An analysis of gear effects on the presence of bigeye tuna catches in floating object sets

(SAR-8-09c)

Objectives of analysis

To determine:

- how well we can predict the presence of bigeye tuna catch from data on environmental conditions, fishing operations and gear characteristics;
- the importance and structure of gear effects;
- if there exist additional 'vessel effects.'

Analytical approach

- How well can we predict the presence of bigeye catch from data on environmental conditions, fishing operations and gear characteristics?
 - build classification algorithm on subset of data
 - compute misclassification error
- What is the importance and structure of gear effects?
 - compute the utility of each variable for predicting the occurrence of bigeye catch
 - estimate the relationship between the probability of catching bigeye tuna and gear characteristics, accounting for the average effects of other predictors

Analytical approach

- Do there exist additional 'vessel effects'?
 - apply classification algorithm to test data and identify sets where bigeye was caught, but none was predicted
 - group sets catching bigeye by vessel
 - compute the probability for each vessel of obtaining *r* or more misclassified sets out of *n* sets catching bigeye tuna (based on binomial distribution)

Gear/operational predictors

Vessel capacity (median: 1,089mt; range: 397-2,833mt)

Hanging depth of purse-seine net (median: 120f; range: 72-180f) ('net depth')

Purse-seine mesh size (median: 4.25in; range: 3.5-12.0in)

Presence of dolphin safety panel (~55% of sets)

Maximum object depth below surface (median: 18.1m; range: 0.01-130m) ('object depth')

Percent object covered with fouling organisms (median: 40%; range: 0-100%)

Start time of the set (median: \sim 06:40; range: 04:45 – 19:00)

Environmental/other predictors

Sea surface temperature (SST)		
Probability of SST fronts		
Mixed layer depth (MLD)		
Bathymetry		
Presence strong currents		
Sea surface height anomaly (SSH)		
Slope of SSH		
Chlorophyll-a density		
Location (latitude, longitude)		
Month, Year		
Proxy for the size of non-tuna community at the object		
Proxy for local object density		

Data

- 10,425 floating objects sets (IATTC observer data), 2001-2005
 - Limited data to first sets with some catch of yellowfin, skipjack or bigeye.
 - Split data into a training set (5,212 sets) and a test set (5,213 sets).
- 21 predictors
- Response variable: presence/absence of any amount bigeye tuna catch

Misclassification errors

		Predicted class		Misclassification error
	Observed class	0 (no bigeye)	1 (bigeye)	
(a)	0 (no bigeye)	1952	433	0.182
	1 (bigeye)	430	2397	0.152
(b)	0 (no bigeye)	1745	640	0.268
	1 (bigeye)	213	2614	0.075

Predictor importance for presence of bigeye

Longitude ²	·····•
Longitude	•••••••••••••••••••••••••••••••••••••••
Latitude	•••••••••••••••••••••••••••••••••••••••
Latitude ²	•••••
Latidue x Longitude	•••••••••••••••••••••••••••••••••••••••
Cholorophyll	•••••••••••••••••••••••••••••••••••••••
Object density	•••••••••••••••••••••••••••••••••••••••
Bathymetry	•••••••••••••••••••••••••••••••••••••••
SST	0
MLD	••••••
Object depth	••••••
Vessel capacity	•••••
% Fouling	0
Non-tuna bycatch	••••
Year	•••••••••••••••••••••••••••••••••••••••
Set time	•••••
Net depth	•••••
SST fronts	•••
SSH	•••
SSH slope	••••
Month	• •
Dolphin safety panel	• •
Mesh size	• •
Strong currents	•••
	0 2 4 6 8

Average % decrease in prediction accuracy

Chlorophyll	•••••••••••••••••••••••••••••••••••••••
MLD	•••••• 0 •••••
Object density	•••••••••••••••••••••••••••••••••••••••
Bathymetry	·····•0·····
SST	••••••
Object depth	••••••
lessel capacity	••••••
Net depth	••••••
% Fouling	•••••
SST fronts	·····O·
Set time	•••••••
Non-tuna bycatch	•••••••
SSH slope	••••••
SSH	•••••••
Mesh size	• •
Dolphin safety panel	••••
Strong currents	· o · · · · · · · · · · · · · · · · · · ·
strong currents	

Average % decrease in prediction accuracy

Probability of bigeye catch versus gear

Approximate probability of catching bigeye tuna

Per-vessel probability

Summary

- The occurrence of bigeye tuna catch in floating object sets is consistent with some level of fishermen control:
 - 46% of floating object sets and 29% of vessels making floating object sets caught no bigeye tuna;
 - the presence of bigeye tuna was reasonably predicted from set location, environmental conditions, and gear/operational characteristics;
 - some important features of the classification algorithm:
 - set location was the most important predictor
 - object depth effects varied spatially
 - failure to predict the presence of bigeye tuna was concentrated within certain vessels, possibly indicating additional 'vessel effects.'

Implications

- Fishermen have options for avoiding catching bigeye tuna, including:
 - in certain areas, changing the in-water depth of the floating object and fishing depth of the purse-seine net;
 - changing their fishing location.