COMISIÓN INTERAMERICANA DEL ATÚN TROPICAL COMITÉ CIENTÍFICO ASESOR SEXTA REUNIÓN

La Jolla, California (EE.UU.) 11-15 de mayo de 2015

DOCUMENTO SAC-06-07

CONDICIÓN DEL ATÚN BARRILETE EN EL OCÉANO PACÍFICO ORIENTAL EN 2014

Mark N. Maunder

ÍNDICE

1.	Resumen	. 1
	introducción	
3.	Datos	. 4
	Información biológica y demográfica	
	Evaluación de la población	
	Condición de la población.	
	Ordenación	
	Direcciones futuras.	

1. RESUMEN

Este informe presenta la evaluación más actual de la población de atún barrilete (*Katsuwonus pelamis*) en el Océano Pacífico oriental (OPO). Históricamente se usan varios métodos alternativos para evaluar la condición del atún barrilete: a) indicadores de pesca y biológicos; b) análisis de datos de marcado; c) un modelo de evaluación de población por talla; d) análisis estadístico por edad de la captura por talla (A-SCALA); y e) un modelo de dinámica de poblaciones y ecosistema espacial (*Spatial Ecosystem and Population Dynamic Model* (SEAPODYM)). Se comparan los resultados de estos cinco métodos al comentar la condición del barrilete en el OPO. En el presente informe se ha actualizado el método de indicadores únicamente.

El barrilete se encuentra distribuido por todo el Océano Pacífico, y es probable que exista una población continua por todo el Océano Pacífico, con intercambio de individuos a nivel local, aunque se cree que los desplazamientos a gran escala son poco comunes. La mayoría de las capturas de barrilete provienen de las regiones oriental y occidental; las capturas cerqueras son relativamente bajas cerca del límite occidental del OPO en 150°OW. Los desplazamientos de barrilete es marcados cubren generalmente centenares, no miles, de kilómetros, y el intercambio de peces entre el Océano Pacífico oriental y occidental parece ser limitado. Las tasas de desplazamiento entre el OPO y el Pacífico occidental no pueden ser estimadas con los datos de marcado actualmente disponibles. En algunos análisis se dividió el OPO en seis subregiones independientes para acomodar la estructura espacial de la dinámica de la población y de la pesquería.

La evaluación de poblaciones requiere cantidades sustanciales de información, y la información varía de acuerdo al método usado. Los métodos aplicados al barrilete exigen una variedad de información, incluyendo datos de las capturas retenidas, descartes, índices de abundancia, la composición por tamaño de las capturas de las varias pesquerías, datos de marcado, y datos oceanográficos. Además, se han de hacer supuestos acerca de los procesos tales como crecimiento, reclutamiento, desplazamiento, mortalidad natural, selectividad, y estructura de la población.

Se estima que la biomasa, reclutamiento, y mortalidad por pesca son altamente variables a lo largo del tiempo. Las estimaciones son inciertas, y son diferentes entre los métodos de evaluación alternativos. Parece que un reclutamiento grande ingresó a la población en 1999, y condujo a una biomasa incrementada en ese año, pero el incremento fue temporario, debido a la corta vida del barrilete. La biomasa parece haber sido superior al promedio en los últimos años, pero esto podría variar entre regiones. SEAPODYM estima una biomasa en el barrilete de 30 cm o más de entre 1,800,000 y 2,350,000 t entre 1998 y 2008, pero la calidad de estas estimaciones queda todavía por determinar. El peso promedio del barrilete comenzó a disminuir en 2000, pero se ha estabilizado en los años recientes. Las evaluaciones previas que usaron un análisis de captura por talla (A-SCALA) para evaluar al atún barrilete en el OPO fueron consideradas preliminares porque: 1) no se sabía si la captura por día de pesca en las pesquerías de cerco es proporcional a la abundancia; 2) es posible que exista una población de barriletes grandes invulnerable a las pesquerías; y 3) la estructura de la población del OPO en relación con las poblaciones del Pacífico occidental y central es incierta. Estos problemas son asimismo pertinentes a las otras evaluaciones.

Las evaluaciones previas estimaron que se logran los rendimientos máximos con una mortalidad por pesca infinita, porque el peso crítico es inferior al peso promedio al momento del reclutamiento a la pesquería. No obstante, esto es incierto debido a incertidumbres en las estimaciones de la mortalidad natural y el crecimiento. Por este motivo, no se dispone de puntos de referencia tradicionales para el atún barrilete en el OPO. Consecuentemente, se han usado indicadores y niveles de referencia para evaluar la condición de la población. La preocupación principal con respecto a la población de barrilete es el incremento constante de la tasa de explotación. No obstante, esta tasa parece haber permanecido estable en los últimos años. Los indicadores basados en datos y en modelos todavía no han detectado consecuencias adversas de este incremento. El peso promedio estuvo por debajo de su nivel de referencia inferior en 2009, lo cual podría ser consecuencia de sobreexplotación, pero también puede ser causado por el hecho que los reclutamientos recientes han sido mayores que los anteriores, o por la expansión de la pesquería a zonas ocupadas por barriletes más pequeños. Sin embargo, el peso promedio se ha estabilizado en los años recientes. Los análisis de marcado, el modelo por talla A-SCALA, y los análisis de SEAPODYM no brindan ninguna información que indique un riesgo creíble para la población (o poblaciones) de barrilete.

