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Combining models -Key decisions
1. How are model 

ensembles 
constructed?

2. How are models in the 
ensemble combined to 
present the central 
tendency in stock 
status?

3. How was uncertainty in 
stock status from the 
ensemble presented?

Credit: GYPAETE AERIAL

W
ei

gh
ti

n
g

Model ensemble



Page 3

Combining models -Key decisions
1. How are model 

ensembles 
constructed?

2. How are models in the 
ensemble combined to 
present the central 
tendency in stock 
status?

3. How was uncertainty in 
stock status from the 
ensemble presented?



Page 4

Combining models -Key decisions
1. How are model 

ensembles 
constructed?

2. How are models in the 
ensemble combined to 
present the central 
tendency in stock 
status?

3. How was uncertainty in 
stock status from the 
ensemble presented?

What are other 
practitioners doing???



Page 5

Combining models -Key decisions
1. How are model 

ensembles 
constructed?

2. How are models in the 
ensemble combined to 
present the central 
tendency in stock 
status?

3. How was uncertainty in 
stock status from the 
ensemble presented?

What are other 
practitioners doing???What are current practices?

Can we begin to identify best 
practices?
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Survey overview
• 42 responses (globally)

• 25 of 42 (~60%) 
participants had used a 
model ensemble to 
characterize stock status

• Good response rate 
across experience level.

• If participants had used 
an ensemble, all had 
used one within the last 
3 years.

Credit: GYPAETE AERIAL
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Where are ensembles 
being used?
• RFMOs

• ICCAT, IOTC, IATTC, 
WCPFC, IHPC, ICES, ISC, 
GFCM

• Domestically

• USA (Southeast/Hawaii)

• Canada

• Australia (Queensland)
Credit: GYPAETE AERIAL
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How are model ensembles constructed?
• Ad-hoc combination of models

• Hypothesis tree approach

• Full-factorial combination of 
uncertainties

• Monte-Carlo Bootstrap: fixing 
parameters to values drawn from a 
pre-defined distribution

• Other
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How are model ensembles constructed?
• Ad-hoc combination of models

• Hypothesis tree approach

• Full-factorial combination of 
uncertainties

• Monte-Carlo Bootstrap: fixing 
parameters to values drawn from a 
pre-defined distribution

• Other

(Hierarchical approach)
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How are model ensembles constructed?
• Ad-hoc combination of models

• Hypothesis tree approach

• Full-factorial combination of 
uncertainties

• Monte-Carlo Bootstrap: fixing 
parameters to values drawn from a 
pre-defined distribution

• Other

24%
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32%

24%

8%

50%

19%

6%

0%

25%

Ensemble experience
No ensemble 
experience
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How are model ensembles constructed?
• Ad-hoc combination of models

• Hypothesis tree approach

• Full-factorial combination of 
uncertainties

• Monte-Carlo Bootstrap: fixing 
parameters to values drawn from a 
pre-defined distribution

• Inefficient (model explosion)

• Unrealistic parameter 
combinations

• Subjective choices for parameter 
levels & model weighting

Natural Mortality (M)

0.2 (low)

0.3 (medium)

0.4 (high)

Growth (L2)

140 (low)

160 (medium)

180 (high)

Model 1: 
M=0.2,L2=140

Model 2: 
M=0.2,L2=160

Model 3: 
M=0.2,L2=180

Model 4: 
M=0.3,L2=140

Model 5: 
M=0.3,L2=160

Model 6: 
M=0.3,L2=180

Model 7: 
M=0.4,L2=140

Model 8: 
M=0.4,L2=160

Model 9: 
M=0.4,L2=180
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Can we do better? Monte Carlo Bootstrap (MCB)
• Develop a multivariate distribution 

for key parameters that would be 
fixed in an assessment.

• Each model in the ensemble 
would be parametrized by 
parameters drawn from 
distribution.

• Benefits?

e.g. 𝑀 = 4.118 × 𝑘0.73𝐿𝑖𝑛𝑓−0.33; Then et al. 2015
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Can we do better? Monte Carlo Bootstrap (MCB)
• Develop a multivariate distribution 

for key parameters that would be 
fixed in an assessment.

• Each model in the ensemble 
would be parametrized by 
parameters drawn from 
distribution.

