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SUMMARY 

Including spatiotemporal dynamics in the standardization of catch-per-unit-effort (CPUE) data to 
produce an index of relative abundance is important to ensure that the index more completely 
represents the abundance of the whole population rather than just the component of the population 
targeted by the fishery (Maunder et al. 2017). This is particularly important when there are substantial 
spatial variations in the size structure of a stock and the areas in which it is caught, as is the case for 
yellowfin tuna (Thunnus albacares) in the eastern Pacific Ocean (EPO). The stock assessment needs to 
appropriately differentiate between the size composition represented by the index and the size 
composition represented by the catch, and this can only be done by applying spatiotemporal models 
(Maunder et al. 2017). To standardize the index of relative abundance for yellowfin, we applied a 
spatiotemporal delta-generalized linear mixed model to the catch and effort data of the dolphin-
associated fishery for yellowfin in the EPO during 1975-2016. In comparison to the nominal CPUE used in 
the stock assessment, the standardized CPUE suggested higher initial abundances and lower terminal 
abundances. Also, the confidence interval of the standardized CPUE varied over time, being markedly 
larger in the first decade than in the last decade of the study period. When applied to the length-
composition data for yellowfin in the EPO north of the Equator, the spatiotemporal model suggested 
that yellowfin in that region was spatially segregated by length.  

1. BACKGROUND 

Indices of relative abundance directly inform trends in population biomass and are a key input in 
integrated fisheries stock assessments (Francis 2011). Fishery-independent data are not available for the 
assessment of yellowfin tuna in the EPO, so indices of relative abundance are derived solely from 
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fishery-dependent CPUE data. CPUE data need to be standardized to eliminate factors other than 
abundance that could influence the index, and accounting for spatial effects is important in the 
standardization of CPUE. Because the spatial coverage of CPUE data is relatively sparse for all the 
fisheries that catch yellowfin in the EPO, the standardization of fishery-dependent CPUE data is 
particularly difficult for yellowfin. Length-composition data, which inform selectivity and year-class 
strength, are another important component of stock assessments, and spatiotemporal modeling of 
these data may lead to improved estimates of the overall size composition of the catch and the 
selectivity function for the index of abundance.  

The dolphin-associated purse-seine fishery takes most of the catches of yellowfin in the EPO (IATTC 
2017). In addition, two of the five indices of relative abundance used in the stock assessment are 
nominal CPUEs of the dolphin-associated purse-seine fisheries that operate in different regions of the 
EPO (Minte-Vera et al. 2017). In this study, we evaluate the spatiotemporal dynamics of yellowfin in the 
EPO based on the CPUE and length-composition data from vessels fishing primarily on dolphin-
associated yellowfin. This fishery relies on the strong tuna-dolphin association in the tropical EPO (Scott 
et al. 2012), where the habitat of yellowfin is restricted to the warm and shallow mixed layer by the 
oxygen-poor waters underneath. Because of the large percentage of zero-value observations in the 
CPUE and length-composition data, we apply a spatiotemporal delta-generalized linear mixed model 
(using the R package VAST (Thorson et al. 2015)), to develop a standardized index of relative abundance 
and to estimate the length composition of yellowfin in the EPO. We chose VAST because of its ability to 
impute catch rates in unsampled regions based on the estimated spatial autocorrelation structure. 

2. DATA AND METHODS 

2.1. Index of relative abundance 

The per-vessel catch (in metric tons) and effort (in days fishing) data that were used to estimate a 
standardized index of relative abundance for yellowfin in the EPO during 1975-2016 had a spatial 
resolution of 1° x 1° and temporal resolution of 1 day. To control for differences in fishing strategies 
among vessels, we limited the data used in this analysis to vessels that made more than 75% of their 
sets on tunas associated with dolphins. The nominal CPUE for each vessel-day-1° grid cell was computed 
as the ratio of the sum of the catch in all three set types (dolphin, floating-object, and unassociated) to 
effort. The fishing ground for yellowfin varied notably among quarters over the study period (Figure 1), 
so the CPUE data were modeled separately for each quarter. However, the current assessment of 
yellowfin uses the “quarter as year” approach, and thus the four indices of relative abundance, which 
have an annual time step, need to be combined into one overall index with a quarterly time step. We 
standardized the four indices of relative abundance over the same spatial domain, which includes all 
grid cells with at least one observation of yellowfin catch during 1975-2016 (Figure 2). 