Un análisis de susceptibilidad y productividad (PSA; ver Informe de la situación de la pesquería 12, p 172) señala que la productividad del barrilete es sustancialmente mayor que aquella del atún patudo. La biomasa y mortalidad por pesca correspondientes al RMS están relacionadas negativa y positivamente, respectivamente, con la productividad. Por lo tanto, ya que la susceptibilidad (que está relacionada con la mortalidad por pesca) del barrilete y patudo son aproximadamente iguales, la condición del barrilete puede ser inferida a partir de la condición del patudo. La evaluación actual del patudo estima que la mortalidad por pesca es menos que $F_{\rm RMS}$; por lo tanto, la mortalidad por pesca del barrilete debería ser menos que $F_{\rm RMS}$. Ya que el esfuerzo y la biomasa del barrilete han sido relativamente constantes durante los 10 últimos años, esto implica asimismo que la biomasa del barrilete está por encima de $B_{\rm RMS}$.

Resultados clave

- 1. Existe incertidumbre acerca de la condición del atún barrilete en el OPO.
- 2. Podrían existir diferencias en la condición de la población entre regiones.
- 3. No existen pruebas que indiquen un riesgo creíble para la población (o poblaciones) de barrilete.
- 4. No es necesaria ninguna acción de ordenación adicional más allá de aquella implementada para la conservación del atún patudo.

2. INTRODUCCIÓN

Un objetivo principal de la ordenación de los atunes en el Océano Pacífico oriental (OPO) es mantener las poblaciones en niveles capaces de producir los rendimientos máximos sostenibles (RMS). Se usan objetivos de ordenación basados en RMS o puntos de referencia relacionados (por ejemplo, una mortalidad por pesca que produce el RMS ($F_{\rm RMS}$); sustitutos de reproductor por recluta) para muchas especies y po-

blaciones en todo el mundo. Sin embargo, estos objetivos requieren que se disponga de puntos de referencia y cantidades con los que compararlos. Los distintos puntos de referencia requieren diferentes cantidades y tipos de información, desde información biológica (mortalidad natural, crecimiento, relación población-reclutamiento, etcétera) y características de las pesquerías (selectividad por edad, por ejemplo) hasta estimaciones absolutas de biomasa y tasas de explotación. Estas estimaciones absolutas requieren generalmente un modelo formal de evaluación de la población. Para muchas especies, no se dispone de la información necesaria para estimar estas cantidades, y son necesarios métodos alternativos. Son necesarios todavía más datos si se pretende usar cuotas de captura como instrumento de ordenación.

El atún barrilete es una especie notoriamente difícil de evaluar. Debido a la alta y variable productividad de la especie (es decir, el reclutamiento anual forma una gran proporción de la biomasa total), es difícil detectar el efecto de la pesca sobre la población con los datos de pesca y métodos de evaluación de poblaciones regulares. Esto vale particularmente en el caso de la población del OPO, debido a la falta de datos de composición por edad y los pocos datos de marcado. El reclutamiento continuo y crecimiento rápido del barrilete significan que la estratificación temporal necesaria para observar modas en los datos de frecuencia de talla rinden insuficientes los tamaños de muestra actuales. Las evaluaciones previas tuvieron dificultades para estimar los niveles absolutos de biomasa y tasas de explotación, debido a la posibilidad de una curva de selectividad en forma de domo (Maunder 2002; Maunder y Harley 2005), la que significaría que existe una biomasa críptica de barrilete grande que no puede ser estimada. La evaluación completa más reciente del barrilete en el OPO (Maunder y Harley 2005) es también considerada preliminar porque se ignora si la captura por día de pesca de las pesquerías de cerco es proporcional a la abundancia. Los resultados de dicha evaluación son más consistentes entre los análisis de sensibilidad que las evaluaciones anteriores, lo cual sugiere que podrían ser más confiables. Es poco probable que un análisis de los datos de marcado actualmente disponibles mejore la evaluación de la población de barrilete (Maunder 2012a) y un modelo estructurado enteramente por talla produjo estimaciones no realistas (Maunder 2012b). Además de los problemas mencionados, los niveles de mortalidad natural por edad son inciertos, o hasta desconocidos, y los cálculos actuales de rendimiento por recluta (RPR) indican que el RPR sería maximizado si se capturara el barrilete más joven en el modelo (Maunder y Harley 2005). Por lo tanto, en el caso del barrilete en el OPO, no se dispone de puntos de referencia basados en biomasa ni en mortalidad por pesca, ni de los indicadores con los cuales se comparan.

Uno de los problemas principales antes mencionadas es la incertidumbre acerca de si la captura por unidad de esfuerzo (CPUE) de las pesquerías de cerco constituye un índice de abundancia apropiado para el barrilete, particularmente si los peces están asociados con dispositivos agregadores de peces (plantados). Los datos de CPUE de cerco son particularmente problemáticos, ya que es difícil identificar la unidad de esfuerzo apropiada. En la evaluación actual, se define el esfuerzo como la cantidad de tiempo de búsqueda necesaria para encontrar un cardumen de peces sobre el cual calar la red, y se aproxima esto con el número de días de pesca. Se captura poco barrilete en las pesquerías de palangre o de cerco asociada con delfines, por lo que no se pueden usar estas pesquerías para elaborar índices confiable de abundancia para el barrilete. En un solo viaje los lances cerqueros sobre atunes no asociados están generalmente mezclados con lances sobre objetos flotantes o delfines, lo cual complica los cálculos de CPUE. Maunder y Hoyle (2007) elaboraron un método novedoso para generar un índice de abundancia, que usa datos de las pesquerías sobre objetos flotantes. Este método usa las proporciones de barrilete y patudo en la captura y la abundancia 'conocida' de patudo basada en los resultados de la evaluación de la población. Desgraciadamente, el método es de utilidad limitada, y es necesaria más investigación para mejorarlo. No existe actualmente ningún índice de abundancia relativa confiable para el barrilete en el OPO. Por lo tanto, otros indicadores de la condición de la población, tales como el peso medio del pescado en la captura, deberían ser investigados.