• Benefits?

e.g. 𝑀 = 4.118 × 𝑘0.73𝐿𝑖𝑛𝑓−0.33; Then et al. 2015

• Preserves parameter correlation and uncertainty

• Life history can inform plausible combinations

• Implicit weighting
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Case study: 2017 SWPO swordfish
• Develop a multivariate distribution 

for key biological assumptions 
(growth, maturity, length-weight, 
natural mortality & steepness).

• Conduct experiment

• Develop full-factorial ensemble 
using 3 levels from 5 biological 
axes (243 models)

• Compare to MCB ensembles of 
varying sizes: 30, 50, 75, 100, 
200, 300, 500 models



Page 16

Case study: 2017 SWPO swordfish
• Develop a multivariate distribution 

for key biological assumptions 
(growth, maturity, length-weight, 
natural mortality & steepness).

• Conduct experiment

• Develop full-factorial ensemble 
using 3 levels from 5 biological 
axes (243 models)

• Compare to MCB ensembles of 
varying sizes: 30, 50, 75, 100, 
200, 300, 500 models

Note: Both types of ensembles assumed equal 
weights for models in the experiment.
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Case study: 2017 SWPO swordfish
• Distributions of the MLEs of 

management reference points 
differed in terms of central 
tendency & uncertainty between 
the two ensemble types

• MCB ensembles of at least 50 
members functionally equivalent 
in terms of characterizing 
reference points.
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• Useful for continuous parameters

• Efficient alternative to full-factorial

• Can reduce uncertainty by self-
censoring unlikely combinations

• Shifts scrutiny of weighting 
decisions from post-hoc discussion 
to how the multivariate 
distribution is developed

How are model ensembles constructed? Summary
• Ad-hoc combination of models

• Hypothesis tree approach

• Full-factorial combination of 
uncertainties

• Monte-Carlo Bootstrap: fixing 
parameters to values drawn from a 
pre-defined distribution

• Other
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How are model ensembles constructed? Summary
• Ad-hoc combination of models

• Hypothesis tree approach

• Full-factorial combination of 
uncertainties

• Monte-Carlo Bootstrap: fixing 
parameters to values drawn from a 
pre-defined distribution

• Other

• Useful if number of models small 
or if capturing uncertainty 
between discrete choices

• Can be combined with MCB 
ensemble -> this can be a special 
case of a hypothesis tree.

• Ensemble dispersion (emphasis 
on tails) dependent of how levels 
and weighting is selected
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How are model ensembles constructed? Summary
• Ad-hoc combination of models

• Hypothesis tree approach

• Full-factorial combination of 
uncertainties

• Monte-Carlo Bootstrap: fixing 
parameters to values drawn from a 
pre-defined distribution

• Other

• Similar pros & cons to the full-
factorial approach

• Can be directly linked to 
conceptual model

• Hierarchy can be tailored to 
remove redundant and/or unlikely 
combinations
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How are model ensembles combined?
• Models not combined

• Model estimates AVERAGED together

• Distributions of quantities of interest 
COMBINED

• Distributions of quantities of interest 
AVERAGED



Page 22

How are model ensembles combined?
• Models not combined

• Model estimates AVERAGED together

• Distributions of quantities of interest 
COMBINED

• Distributions of quantities of interest 
AVERAGED

& How was uncertainty in the ensemble calculated?



Page 23

• Models not combined

• Model estimates AVERAGED together

• Distributions of quantities of interest 
COMBINED

• Distributions of quantities of interest 
AVERAGED

How are model ensembles combined?



