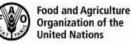
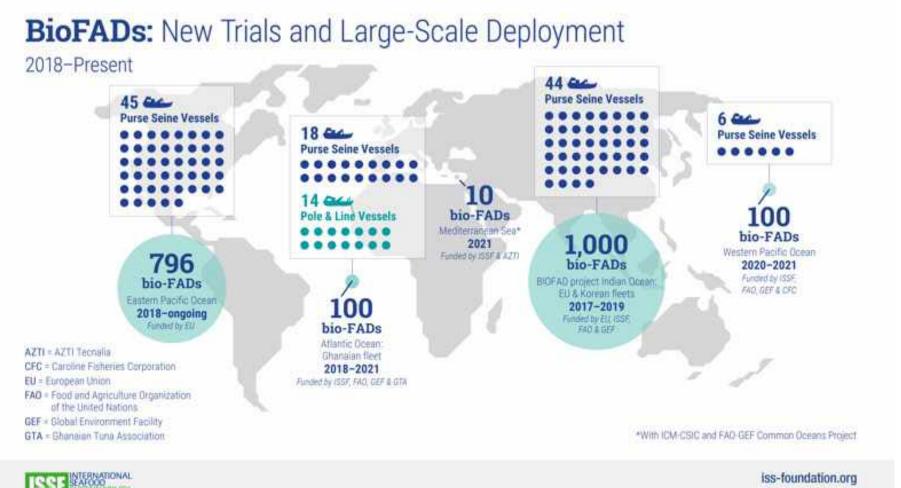
7th *Ad hoc* working group on FADs **Document : FAD-07-MISC**


The Jelly-FAD: new results on its performance

G.Moreno, I. Zudaire, J. Uranga, M. Grande, J. Salvador, J. Murua, A. Salgado, H. Murua, J.Santiago, V. Restrepo


Thola: David Hano

© ISSJ (2012)

BIO-FAD TRIALS

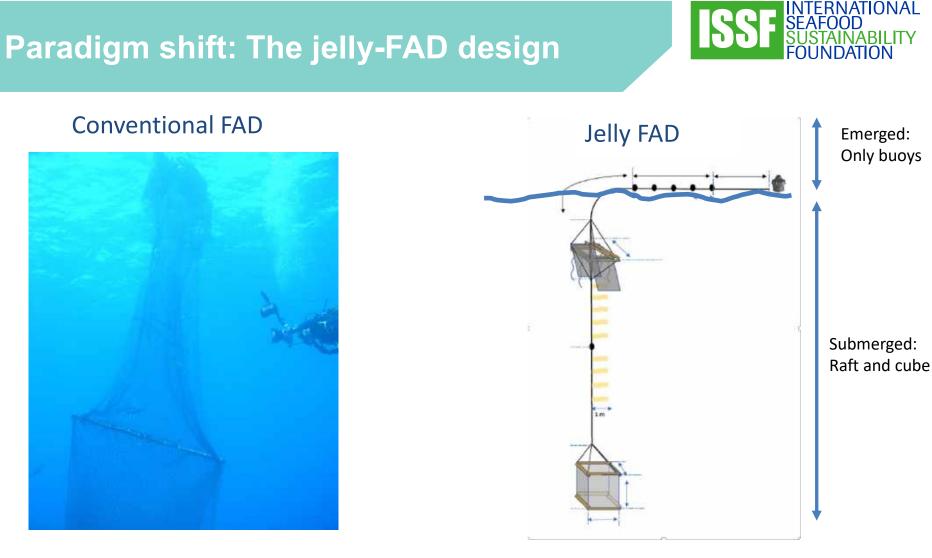
OUNDATION

iss-foundation.org Published March 2021

Paradigm shift: The jelly-FAD design

Nature inspired innovation:

- Neutral buoyancy
- Reduces structural stress
- Provides slow drift decreasing its size
- Reduces the need for plastic flotation

