

SOUTH PACIFIC ALBACORE STOCK ASSESSMENT

IATTC SAC-13 SPRING 2022

Claudio Castillo-Jordán_(a), John Hampton_(a), Haikun Xu_(b), Nicholas Ducharme-Barth_(c), Tiffany Vidal_(d), Peter Williams_(a), Finlay Scott_(a), Graham Pilling_(a) and Paul Hamer_(a)

(a) Oceanic Fisheries Program, Pacific Community (SPC),

- (b) Inter-American Tropical Tuna Commission (IATTC/CIAT)
- (c) NOAA fisheries
- (d) SPRFMO

2021 SOUTH PACIFIC ALBACORE - HIGHLIGHT

2021 stock assessment is a collaboration with the IATTC/CIAT

- Main collaborator at the IATTC **Dr. Haikun Xu**
- Support from Dr. Cleridy Lennert-Cody and IATTC team

Main new changes

- New regions definition (South Pacific-wide)
- New growth parameters
- Growth and Natural mortality approach
- New MFCL 2.08 version

SUMMARY

- Previous assessment was in 2018, WCPFC-CA only (Tremblay-Boyer et al. 2018).
- Model spatial and fishery structures for 'south Pacific wide' albacore assessment 2021 (IATTC)
- Fisheries and data inputs, including length composition until 2019 (IATTC region 4)
- CPUE index fisheries 1960-2019 (IATTC consultation)
- New growth parameters (Farley et al 2021)
- Biological assumptions similar to 2018 assessment (single sex model)
- Stepwise diagnostic model development from 2018 to 2021 model
- Uncertainty grid include: steepness (3 options), movement (2 options), data weighting (3 options), recruitment (2 options) and growth-natural mortality (2 options) (72 models in total)
- Sensitivities tag or no-tag

MODEL DEVELOPMENT

- ALB18 identical to MFCL208
- New growth decreased depletion
- New CPUE different early period
- No tag does not affect the results
- New data WCPFC18
- WCPFC21
- SPO21 (IATTC data)

2021 ASSESSMENT

- "Simplified" spatial structure compared with 2018 (5 to 4 regions) South Pacific ocean (3 x WCPFC, 1 x IATTC)
- 25 fisheries (17 LL, 2 DN, 2 TR, 4 Index fisheries (1 per region)
- Similar approach to 2018, CPUE standardisation (spatio-temp delta GLMM, VAST, Thorson et al. 2015)
- New <u>otolith based growth parameter estimations</u> (Lmax=107.23 cm; k= 0.268/yr; Lmin= 41.07 cm), and an alternative growth <u>LF estimation fixing just Lmax</u> (Lmax=107.23 cm; k= 0.210/yr, Lmin= 46.06 cm)
- Movement hypotheses: MFCL (internal estimated) and SEAPODYM movement (fix param., external).

Other sources of information to inform movement rates: Spatial Ecosystem And Population Dynamics Model; SEAPODYM (Senina et al. 2020)

- SEAPODYM provides predictions on spatio-temporal exchange of biomass by age class (in numbers and months), forced by environmental/habitat variables
- Convert this to an "average" matrix of probabilities for movement between regions by 'quarter' and age
- Apply this matrix of quarterly/age movement probabilities to MFCL (fixed)

Quantitative modelling of the spatial dynamics of South Pacific and Atlantic albacore tuna populations

Inna N. Senina^{a,*}, Patrick Lehodey^a, John Hampton^b, John Sibert^c

Deep–Sea Research II 175 (2020) 104667

MOVEMENT

SEAPODYM (M2)

STRUCTURAL UNCERTAINTY GRID

Axis	Value
Steepness	0.65 0.80 0.95
Movement	Model estimated, SEAPODYM
Data weighting	50 (low) 25 (medium) 10 (high)
Recruitment distribution	SEAPODYM, Regions 3 - 4
Growth/M-at-age	Otolith growth/associated M-at-age, LF/associated M-at-age

OUTCOMES 2021

KEY UNCERTAINTIES

All regions South Pacific wide

Overlap for some analysis

Main uncertainties:

- Movement
- Size data weighting

RECRUITMENT

Last 9 quarters = average recruitment

-

-

-

- Low recruitment estimated for years 2015-2017
- Investigation of influences on low recruitment estimates:
 - not related to region 4
 - mostly related to region 3 data
 - not influenced by the alternative movements
 - not driven by the recent CPUE in region 3
 - exploration of LF data suggests related to multiple data set (LLs, Index fisheries, and more so NZ troll)
- Low recruitment could be related to El Niño 2015-16

MAIN CONCLUSIONS

- Spawning potential has generally declined across the model period, with that decline increasing in the most recent years. Consistent general trends by regions
- SPO "latest" (2019) and "recent" (2016-2019) (Table 5)

	Mean	Median	Min	10%	90%	Max
$SB_{latest}/SB_{F=0}$	0.35	0.36	0.25	0.27	0.44	0.46
$SB_{recent}/SB_{F=0}$	0.48	0.47	0.37	0.40	0.56	0.59

- Uncertainty in movement and the size frequency data weighting are the major contributors to the overall assessment uncertainty.
- CPUE indices lacked contrast to inform population scale, which was more influenced by the size composition data.
- Poor recruitment estimated in 2015-2017 period

BY RFMO

WCPFC-CA

	Mean	Median	Min	10%	90%	Max
C_{latest}	78946	78434	75673	76740	79163	118706
$SB_{F=0}$	457559	452323	415746	432039	483703	501602
$SB_{latest}/SB_{F=0}$	0.35	0.36	0.26	0.28	0.43	0.44
$SB_{recent}/SB_{F=0}$	0.49	0.47	0.39	0.42	0.58	0.61

IATTC-CA

	Mean	Median	Min	10%	90%	Max
C_{latest}	8351	8166	7845	7903	8773	12229
$SB_{F=0}$	187230	157583	92190	95879	336838	379718
$SB_{latest}/SB_{F=0}$	0.35	0.36	0.22	0.24	0.46	0.48
$SB_{recent}/SB_{F=0}$	0.43	0.43	0.28	0.31	0.56	0.57

KEY CHALLENGES AND RESEARCH SUGGESTIONS

- **Movement:** Biological research to improve understanding of population structure and movement, genetics, otolith chemistry, spatial growth etc. multimethod approaches
- Recruitment dynamics: Environmental/oceanography influences on South Pacific albacore recruitment
- Implications poorly specified spatial models: MSE or simulation-estimation approaches to investigate implications of spatial/movement uncertainties
- Early life growth, growth variation: Spatio-temporal analysis of growth (i.e. last major otolith sampling/ageing were in 2009-2010), daily age of even smaller fish, alt. growth models
- General model complexity: parameter reductions (1000s effort deviates move to catch conditioned), spatial complexity.
- Independent estimates of population scale (lack of CPUE contrast): Close-kin mark-recapture CKMR (point estimates to scale future assessments, Bravington et al. 2021 (SC17-SA-IP-14)

TO BE CONTINUE...

(6)

https://ofp-sam.shinyapps.io/SALSA/

South Pacific ALbacore Stock Assessment

Version 0.0.1 The Filthy Fraco