Ya que las evaluaciones de la población y los puntos de referencia son tan inciertos para el barrilete en el OPO, sería ventajoso elaborar métodos alternativos de evaluación y ordenación de la especie que fuesen robustos a estas incertidumbres. Una evaluación de estrategia de ordenación (MSE) para el barrilete sería

el método más completo para elaborar y probar métodos de evaluación y estrategias de ordenación alternativos (Maunder 2007), pero elaborar una MSE implica mucho tiempo y todavía no ha sido llevado a cabo para el barrilete. Además, se asigna una prioridad a mayor a las MSE de los atunes aleta amarilla y patudo, ya que los datos disponibles indican que estas especies son más susceptibles a la sobrepesca que el barrilete. Por lo tanto, Maunder y Deriso (2007) investigaron unos indicadores sencillos de la condición de la población basados en cantidades relativas. En lugar de usar puntos de referencia basados en RMS, compararon los valores actuales de los indicadores con la distribución de los indicadores observada históricamente. Elaboraron también un modelo sencillo de evaluación de población para generar indicadores de biomasa, reclutamiento, y tasa de explotación. Actualizamos sus resultados para incluir datos de hasta 2014. Para evaluar los valores actuales de los indicadores en comparación con los valores históricos, usamos niveles de referencia basados en los percentiles 5 y 95, ya que las distribuciones de los indicadores son algo asimétricas. Se comparan los resultados con evaluaciones históricas basadas en análisis de datos de marcado, un modelo de evaluación de población por talla, un análisis estadístico por edad de la captura por talla (A-SCALA), y un modelo de dinámica de poblaciones y ecosistema espacial (SEAPODYM).

3. DATOS

Los datos usados varían entre los cinco métodos usados históricamente para evaluar el barrilete en el OPO). En general, se usaron datos de captura, esfuerzo, y composición por tamaño, más datos biológicos, para realizar las evaluaciones. Los índices de abundancia fueron derivados de datos de captura y esfuerzo de cerco. Se calculó la captura por unidad de esfuerzo (CPUE) de las pesquerías de cerco como la captura dividida por el número de días de pesca. El número de días de pesca por tipo de lance fue estimado a partir del número de lances, usando una regresión múltiple de días de pesca total como función del número de lances, por tipo de lance (Maunder y Watters 2001).

Se dispone de datos de liberaciones y recapturas de marcas de ocho viajes de barcos cañeros entre 1973 y 1981. Se dispone de información de liberaciones en forma resumida de registros impresos. Las liberaciones fueron costeras y al norte de la línea ecuatorial. Se dispone de la información de recaptura en una base de datos electrónica. No se dispone actualmente de información detallada, tal como la talla de liberación. No se dispone de números de identificación de las liberaciones en formato electrónico, por lo que las recapturas pueden ser emparejadas con el viaje de liberación solamente, y no con los detalles específicos de la liberación (por ejemplo, mes). En la base de datos de la CIAT se dispone de los datos de liberación y recaptura de marcas de varios viajes de barcos cañeros entre 2000 y 2006. La extensión espacial de las liberaciones está limitada a una zona cerca de la línea ecuatorial.

4. INFORMACIÓN BIOLÓGICA Y DEMOGRÁFICA

4.1. Crecimiento

El personal de la CIAT usó una tasa de crecimiento de 24 cm/año, de Forsbergh (1989), en su modelo del rendimiento por recluta de barrilete. Bayliff (1988) usó datos de marcado para calcular las estimaciones de los parámetros de la ecuación de crecimiento de von Bertalanffy, pero los resultados de sus análisis de sensibilidad indicaron que las estimaciones de los parámetros eran imprecisas.

Maunder (2001) calculó estimaciones similares a las de Bayliff (1988), y concluyó que eran necesarios más datos sobre barriletes grandes y pequeños. En esta evaluación se usaron las estimaciones agrupadas de Bayliff (1988) con el supuesto que un barrilete de 30 cm es de 9 meses de edad como distribución previa de talla media a edad. La edad a los 30 cm se basa en evidencia de que los barriletes producen unos 0,8 anillos en los otolitos cada día (Wild y Foreman 1980) y un barrilete de 30 cm tiene unos 210 anillos (Uchiyama y Struhsaker 1981).

Maunder (2002a) estimó el crecimiento para las áreas costeras del norte y del sur por separado, usando una versión de la curva de crecimiento de Richards, que es más flexible, y también estimó la variación en el crecimiento, permitiendo la creación de matrices de transición de crecimiento para uso en un modelo

basado en tamaño.

La relación peso-talla del barrilete en el OPO es $W = 5,5293 \times 10^{-6} L^{3,336}$, donde W = peso en kg y L = talla en cm (Hennemuth, 1959).

