

Introduction

- Cpue.rfmo: what is it?
- Purpose of library
- Structure
- Development needs
- What next?

Purpose

- R library of scripts and functions
- Developed to standardize RFMO tuna catch and effort data efficiently
- A tool for sharing methods among scientists and RFMOs
- Scripts to handle the processes of
 - Importing & cleaning
 - Characterising
 - Clustering
 - Standardizing

Structure

- Scripts for each RFMO
 - Analysis script for each fleet
 - Figures for each fleet
- Functions
 - Grouped by category

Development needs

- Many! Such as...
- Package-specific
 - Improve documentation
 - Wiki and 'how-to' on front page
 - Improve help files
 - Fix package so it can be installed using devtools 'install_github()'
 - Rationalize scripts and reduce number
- Statistical methods
 - Add scripts and functions for new methods
 - e.g. Okamura 2018, VAST
- Public version

CPUE standardization methods, fundamentals 1

- Generalized linear models in R, modelling CPUE at the set level
 - Fixed effects for all parameters, such as vessel id.
- Lognormal constant
 - $\ln(CPUE_s + k) \sim yrqtr + vessid + latlong5 + f(hbf) + g(hooks) + cl + \epsilon$, where k = 10% of the mean CPUE.
- Delta lognormal
 - $(CPUE = 0) \sim yrqtr + vessid + latlong5 + f(hbf) + g(hooks) + cl + \epsilon$
 - $log(CPUE) \sim yrqtr + vessid + latlong5 + f(hbf) + g(hooks) + cl + \epsilon$, for nonzero sets
- *HBF* and *hooks* parameters are cubic splines
- *yrqtr, vessel, latlong5,* and *cluster* are categorical variables

Approach to modelling spatial effects

- Assessment regions are modelled independently, consistent with their treatment in the assessment.
- Within a region, 5° cells are modelled as independent categorical variables.

Changes in distribution & coverage

- In a 60 year dataset (since 1958), effort concentration moves around
 - Causes
 - Initial expansion into new areas
 - Area closures due to EEZs
 - Markets changing target preferences, e.g. sashimi market raising value of BET/YFT vs ALB
 - Fuel costs, competition
 - Effects
 - Areas without effort
 - Changing statistical weights among areas, biasing the indices

-100

-60

-20 0 20

Within region: What to assume about areas without effort?

- 1. Time-area interactions often require spatial infilling, but this may be problematic (one size does not fit all)
 - 1. During expansion, unfished areas have high biomass & higher CPUE
 - Unfished areas never fished, so assume ~ initial CPUE in those areas
 - But catchability probably higher in the initial phase
 - 2. Later, when the index fleet leaves an area, what should we assume?
 - Fishing continues by other fleets (e.g. EEZ closed, outcompeted by other fleets)? B stays low.
 - Less fishing effort (e.g. piracy, or catches too low). B increases.
- 2. Within a region, model is CPUE ~ time + area, which avoids the need for infilling
 - Problematic to the extent that fish distributions change
- 3. Combined approach explored
 - Time x area model (latlong5 + lat5 * qtr + lat5 * year)
 - Fill time-area 'holes' with estimates from time + area model

Biases due to changing effort distribution

- Shifting effort introduces bias. We do the following:
 - 1. Remove 5° cells with fewer than N1 sets across all years
 - Randomly select N2 sets from each yq*cell stratum (applied when total # sets in dataset > limit of 60000)
 - 3. Adjust statistical weights to give each yq stratum the same influence (Punsly 1987, Campbell 2004)

For set *j* in area *i* and year-qtr *t*, $w_{ijt} = \frac{log(h_{ijt}+1)}{\sum_{j=1}^{n} log(h_{ijt}+1)}$

CPUE standardization methods, fundamentals 2

• Alternative model structures

- 1. Data subset, Cluster + HBF + Hooks
 - $\ln(CPUE_s + k) \sim yrqtr + vessid + latlong5 + g(HBF) + f(hooks) + cl + \epsilon$
 - Data omits clusters catching very little of target species
- 2. Data subset, Cluster + HBF
 - $\ln(CPUE_s + k) \sim yrqtr + vessid + latlong5 + g(HBF) + cl + \epsilon$
 - Data omits clusters catching very little of target species
- 3. Data subset
 - $\ln(CPUE_s + k) \sim yrqtr + vessid + latlong5 + f(hooks) + \epsilon$
 - Data omits clusters catching very little of target species
- 4. All data, HBF
 - $\ln(CPUE_s + k) \sim yrqtr + vessid + latlong5 + f(hooks) + HBF + \epsilon$
 - All clusters included in dataset

CPUE standardisation – some details

- Problems with large datasets
 - Very long runtimes with delta lognormal
 - Large memory use (> 16GB)
 - Hard to debug and fix problems
 - Limited benefit from extra precision important sources of uncertainty are elsewhere
- Solutions
 - Reduce number of strata
 - Remove vessels fishing < N₁ qtrs
 - Remove cells, yr-qtrs, & vessels with < N₂ sets
 - Subsample data at random
 - Randomly sample (without replacement) N₃ sets from each year-qtr x cell stratum
 - Tested with WCPO data, indices stable with ~ 15 sets per stratum (Hoyle and Okamoto 2011)

CPUE standardization methods 3

• 4 sets of indices

- 1958 to recent, no vessel effects
- 1958 to recent, with vessel effects
- 1958 to 1979, no vessel effects
- 1979 to recent, with vessel effects

Diagnostic options 1

Joint_regB_R2 lognC_vessid_79nd

Diagnostic options 2

Lon

Diagnostic options 3 – Influence plots

R1 influence of hooks

Residual concerns

- Potential for differences between (& within) fleets
 - Factors not available for analysis
 - Different bait, gear configurations, reporting behaviour
 - Time series patterns in individual vessel behaviour
- Model issues
 - Assuming no interactions, e.g. between:
 - Targeting behaviour and vessel catchability
 - Season and spatial effects
- Possible future options
 - Random effects on e.g. vessel by target, to permit exploration of interactions
 - mgcv: as before, but add te(lat, lon, yr) + te(lat, lon, qtr)
 - VAST

CPUE standardization methods 3

- 4 sets of indices
 - 'novess_allyrs' 1958-2017 without vessel effects
 - 'boat_allyrs' 1958-2017 with vessel effects
 - 'novess_5879' 1958-1979 without vessel effects
 - 'vessid_7914' 1979-2017 with vessel effects
- Possible option for assessments
 - Use 2 series: 1958-1979 (no vessel effects) and 1979-2017 (with vessel effects)
 - May be best to use just 1979-2017, due to uncertain consistency of pre-1979 indices

5. Assess fleet efficiency changes

- Standardize CPUE with and without vessel id in the model, and compare trends
- This method lets us investigate changes in catchability associated with changes in the fleet
 - Represents effects of a) effort creep and b) changes in targeting.
 - i.e. the components of these associated with vessel turnover.

Vessel effects (bigeye models)

KR

TW

JP

Tropical BET indices

- Each of the lower plots include the results of 2 similar analyses
- The red line includes vessel effects, the black dots have no vessel effects
- The upper plots show the ratio of the 2 approaches

Year

Conclusion

• Cpue.rfmo

- Allows me to run many analyses in a short time window
- Allows national scientist colleagues to run the same analyses on their own datasets, using the same methods
- Now want more contributors
- CPUE methods
 - Current methods are fairly robust
 - Room for improvement: both generic, and specific to individual analyses.