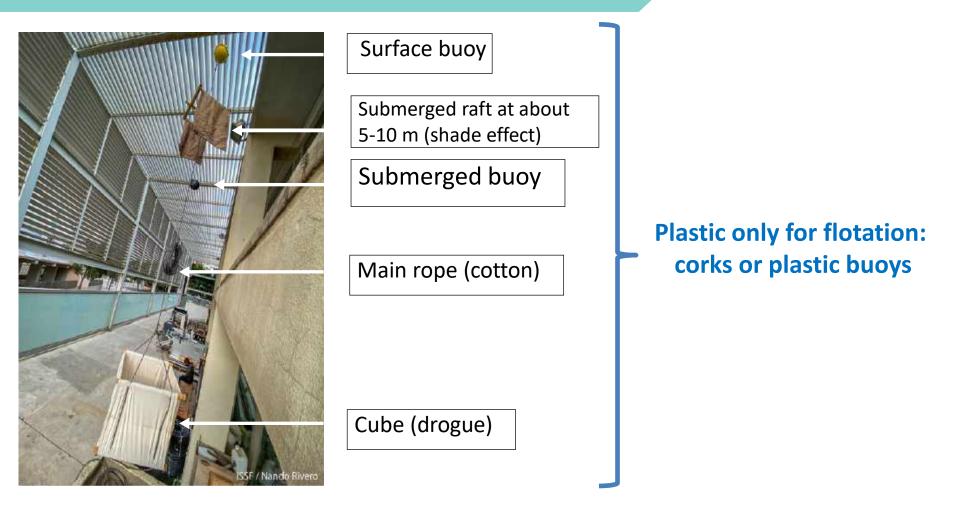

The Jelly-FAD: A paradigm shift in the design of biodegradable Fish Aggregating Devices

Gala Moreno^{a,*}, Joaquín Salvador^b, Iker Zudaire^c, Jefferson Murua^c, Josep Lluís Pelegrí^b, Jon Uranga^c, Hilario Murua^{*}, Maitane Grande^c, Josu Santiago^c, Victor Restrepo^{*}

* International Seafood Sustainability Foundation (ISSF), 3706 Butler Street Suite #316, Pittsburgh, PA 15201-1820, USA

^b hustinut de Clencies del Mar (ICM), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain

⁸ AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Gipuskoa, Spain



- 2D FAD
- From 30 to 150 Kg extra flotation (plastic buoys or corks)
- Raft, burrito, or synthetic structure on sea surface
- Strong structural stress

- 3 D structure to create the drag,
- Maximum of 30 kg flotation
- Sub-Surface raft
- Minimum structural stress

Jelly-FAD design

Category II. The FAD is made of 100% biodegradable materials except for plastic-based flotation components (e.g., plastic buoys, foam, purse-seine corks). (This definition do not apply to electronic buoys attached to FADs to track them).

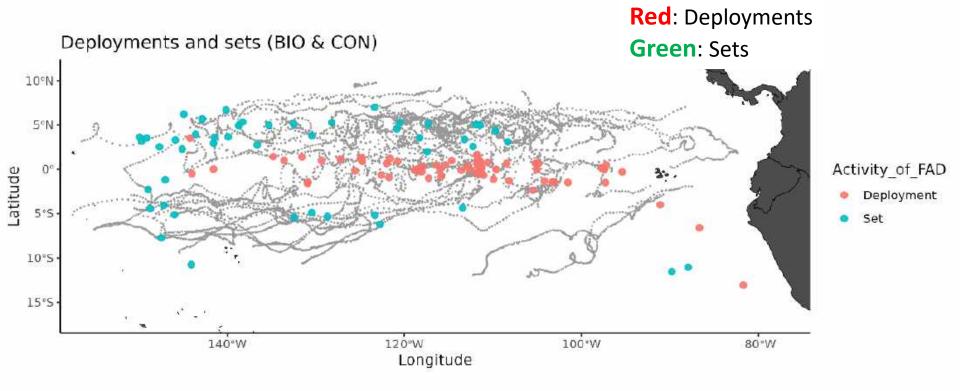
Ongoing trials with the following fleets:

