

Effects of inter-FAD distances on the movements of tuna in an array of FADs: an empirical modeling approach

Joint Tuna RFMOs Meeting (8-10 May 2019 – San Diego)

G. Perez, L. Dagorn, JL. Deneubourg, M. Capello

Goal of the project

 To assess the effects of different densities of floating objects on tuna behavior

Objective of the study

- To develop and fit a model of tuna movements in arrays of FADs based on real data:
 - Active tracking of tuna (<2000's)
 - Passive tracking of tuna with coded tags and acoustic receivers (>2000's)

MARINE BIODIVERSITY EXPLOITATION & CANSERVATION

mar

A simple model based on the sinuosity and the orientation radius

Correlated Random Walk model (Girard et al. 2004)

2 options for a same model

" PERSISTENT MODEL"

Common rules

"DIEL MODEL"

- \rightarrow Tuna have a random search motion
- \rightarrow When a tuna is
 - close enough to a FAD to be able to detect it (orientation radius) and

• the FAD detected is different from the previously visited FAD,

• It is day time

the individual goes straight towards the FAD. \rightarrow When the FAD is reached the tuna gets back to a random search motion.

Fitting the models with passive tracking data

CAT = Continuous Absence Time: time that tuna spend out of FAD (between 2 associations)

This parameter represents an output of the movement of tunas in an array of FADs (sinuosity and orientation radius to FADs)

Orientation radius – Modelled environment

Sinuosity

The sinuosity parameter c is linked to the turning angles as follows: $c = \exp(\frac{o}{2})$ (Where sigma is the standard deviation of the distribution of turning angles)

Fig 5: Values of sinuosity tested in the model. The 5 figures at the top show an example path according to the turning angle distributions from distributions shown at the bottom.

Calibrating parameters using acoustic tagging data in Hawaii and Mauritius

The Diel model shows slightly better results than the Persistent model.

Girard et *al.* (2004) Orientation radius = 9 - 11 km

Our model Orientation radius = 5 - 7 km

Girard et *al.* (2004) Sinuosity = 0.8

Our model Sinuosity = 0.8 - 0.94

Figure 4. Frequency distribution of the orientation distances to on-FAD areas. Note that, with 2-km radius on-FAD areas, the distances to the FADs themselves should be longer by about 2 km.

Marine biodiversity exploitation & conservation

Theoretical model, with different distances between FADs

 $\mathsf{R} \in [20, \, 30, \, 40, \, 50, \, 100, \, 150, \, 200] \, \mathsf{km}$

- \rightarrow The variation of the sinuosity (c) has more impacts than the orientation radius (D_{or}).
 - \rightarrow Need to conduct new active tracking to collect more sinuosity data

mar

Theoretical environment

What differences in CAT (time between two FAD associations) can we expect between environments with or without artificial FADs?

Increasing the density of floating objects (FOBs)

- If only natural FOBs: **1-2 months** between 2 FOB associations
- If natural FOBs + FADs: < 5 days between 2 FOB associations
- → Tool to estimate effects of changing densities of FOBs on tuna behavior
- → Need to measure the time between 2 FOB associations (challenge for DFOBs)
- \rightarrow Need to conduct new active tracking