Page 24

How are model ensembles combined?
• Models not combined

• Model estimates AVERAGED together

• Distributions of quantities of interest 
COMBINED

• Distributions of quantities of interest 
AVERAGED

ෞ𝜇1 = 0.52

ෞ𝜇2 = 0.66

ෞ𝜇3 = 0.74



Page 25

How are model ensembles combined?
• Models not combined

• Model estimates AVERAGED together

• Distributions of quantities of interest 
COMBINED

• Distributions of quantities of interest 
AVERAGED

ෞ𝜇1 = 0.52

ෞ𝜇2 = 0.66

ෞ𝜇3 = 0.74

ෞ𝜇𝐸 = 0.64



Page 26

How are model ensembles combined?
• Models not combined

• Model estimates AVERAGED together

• Distributions of quantities of interest 
COMBINED

• Distributions of quantities of interest 
AVERAGED

ෞ𝜇𝐸 = 0.64



Page 27

How are model ensembles combined?
• Models not combined

• Model estimates AVERAGED together

• Distributions of quantities of interest 
COMBINED

• Distributions of quantities of interest 
AVERAGED

ෞ𝜇𝐸 = 0.64



Page 28

Ensemble experience

How are model ensembles combined?
• Models not combined

• Model estimates AVERAGED together

• Distributions of quantities of interest 
COMBINED

• Distributions of quantities of interest 
AVERAGED

8%

29%

46%

17%
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Ensemble experience

How are model ensembles combined?
• Models not combined

• Model estimates AVERAGED together

• Distributions of quantities of interest 
COMBINED

• Distributions of quantities of interest 
AVERAGED

8%

29%

46%

17%

No ensemble 
experience

27%

9%

36%

27%



Page 30

How was uncertainty in the ensemble calculated?
• Model uncertainty only

• Model + Estimation: Analytical as 
INDEPENDENT random variables

• Model + Estimation: Analytical as 
DEPENDENT random variables

• Model + Estimation: Approximated 
from COMBINED distribution

• Model + Estimation: Approximated 
from AVERAGE distribution
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How was uncertainty in the ensemble calculated?
• Model uncertainty only

• Model + Estimation: Analytical as 
INDEPENDENT random variables

• Model + Estimation: Analytical as 
DEPENDENT random variables

• Model + Estimation: Approximated 
from COMBINED distribution

• Model + Estimation: Approximated 
from AVERAGE distribution

Uncertainty based on 
percentile from model 
means/medians
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How was uncertainty in the ensemble calculated?
• Model uncertainty only

• Model + Estimation: Analytical as 
INDEPENDENT random variables

• Model + Estimation: Analytical as 
DEPENDENT random variables

• Model + Estimation: Approximated 
from COMBINED distribution

• Model + Estimation: Approximated 
from AVERAGE distribution
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𝑚
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How was uncertainty in the ensemble calculated?
• Model uncertainty only

• Model + Estimation: Analytical as 
INDEPENDENT random variables

• Model + Estimation: Analytical as 
DEPENDENT random variables

• Model + Estimation: Approximated 
from COMBINED distribution

• Model + Estimation: Approximated 
from AVERAGE distribution

𝑉𝑎𝑟 

𝑖=1

𝑚

𝑤𝑖 ෝ𝜇𝑖 =

𝑖=1

𝑚

ේ𝑤𝑖
2𝜎𝑖

2

Ensemble variance 
decreases as number 
of models increases; 
“losing the tails”
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How was uncertainty in the ensemble calculated?
• Model uncertainty only

• Model + Estimation: Analytical as 
INDEPENDENT random variables

• Model + Estimation: Analytical as 
DEPENDENT random variables

• Model + Estimation: Approximated 
from COMBINED distribution

• Model + Estimation: Approximated 
from AVERAGE distribution
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How was uncertainty in the ensemble calculated?
• Model uncertainty only

• Model + Estimation: Analytical as 
INDEPENDENT random variables

• Model + Estimation: Analytical as 
DEPENDENT random variables

• Model + Estimation: Approximated 
from COMBINED distribution

• Model + Estimation: Approximated 
from AVERAGE distribution
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𝑖=1

𝑚



𝑗≠𝑖

𝑤𝑖𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗

Conservatively 
assume 𝜌𝑖𝑗 = 1; still 

can “lose tails” 
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How was uncertainty in the ensemble calculated?
• Model uncertainty only

• Model + Estimation: Analytical as 
INDEPENDENT random variables

• Model + Estimation: Analytical as 
DEPENDENT random variables

• Model + Estimation: Approximated 
from COMBINED distribution

• Model + Estimation: Approximated 
from AVERAGE distribution

Uncertainty based on 
percentile from 
distribution

Mixture distribution, super-distribution, ‘model stitching’ 
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How was uncertainty in the ensemble calculated?
• Model uncertainty only