- Ugavi: + 500 jelly-FADs (Pacífic O.)
- Caroline Fisheries Corporation (FSM): 150 FSM (WPO)
- USA: 260 jelly-FADs (East & West Pacific)
- Nirsa (Ecuador): 100 jelly-FADs (EPO)
- Silla (Korea): 34 jelly-FADs (WCPO)
- FCF (Taiwan): 50 jelly-FADs (WCPO)
- Pevasa (Anabac, Spain): +100 jelly FADs (Atlantic O.)
- Via Ocean (France): 60 Jelly-FADs (Atlantic Ocean)

Past trials with the following fleets:

- Opagac (Spain): 188 jelly-FADs (WCPO)
- Ghanaian (Ghana): 147 jelly-FADs (Atlantic O.)

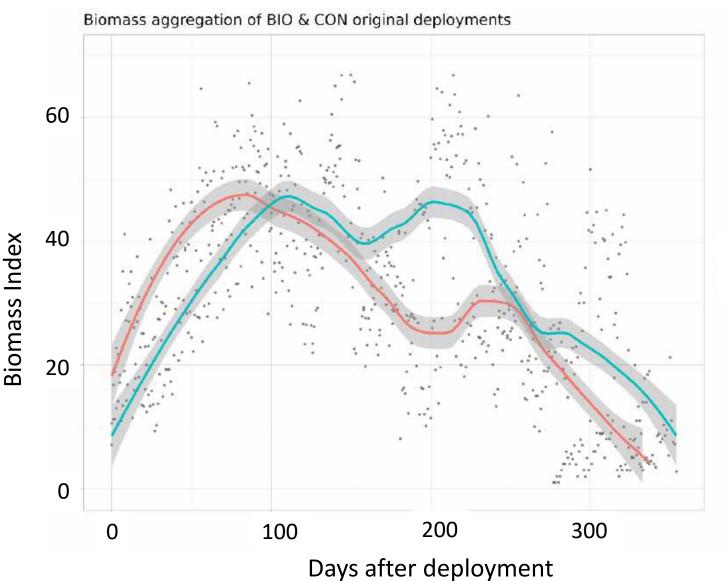
JellyFADs tests in the Atlantic and Pacific Oceans


71 visits / sets on Jelly-FADs reported by the fleet

FAD type	Prototype	Ν
BIO	Jelly-FAD (Category 2)	35
BIO	JellyFAD_mix*	29
BIO	Jelly-FAD unknown	7
CON	2D with sails	63

*Jelly-FAD with main rope of polypropylene

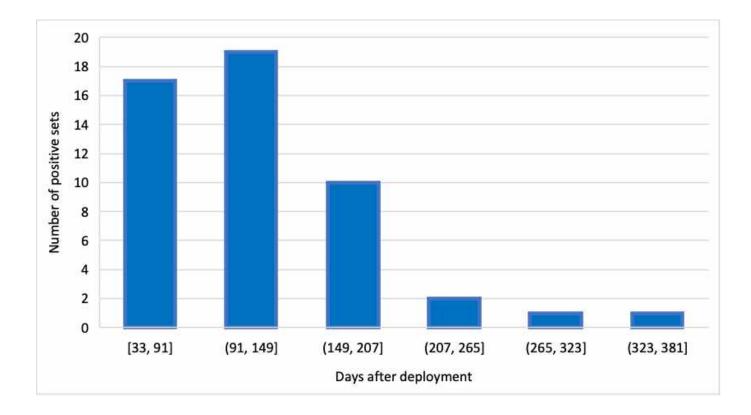
1. Catch performance of the pairs



Jelly-FAD= 50 sets total tonnes 2205 t, average 44.1 t Conventional= 5 sets total tonnes 130 t, average 26 t