4.2. Mortalidad natural

Wild y Hampton (1994) discuten los intentos de estimación de la tasa de mortalidad natural (*M*) de barrilete, y los muchos problemas asociados con estos estudios. El personal de la CIAT usa un valor de 1,5, sobre una base anual, para *M* en los análisis de rendimiento por recluta (Anónimo, 2000: 69). A diferencia de los atunes aleta amarilla y patudo, el barrilete no muestra un aumento en la proporción de machos para les peces de mayor edad (Schaefer 2001). Hampton (2000) demostró, usando datos de marcado, que las estimaciones de mortalidad natural de barrilete en el Pacífico occidental arrojaban niveles más altos para individuos viejos y jóvenes. Los resultados señalan tasas de mortalidad natural mucho más altas para barriletes de menos de 40 cm y de más de 70 cm. Las estimaciones de Hampton de mortalidad natural elevada para barriletes viejos podrían ser un artefacto de los datos de marcado que resulta de que los peces de mayor edad salgan de la pesquería. Las estimaciones de Hampton de mortalidad natural elevada para barriletes jóvenes podría asimismo ser un artefacto de los datos de marcado debido a mortalidad por marcado, por lo que se usó en este estudio una tasa de mortalidad natural más baja.

4.3. Reclutamiento y reproducción

Anónimo (1998: 26) y Schaefer (2001) presentan información sobre la reproducción del barrilete en el OPO. El desove ocurre por toda la zona entre aproximadamente 15°N y 10°S desde el litoral del continente americano hasta 130°O con temperaturas superficiales del mar (TSM) de 24°C o más. Se supone que el atún barrilete puede ser reclutado a la población pescable durante cada mes del año. No se hacen supuestos fuertes acerca de la relación entre la biomasa (o abundancia) de adultos y el reclutamiento en las evaluaciones históricsade la población de barrilete.

4.4. Desplazamientos

Schaefer *et al.* (1961), Fink y Bayliff (1970), Hunter *et al.* (1986) y Schaefer (2009) presentan información sobre los desplazamientos del barrilete en el OPO. Los porcentajes de barrilete liberados en el Pacífico occidental que permanecieron en libertad de 0 a 30 días, 31 a 180 días, y más de 180 días y que se desplazaron más de 500 millas náuticas son 0, un 5, y un 30, respectivamente. Han sido recapturados en el Pacífico central u occidental 27 barriletes marcados liberados en el OPO (Bayliff, 1988: Anexo 2), pero no se han recapturado en el OPO barriletes marcados liberados en el Pacífico central u occidental. Se debe tener en cuenta que el número de peces marcados recapturados en distintos lugares depende de la cantidad de esfuerzo de pesca en esos lugares. Si se inician experimentos de marcado donde hay mucho esfuerzo de pesca es probable que las distancias recorridas por los peces sean menores de lo que serían si hubiesen sido liberados en zonas con pesca intensa y ligera.

4.5. Estructura de la población

El barrilete se encuentra en todas las aguas tropicales y subtropicales del Océano Pacífico, y se sabe que ocurre un intercambio considerable de peces entre zonas. Se han usado varios métodos para estudiar la estructura de poblaciones de la especie, inclusive análisis de estadísticas de captura, el ciclo vital, marcado, datos de genética bioquímica, y datos sobre la composición química de los otolitos de los peces. Muchas organizaciones han realizado investigaciones de estos temas, entre ellas la CIAT, la Comisión del Pacífico Sur (ahora la Secretaría de la Comunidad del Pacífico; SPC), el Servicio Nacional de Pesquerías Marinas (NMFS) de EE.UU., y varias organizaciones en Japón. Los resultados pertinentes a una solución de este problema fueron examinados por Argue (1981), y discutidos en detalle por Anónimo (1984: 186-189). En resumen, hay dos hipótesis principales sobre la estructura de poblaciones del barrilete en el Océano Pacífico. La hipótesis de subpoblaciones separadas postula que existen dos ó más subpoblaciones de barrilete genéticamente distintas en el Océano Pacífico, y la hipótesis clinal que no existen subpobla-

ciones separadas de barrilete en el Océano Pacífico, pero que hay aislamiento por distancia – es decir, la probabilidad de hibridación de dos peces dados es una función inversa de la distancia entre los dos. Argue (1981) concluyó que los datos disponibles no permiten decidir a favor de una ni otra hipótesis. Estudios posteriores, descritos por Anónimo (1995: 255-257), no produjeron información que sirviera mejor como base para decisiones de ordenación. (Sin embargo, no se deben considerar inútiles esos estudios, ya que es posible que la información que arrojaron sea eventualmente combinada con información reunida en el futuro para lograr una mayor comprensión de la estructura de las poblaciones de barrilete en el Océano Pacífico). Para los propósitos de la evaluación de poblaciones y la ordenación, se supone típicamente que el barrilete en el OPO no interactúa con el barrilete en el Pacífico central y occidental. Para los fines de algunos análisis históricos, se supuso que existen en el OPO seis subpoblaciones que no interactúan.

4.6. Influencias ambientales

Forsbergh (1989) estudió las influencias de ciertas variables ambientales sobre la abundancia aparente de barrilete en el OPO. La abundancia de larvas de barrilete en el Pacífico central y occidental se duplica, aproximadamente, con cada aumento de 1° en las TSM entre 23°C y un máximo de 29°C. Las capturas de barrilete por artes de superficie suelen disminuir durante episodios de El Niño, debido a que durante esos episodios aumenta la profundidad de la termoclina y los peces pasan menos tiempo en la superficie que durante períodos de La Niña (Joseph y Miller 1989).

