behavior of the
dolphins. While it will be easier to keep this distance relatively short for identifying duplicate
sightings between the drone and flying bridge, we need to capture the dolphins with the
drone before they react to the ship. We anticipate that this distance could be much further
than 5nm and the drones should be able to fly 20 – 30 nm ahead of the ship. The distance
that the drone needs to fly ahead of the ship will be tested during the trial in November.
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Diagram 2 showing an example of the drone flight path during closing mode effort. Black polygon
in the centre is the ship at the current position where the direction of current travel is always
pointing directly up and small black circles are recent positions, black concentric circles indicate
increasing distance to the ship in 1nm increments. Green-white symbol is the drone and small green
circles indicate the recent positions. Red and green dots indicate the ship and drone sighting
positions, respectively. Note that in this example, no tracking of the drone sighting occurs. This
might require that the drone continues passing over the school until the flying bridge detects the
school or passes the beam.

1. After take-off, the drone flies
to 5nm distance from the ship
and begins search mode in zig-zag
lines crossing the transect line.
Ship transits along the transect
line, observers on effort.

2. When a school is detected
from the drone, a sighting (green
dot) is logged in the software
used by the drone observers. No
information about this sighting is
shared with the flying bridge
observers. It may be decided to
make multiple passes over the
school to obtain imagery of the
whole school. This is particularly
important for calibration schools.
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3. If it is decided that the drone
does not track its sighting, the
drone continues the search ahead
of the ship until a sighting is
made by the flying bridge
observers. The drone observers
then need to evaluate whether
the drone and flying bridge
sightings are the same school
using all information available.

4. When the ship starts closing on
the school that the flying bridge
observers detected, the drone
flies towards the same school.

5. While the ship is with the
school, the drone restarts search
effort across a projected transect
line that the ship will resume on
after finishing with the school
(see Diagram 1 above). When the
ship finishes with the school, it
will continue search effort along
the same projected transect line.
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SeaHawk S 
General Specs 

The Carbon-Based SeaHawk 

Professional unmanned aerial vehicle (UAV); exclusive of Gtt NetCorp for Mexico and 
Latin America (LATAM); part of the UAVER family of aerial robots.  

DO TASKS NOT POSSIBLE BEFORE. SAFELY. FASTER. ECONOMICALLY. 

SeaHawk S, professional multi-function unmanned aerial robot (helicopter), specially 
designed for the long-distance real-time monitoring reconnaissance and surveillance 
application with the following specifications: 

1. Made of carbon fiber, and metal
2. Large payload space
3. High mobility
4. Low noise
5. Low vibration
6. Long endurance
7. HD video camera 1080p, 10x zoom with real time video transmission
8. HD frame camera 20 mega pixels for imagery post processing and analytics
9. Onboard radio/telecom
10. Reception stations on ship or land based to receive video with onsite TV monitor

and computer. Optional GeoDrones machine learning analytics.
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Appendix 3: Flight paths of drones
This appendix contains maps of the paths of all drone flights conducted during the 14 day trial

survey. The legends in the Figures provide the key to the colour-coded effort type of the drone flight

sections. Table 1 provides the type of effort the abbreviations from the legends refer to. Dashed

lines represent the track completed by the ship where black and red lines refer to on-effort in closing

and passing mode, respectively and green refers to off-effort. Green and red dots indicate the

launch and landing locations of the drone, respectively.

Table 1. Effort types during drone flights and their abbreviations used in the Figures below.

Zigzag effort types

TO Transit outbound

Leg On effort

TI Transit inbound

CH Checking

Calibration effort types

TOC Transit outbound

WS With school

TIC Transit inbound

Other

OT Other
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Pure zigzag flights
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