2. Tuna Biomass aggregation from echosounder buoys

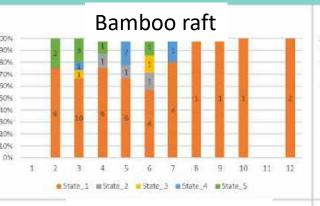
Red: Jelly-FAD Green: Conventional

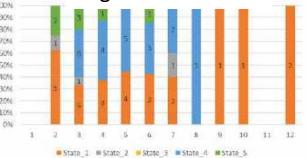


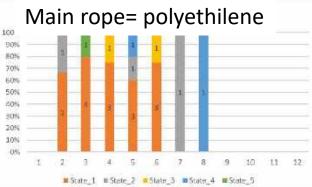
Both dFAD types (Jelly-FAD and conventional) showed similar average and maximum speed values

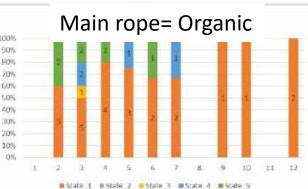
FAD type	Prototype	N	Records	mean (knots)	max (Knots)
BIO	Jelly-FAD_unknown	4	437	1.0	3.1
BIO	Jelly-FAD_mix	25	292	0.9	3.9
BIO	Jelly-FAD	23	354	0.9	3.7
CON	2D with sails	59	225	0.9	4.0

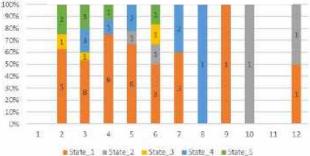
4. Lifespan from visits and sets

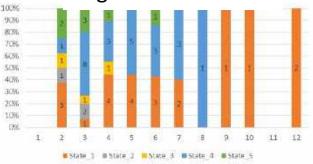



- The maximum monitored lifespan in working condition and with a successful set on a Jelly-FAD was 335 days (11 months).
- Some of those Jelly-FADs were redeployed and were not visited anymore, so their lifespan in working conditions will likely be longer.


ISSF INTERNATIONAL SEAFOOD SUSTAINABILITY FOUNDATION


4. Degradation of the materials


Organic canvas raft



Bamboo cube (drogue)

Organic canvas cube

Orange = good condition Grey = starting to degrade Yellow = bad state need of repair Blue= component not present Green= unknown

- ✓ In the case of the **bamboo structure** both in the raft and the cube, the condition was in **good condition (state 1)** in a high percentage of the observations **7 months after deployment**.
- Both cotton and polyethylene ropes showed high percentages of observations in state 1 (good condition) until month 12 after deployment. There were not differences between cotton and polyethylene ropes for the observed period.
- ✓ Half of tested jelly-FADs' Canvas were found in state 4 (absence of the element) from the third month onwards. However, the other half were found in state 1 (good condition) until month 12.

Conclusion from Ugavi trials

- JellyFADs aggregate tuna as conventional FADs do.
- JellyFADs **drift** as slow as conventional FADs or slower.
- Lifespan: sets were made after 11 months at sea, and many occurred after 5 months with the FAD being in perfect condition and re-deployed at sea. This meets fishers' needs for dFADs lifespan.
- The success relies on the number of Jelly-FADs deployed which should be systematically tested supported by the shipowner and with the feedback from fishers at sea.

Other useful information

- COST: JellyFAD cost \$180 \$450 (depending on the depth) + Geolocating Buoy.
- Conventional FADs costs from \$250 to \$900 depending on the depth and design + Geolocating Buoy.
- Replacement of JellyFAD components: The cube or canvas, if damaged after the set, could be replaced by another cube that fishers could have ready onboard for the JellyFAD to be re-deployed, (as fishers do with the tail and raft of conventional structures).
- This is not the last design of the Jelly-FAD, we are working to make it lighter, less weight, less material, less impact.

Recommendations

1. Only dFADs **without netting** can completely eliminate ghost-fishing.

 The design of the dFAD is crucial to reduce stress on the structure and increase their lifespan. We recommend the Jelly-FAD concept.

3. Fishers supported by shipowners should start trialing bioFAD design in a continued effort, deploying systematically a percentage of their FADs made of biodegradable materials.

Thanks! Gracias!

Gala Moreno_gmoreno@iss-foundation.org