Una evaluación previa de la población (Maunder y Watters 2002a) incluyó el supuesto de que las condiciones oceanográficas podrían afectar el reclutamiento de atún barrilete en el OPO. A fin de incorporar la posibilidad de un efecto ambiental sobre el reclutamiento de barrilete en el OPO, se incorporó una variable de temperatura en el modelo previo de evaluación de la población, a fin de determinar si existe una relación estadísticamente significativa entre dicha variable y las estimaciones de reclutamiento. Maunder (2002) realizó la correlación por separado del modelo de evaluación de la población, usando las TSM y el Índice de Oscilación del Sur, y no descubrió ninguna relación entre el reclutamiento y las variables ambientales.

El método de evaluación SEAPODYM (Senina *et al.* 2008, Lehodey *et al.* 2011) usó datos ambientales para forzar la productividad y los desplazamientos.

5. EVALUACIÓN DE LA POBLACIÓN

Se han usado varios métodos alternativos para evaluar la condición del atún barrilete en el OPO: a) indicadores de pesca y biológicos; b) análisis de datos de marcado; c) un modelo de evaluación basada en talla; d) análisis estadístico por edad de la captura por talla (A-SCALA); y e) un modelo de dinámica de poblaciones y ecosistema espacial (*Spatial Ecosystem and Population Dynamic Model* (SEAPODYM). En el presente informe se ha actualizado el método de indicadores únicamente.

5.1. Métodos de evaluación

5.1.1. Indicadores

Ya que las evaluaciones de la población y los puntos de referencia son inciertos para el barrilete en el OPO, sería ventajoso elaborar métodos alternativos de evaluación y ordenación de la especie que fuesen robustos a estas incertidumbres. Maunder y Deriso (2007) investigaron unos indicadores sencillos de la condición de la población basados en cantidades relativas. En lugar de usar puntos de referencia basados en RMS, compararon los valores actuales de los indicadores con la distribución de los indicadores observada históricamente. Elaboraron también un modelo sencillo de evaluación de población para generar indicadores de biomasa, reclutamiento, y tasa de explotación. Para evaluar los valores actuales de los indicadores en comparación con los valores históricos, usaron niveles de referencia basados en los percentiles 5 y 95, ya que las distribuciones de los indicadores son algo asimétricas. Se evaluaron ocho indicadores basados en datos y en el modelo: captura, captura por día de pesca por las pesquerías sobre objetos flotantes, capturas por día de pesca por las pesquerías no asociadas, esfuerzo estandarizado, peso prome-

dio, biomasa relativa, reclutamiento relativo, y tasa de explotación relativa (<u>Figura 1</u>). Se presentan estos indicadores para la población del OPO entera.

5.1.2. Análisis de datos de marcas

La CIAT realizó numerosos experimentos de marcado de atunes entre los años 1950 y principios de los 1980, y reanudó el marcado a escala más limitada a partir de 2000. Estos datos no han sido usados en las evaluaciones de las poblaciones de atún barrilete excepto para proporcionar información sobre las tasas de crecimiento (Bayliff 1988; Maunder 2002a). Maunder (2012b) realizó un análisis preliminar de los datos de marcado para investigar su contenido de información acerca de las tasas de explotación. Se analizaron los datos de marcado usando un modelo de pérdida de marcas que compara las recuperaciones de marcas observadas y predichas. Se modela la dinámica de las marcas usando un modelo de dinámica poblacional que es esencialmente el mismo que aquellos usados en las evaluaciones de las poblaciones. El modelo es diferente en el sentido que el reclutamiento es liberaciones de marcas, y se modelan factores tales como pérdida de marcas, mortalidad relacionada con el marcado, y la tasa de notificación. Se dispone de estimaciones para dos subregiones. Las estimaciones de las tasas de explotación son altamente inciertas.

5.1.3. Modelo de evaluación basado en talla

Maunder (2012c) desarrolló un modelo basado en talla para evaluar el atún barrilete. Este modelo es diferente del modelo estándar basado en edad usado para evaluar los atunes aleta amarilla y patudo, aplicado usando *Stock Synthesis*. Los datos de edad para el atún barrilete son poco confiables, y la información de crecimiento se basa en datos de marcado de incremento de talla. El crecimiento basado en datos de incrementos de talla es idealmente adecuado para los modelos basados en talla, y es problemático para aquellos basados en edad. El OPO fue dividido en seis poblaciones, y cada población fue analizada por separado. El modelo fue ajustado a índices de abundancia relativa y datos de composición por talla.

Los datos de composición por talla y CPUE no contienen suficiente información para producir estimaciones confiables del tamaño de la población de barrilete. En todas las regiones menos una (frente al litoral de Ecuador) las estimaciones de abundancia y tasas de explotación no fueron realistas.

5.1.4. Análisis estadístico por edad de la captura por talla (A-SCALA)

Maunder y Harley (2005) usaron un análisis por edad de la captura por talla (A-SCALA) para evaluar el atún barrilete en el OPO. En el Boletín de la CIAT <u>IATTC Bulletin, Vol. 22, No. 5 (2003)</u> se describen el método de análisis y sus detalles técnicos. Se consideraba todavía preliminar la evaluación porque 1) no se sabía si la captura por día de pesca en las pesquerías de cerco es proporcional a la abundancia, 2) es posible que exista una población de barrilete grande que no es vulnerable a la pesca, y 3) la estructura de la población del OPO relativa a las poblaciones del Pacífico central y occidental es incierta.