• Model + Estimation: Analytical as 
INDEPENDENT random variables

• Model + Estimation: Analytical as 
DEPENDENT random variables

• Model + Estimation: Approximated 
from COMBINED distribution

• Model + Estimation: Approximated 
from AVERAGE distribution

Uncertainty based on 
percentile from 
distribution; “lose tails”
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How was uncertainty in the ensemble calculated?
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How was uncertainty in the ensemble calculated?
• Model uncertainty only

• Model + Estimation: Analytical as 
INDEPENDENT random variables

• Model + Estimation: Analytical as 
DEPENDENT random variables

• Model + Estimation: Approximated 
from COMBINED distribution

• Model + Estimation: Approximated 
from AVERAGE distribution

0.53 – 0.74

0.55 – 0.73

0.53 – 0.75

0.37 – 0.85

0.55 – 0.73

9
5

th
In

tervals

Uncertainty of 
ensemble mean
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How was uncertainty in the ensemble calculated?
• Model uncertainty only

• Model + Estimation: Analytical as 
INDEPENDENT random variables

• Model + Estimation: Analytical as 
DEPENDENT random variables

• Model + Estimation: Approximated 
from COMBINED distribution

• Model + Estimation: Approximated 
from AVERAGE distribution

25%

8%

4%

54%

8%

Ensemble experience
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How was uncertainty in the ensemble calculated?
• Model uncertainty only

• Model + Estimation: Analytical as 
INDEPENDENT random variables

• Model + Estimation: Analytical as 
DEPENDENT random variables

• Model + Estimation: Approximated 
from COMBINED distribution

• Model + Estimation: Approximated 
from AVERAGE distribution

25%

8%

4%

54%
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9%

36%
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27%
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Ensemble experience
No ensemble 
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Case study: 2017 SWPO swordfish
• Mixture distribution combining 

model + estimation uncertainty 
created using delta-MVLN like 
approach

• Some increase in uncertainty 
but did not meaningfully 
change risk relative to 
reference points

• Applying sample-importance 
resampling (likelihood based) 
weighting did not change 
distributions



Page 43

Case study: 2022 NPO blue shark
• 3 model ensemble developed 

using hypothesis tree 
approach. Weights assigned a 
priori based on plausibility of 
each hypothesis. delta-MVLN 
approach used to create 
mixture distribution.

• Noticeable increase in risk 
when estimation uncertainty 
accounted for.
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0% 
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25% risk 
overfished

9% 
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36% risk 
overfished
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Case study: 2022 NPO blue shark

Variance partitioning

M
o

d
el

 +
 E

st
im

at
io

n

𝑉𝑎𝑟 ෞ𝜇𝐸 =

𝑖=1

𝑚

𝑤𝑖𝜎𝑖
2 +

𝑖=1

𝑚

𝑤𝑖 ෝ𝜇𝑖 − ෞ𝜇𝐸
2

Ducharme-Barth and Vincent (2022), Eq. 4
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Estimation Model

Ducharme-Barth and Vincent (2022), Eq. 4

F/FMSY SB/SBMSY

Estimation

Model 38%

62%

40%

60%

Model 1 (50%)

Model 2 (25%)

Model 3 (25%)

22%

15%

63%

46%

19%

35%
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How are model ensembles combined?

• Most practitioners construct “mixture distributions” which emphasizes “tail retention”. 
This appears different to some other fields where variance reduction is the focus.

• Some ambiguity in terminology? Model averaging implies some level of variance 
reduction which is not what is usually achieved.

• Accounting for model + estimation uncertainty will always increase uncertainty when 
creating “mixture distributions”. More transparent but can change perceived risk levels.

• Individual model variance (and number of models) related to the importance of including 
estimation uncertainty.

• Stakeholder education and buy-in are critical as decisions related to ensemble 
construction & combination change perceptions of risk.

& How was uncertainty in the ensemble calculated?
Summary
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Thank you & Questions?

Nicholas Ducharme-Barth, Ph.D.

nicholas.ducharme-barth@noaa.gov

Matthew Vincent, Ph.D.

matthew.vincent.@noaa.gov

mailto:Nicholas.ducharme-barth@noaa.gov
mailto:Matthew.Vincent.@noaa.gov
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End slides