5.1.5. Modelo SEAPODYM

Se aplicó al atún barrilete en el Océano Pacífico un modelo de dinámica de poblaciones y ecosistema espacial (*Spatial Ecosystem and Population Dynamic Model* (SEAPODYM)) que se ajusta a una variedad de fuentes de datos (Senina *et al.* 2008) (ver detalles en Lehodey *et al.* 2011). El análisis es diferente de Lehodey *et al.* (2011) en el sentido que: 1) usó las variables SODA 2.1.6 más actuales disponibles; 2) cambió a estimaciones de talla por edad MFCL-2010; 3) fijó los coeficientes de reclutamiento y mortalidad para escalar la población del Pacífico central y occidental a las estimaciones de MFCL; y 4) usó funciones gaussianas asimétricas para las selectividades de la pesca de cerco en lugar de selectividad sigmoidea.

El modelo SEAPODYM es un modelo de interacción física-biológica acoplado bidimensional a escala de cuenca oceánica, y contiene componentes ambientales y espaciales usados para limitar los desplazamientos y el reclutamiento de los atunes. El modelo combina un modelo de producción de alimento (presas) con un modelo de población basado en edad de las especies (atunes depredadores) objetivo de la pesquería. Se describe toda la dinámica espacial con una ecuación de advección-difusión. Los conjuntos de datos

oceanográficos de insumo para el modelo son temperatura superficial del mar (TSM), corrientes oceánicas y producción primaria que pueden ser datos predichos de modelos físico-biogeoquímicos, así como distribuciones de datos derivados de satélites. Las mejoras recientes incluyen una optimización rigurosa de los parámetros, usando datos de la pesca (composición por talla de índices de abundancia), que se basa en métodos usados para modelos contemporáneos de evaluación de poblaciones (Senina *et al.*, 2008).

5.2. Resultados de la evaluación

A continuación se describen los resultados de cada uno de los métodos de evaluación.

5.2.1. Mortalidad por pesca

Las estimaciones de la mortalidad por pesca basadas en el análisis de marcado fueron altamente variables a lo largo del tiempo (Figura 4.1). La mortalidad por pesca mensual máxima fue 0.65 en el caso de los datos históricos (1973-1981) y 0.20 en el caso de los datos recientes (2000-2006). Se estimó la mortalidad por pesca mensual media (anual = mensual multiplicada por 12) en 0.049 (0.588) y 0.025 (0.300), respectivamente. Las estimaciones de la mortalidad por pesca mensual contienen mucha incertidumbre, con CV alrededor de 40% a 140%. Las estimaciones de las tasas mensuales de mortalidad por pesca medias y máximas aproximadas basadas en la evaluación basada en talla son más altas, 0.13 y 2.37, respectivamente. Se estima que la mortalidad por pesca fue alta hacia fines de los años 1970 y principios de los 1980, pero considerablemente más baja en los años posteriores (por ejemplo, mensual (promedio mensual (anual = mensual multiplicada por 12) de 0.06 (0.74) entre 1998 y 2008). La mortalidad anual media aproximada durante 1998-2008, calculada a partir de la captura anual y las estimaciones de SEAPODYM de la biomasa anual, es 0.12. El esfuerzo estandarizado, una medida de las tasas de explotación, y la tasa de explotación relativa basado en el análisis de indicadores, aumentó a partir de 1985, pero se estabilizó en los últimos 10 a 15 años (Figura 1).

5.2.2. Reclutamiento

El análisis de indicadores estima que el reclutamiento fue mucho más bajo hasta 2002, con la excepción de un reclutamiento grande en 1999 (Figura 1). El modelo basado en talla estimó un reclutamiento mensual altamente variable, con un reclutamiento muy grande en 1999, pero no estimó que el reclutamiento reciente sea sustancialmente mayor que el reclutamiento previo.

5.2.3. Biomasa

El análisis de indicadores estima que la biomasa fue mucho más baja hasta 2003, con la excepción de una biomasa grande en 1999 (Figura 1). El modelo basado en talla estimó una biomasa mensual altamente variable, con una biomasa muy grande en 1999 y una biomasa generalmente creciente desde 1980. SEAPODYM estimó una biomasa anual de barrilete de 30 cm de talla o más que varía entre 1,800,000 t y 2,350,000 t desde 1998 hasta 2008 en el OPO.

5.2.4. Peso promedio de los peces en la captura

El análisis de indicadores estima que el peso promedio del barrilete disminuyó a partir de 2000, y en 2009 estuvo por debajo del nivel de referencia inferior, pero se ha estabilizado en los últimos años (Figura 1). La tendencia de la talla media es similar entre regiones y pesquerías en los últimos años (Figura 3).

6. CONDICIÓN DE LA POBLACIÓN

Mantener las poblaciones de atunes en niveles que permitirán el RMS es el objetivo de la ordenación especificado por la Convención de la CIAT. La CIAT ha adoptado puntos de referencia objetivo f límite provisionales para las poblaciones que gestiona. Las evaluaciones previas descubrieron que se maximiza el rendimiento por recluta si se captura del barrilete tamaño más pequeño observado en la captura. Combinado con la escasez de pruebas de una relación población-reclutamiento, esto indica que tasas de mortalidad por pesca muy altas y niveles de biomasa muy bajos estarían asociados con el RMS. La evaluación con A-SCALA (Maunder y Harley 2004) estimó que se logran los rendimientos máximos con una morta-

lidad por pesca infinita porque el peso crítico es menos el peso promedio de reclutamiento a la pesquería. No obstante, esto es incierto debido a incertidumbres en las estimaciones de mortalidad natural y crecimiento. Por este motivo, no se dispone de puntos de referencia para el atún barrilete en el OPO. Como consecuencia, se han usado indicadores y niveles de referencia para evaluar la condición de la población. No obstante, un análisis de susceptibilidad y productividad (ref) señala que la productividad del barrilete es sustancialmente mayor que aquella del atún patudo. La biomasa y mortalidad por pesca correspondientes al RMS están relacionadas negativa y positivamente, respectivamente, con la productividad. Por lo tanto, ya que la susceptibilidad (que está relacionada con la mortalidad por pesca) del barrilete y patudo son aproximadamente iguales, la condición del barrilete puede ser inferida a partir de la condición del patudo. La evaluación actual del patudo estima que la mortalidad por pesca es menos que $F_{\rm RMS}$; por lo tanto, la mortalidad por pesca del barrilete debería ser menos que $F_{\rm RMS}$. Ya que el esfuerzo y la biomasa del barrilete han sido relativamente constantes durante los 10 últimos años, esto implica asimismo que la biomasa del barrilete está por encima de $B_{\rm RMS}$.

Históricamente, la preocupación principal con la población de barrilete fue la tasa de explotación, que iba constantemente en aumento. Parece que en los últimos años se ha estabilizado. Los indicadores basados en datos y en un modelo todavía no han detectado ninguna consecuencia adversa de este aumento. El peso promedio estuvo por debajo de su nivel de referencia inferior en 2009, lo cual podría ser consecuencia de sobreexplotación, pero también podría resultar de que los reclutamientos recientes fueron mayores que en el pasado o de una expansión de la pesquería a zonas ocupadas por barriletes más pequeños. Sin embargo, el peso promedio se ha estabilizado en los últimos años

Las evaluaciones históricas basadas en análisis de marcado, el modelo basado en talla (A-SCALA), y el análisis de SEAPODYM no brindaron ninguna información que indicara un riesgo creíble para la población (o poblaciones) de barrilete.

7. ORDENACIÓN

La pesquería de barrilete en el OPO es limitada por restricciones de esfuerzo (vedas temporales y espaciales, por ejemplo) implementadas para la conservación del atún patudo. Debido a que el barrilete es mucho más productivo que el patudo, y que no existen pruebas que justifiquen preocupación acerca de la condición de la población de barrilete, no es necesaria ninguna acción adicional más allá de aquella adoptada para el patudo. Es posible que sean necesarios análisis adicionales y acción de ordenación revisada si la pesquería de barrilete desarrolla métodos para reducir la cantidad de patudo en la captura.

8. DIRECCIONES FUTURAS

8.1. Recolección de información nueva y actualizada

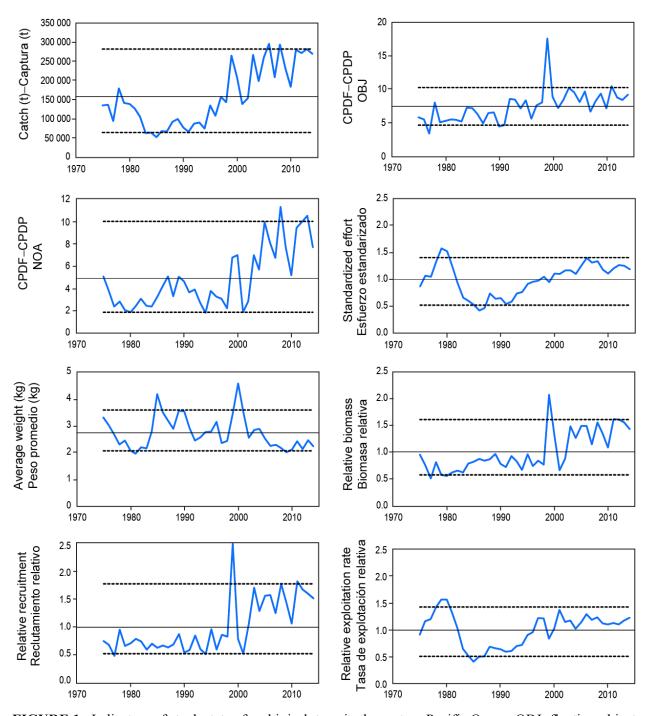
Realizar un estudio de marcado exhaustivo, bien planeado, y bien implementado es probablemente la única forma de producir una evaluación adecuada de la población de barrilete en el OPO.

REFERENCIAS

Anónimo. 1984. Informe Anual de la Comisión Interamericana del Atún Tropical 1983: 272 pp.

Anónimo. 1995. Informe Anual de la Comisión Interamericana del Atún Tropical 1994: 296 pp.

Anónimo. 1998. Informe Anual de la Comisión Interamericana del Atún Tropical 1996: 306 pp.


Anónimo. 2000. Informe Anual de la Comisión Interamericana del Atún Tropical 1998: 357 pp.

Argue, A.W. (editor). 1981. Report of the Second Skipjack Survey and Assessment Programme workshop to review results from genetic analysis of skipjack blood samples. South Pacif. Comm., Skipjack Survey and Assessment Programme, Tech. Rep. 6: v, 39 pp.

Bayliff, W.H. 1988. Growth of skipjack, *Katsuwonus pelamis*, and yellowfin, *Thunnus albacares*, tunas in the eastern Pacific Ocean as estimated from tagging data. Inter-Amer. Trop. Tuna Comm., Bull. 19: 307-385.

Fink, B.D., and W.H. Bayliff. 1970. Migrations of yellowfin and skipjack tuna in the eastern Pacific

- Ocean as determined by tagging experiments, 1952-1964. Inter-Amer. Trop. Tuna Comm., Bull. 15: 1-227.
- Forsbergh, E.D. 1989. The influence of some environmental variables on the apparent abundance of skipjack tuna, *Katsuwonus pelamis*, in the eastern Pacific Ocean. Inter-Amer. Trop. Tuna Comm., Bull. 19: 429-569.
- Joseph, J., and F. R. Miller. 1989. El Niño and the surface fishery for tunas in the eastern Pacific. Japan. Soc. Fish. Ocean., Bull. 53: 77-80.
- Hampton J. 2000. Natural mortality rates in tropical tunas: size really does matter. Can. J. Fish. Aquat. Sci. 57: 1002-1010.
- Hennemuth, R.C. 1959. Additional information on the length-weight relationship of skipjack tuna from the eastern tropical Pacific Ocean. Inter-Amer. Trop. Tuna Comm., Bull. 4: 23-37.
- Hunter, J.R., A.W. Argue, W.H. Bayliff, A.E. Dizon, A. Fonteneau, D. Goodman, and G.R. Seckel. 1986. The dynamics of tuna movements: an evaluation of past and future research. FAO Fish. Tech. Pap. 277: 1-78.
- Lehodey, P., Senina, I., Calmettes, B., Hampton, J., Nicol, S., Williams, P., Jurado Molina, J., Ogura, M., Kiyofuji, H., and Okamoto, S. 2011. SEAPODYM working progress and applications to Pacific skipjack tuna population and fisheries. WCPFC-SC7-2011/EB-WP 06 rev. 1.
- Maunder, M.N. 2002a. Growth of skipjack tuna (*Katsuwonus pelamis*) in the eastern Pacific Ocean, as estimated from tagging data. Inter-Amer. Trop. Tuna Comm., Bull. 22: 93-131.
- Maunder, M.N. 2002b. Status of skipjack tuna in the eastern Pacific Ocean. Inter-Amer. Trop. Tuna Comm., Stock Assess. Rep. 3: 135-200.
- Maunder, M.N. 2012a. Updated indicators of stock status for skipjack tuna in the eastern Pacific Ocean. SAC3.
- Maunder, M.N. 2012b. Preliminary analysis of historical and recent skipjack tuna tagging data to explore information on exploitation rates SAC3
- Maunder, M.N. 2012c. A length based meta-population stock assessment model: application to skipjack tuna in the eastern Pacific Ocean. SAC3.

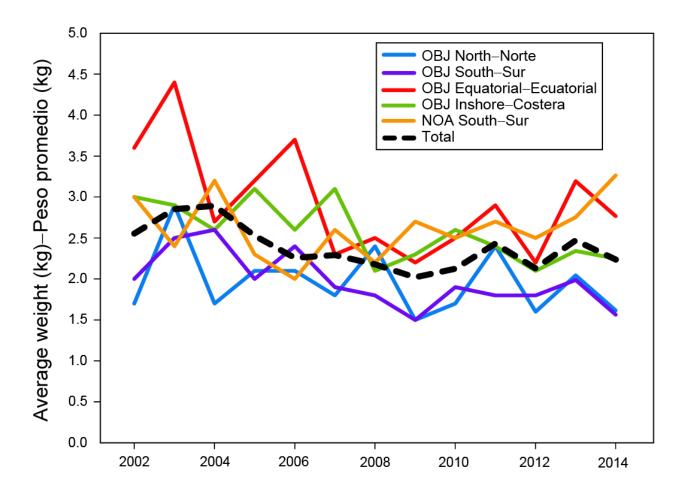

FIGURE 1. Indicators of stock status for skipjack tuna in the eastern Pacific Ocean. OBJ: floating-object fishery; NOA: unassociated fishery; CPDF: catch per day fished. All indicators are scaled so that their average equals one.

FIGURA 1. Indicadores del estatus de la población de atún barrilete en el Océano Pacífico oriental. OBJ: pesquería sobre objetos flotantes; NOA: pesquería no asociada; CPDP: captura por día de pesca. Se ajustó la escala de todos los indicadores para que su promedio equivalga a uno.

FIGURE 2. The fisheries defined by the IATTC staff for stock assessment of yellowfin, skipjack, and bigeye in the EPO. The thin lines indicate the boundaries of the 13 length-frequency sampling areas, and the bold lines the boundaries of the fisheries.

FIGURA 2. Las pesquerías definidas por el personal de la CIAT para la evaluación de las poblaciones de atún aleta amarilla, barrilete, y patudo en el OPO. Las líneas delgadas indican los límites de las 13 zonas de muestreo de frecuencia de tallas, y las líneas gruesas los límites de las pesquerías.

FIGURE 3. Average weight of skipjack caught in the floating-object purse-seine fisheries shown in Figure 2 and the southern unassociated fishery.

FIGURA 3. Peso promedio del barrilete capturado en las pesquerías cerqueras sobre objetos flotantes ilustradas in la Figura 2 y la pesquería no asociada del sur.