For the spatiotemporal model, the probability of positive catch (encounter probability) and the catch 
rate for positive catches were modeled separately in VAST, and it was assumed that the expected catch 
rate can be estimated as the product of the two components (Thorson et al. 2015). We specified the 
model for the encounter probability for sample 𝑖𝑖 as 

𝑝𝑝𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡−1�𝛽𝛽1(𝑡𝑡𝑖𝑖) + 𝐿𝐿𝜔𝜔1𝜔𝜔1(𝑠𝑠𝑖𝑖) + 𝐿𝐿𝜀𝜀1𝜀𝜀1(𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖) + 𝐿𝐿𝛿𝛿1𝛿𝛿1(𝑣𝑣𝑖𝑖)� 

where 𝛽𝛽1(𝑡𝑡𝑖𝑖) is the intercept in year 𝑡𝑡𝑖𝑖, 𝜔𝜔1(𝑠𝑠𝑖𝑖) is the spatial variation at location 𝑠𝑠𝑖𝑖, 𝜀𝜀1(𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖) is the 
spatiotemporal variation at location 𝑠𝑠𝑖𝑖 in year 𝑡𝑡𝑖𝑖, and 𝛿𝛿1(𝑣𝑣𝑖𝑖) is the effect of vessel 𝑣𝑣𝑖𝑖 on encounter 
probability. 𝐿𝐿𝜔𝜔1, 𝐿𝐿𝜀𝜀1, and 𝐿𝐿𝛿𝛿1 are the coefficients used to standardize the variance of 𝜔𝜔1, 𝜀𝜀1, and 𝛿𝛿1 to 
be 1. The spatial and spatiotemporal residuals (random effects) for the encounter probability were 
assumed to be autocorrelated in space and to follow a multivariate normal distribution: 
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𝜔𝜔1~MVN(𝟎𝟎,𝐑𝐑1) 

𝜀𝜀1(, 𝑡𝑡)~MVN(𝟎𝟎,𝐑𝐑1) 

R1(𝑠𝑠, 𝑠𝑠′) =
1

2𝑚𝑚−1Γ(𝑛𝑛) × (𝜅𝜅1|𝐇𝐇(𝑠𝑠 − 𝑠𝑠′)|)𝑚𝑚 × 𝐾𝐾𝑚𝑚(𝜅𝜅1|𝐇𝐇(𝑠𝑠 − 𝑠𝑠′)|) 

where 𝐑𝐑1 and 𝜅𝜅1 are the correlation matrix and decorrelation distance, respectively, for both the spatial 
and spatiotemporal residuals, 𝑚𝑚 represents Matern smoothness (fixed at 1), and 𝐾𝐾𝑚𝑚 is the modified 
Bessel function of second kind. 𝐇𝐇 specifies geometric anisotropy, so |𝐇𝐇(𝑠𝑠 − 𝑠𝑠′)| is the distance between 
locations 𝑠𝑠 and 𝑠𝑠′ after considering geometric anisotropy. Similarly, we specified the model for the 
positive catch rate for sample 𝑖𝑖 as 

𝜆𝜆𝑖𝑖 = exp�𝛽𝛽2(𝑡𝑡𝑖𝑖) + 𝐿𝐿𝜔𝜔2𝜔𝜔2(𝑠𝑠𝑖𝑖) + 𝐿𝐿𝜀𝜀2𝜀𝜀2(𝑠𝑠𝑖𝑖, 𝑡𝑡𝑖𝑖) + 𝐿𝐿𝛿𝛿2𝛿𝛿2(𝑣𝑣𝑖𝑖)� 

𝜔𝜔2~MVN(𝟎𝟎,𝐑𝐑𝟐𝟐) 

𝜀𝜀2(, 𝑡𝑡)~MVN(𝟎𝟎,𝐑𝐑𝟐𝟐) 

R2(𝑠𝑠, 𝑠𝑠′) =
1

2𝑚𝑚−1Γ(𝑛𝑛) × (𝜅𝜅2|𝐇𝐇(𝑠𝑠 − 𝑠𝑠′)|)𝑚𝑚 × 𝐾𝐾𝑚𝑚(𝜅𝜅2|𝐇𝐇(𝑠𝑠 − 𝑠𝑠′)|) 

where all the parameters have the same definitions as those in the encounter probability model. 

The probability function of catch for sample 𝑖𝑖, 𝑐𝑐𝑖𝑖, is 

Pr(𝑐𝑐𝑖𝑖 = 𝐶𝐶) = �
1 − 𝑝𝑝𝑖𝑖 if 𝐶𝐶 = 0

𝑝𝑝𝑖𝑖 × 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙(𝑐𝑐𝑖𝑖|𝜆𝜆𝑖𝑖,𝜎𝜎𝑖𝑖2) if 𝐶𝐶 > 0 

For computational purposes, we used the k-means algorithm to cluster all sampling locations into a pre-
specified number (nk = 400) of spatial knots (k) (Figure 2), and assumed that both the spatial and 
spatiotemporal residuals were constant within each spatial knot. Under the k-means algorithm, the area 
(𝑙𝑙) associated with each spatial knot is negatively correlated with the number of local observations. The 
total abundance for the entire spatial domain was then predicted to be 

𝐼𝐼(𝑡𝑡) = � (𝑙𝑙(𝑘𝑘) × 𝑑𝑑(𝑘𝑘, 𝑡𝑡))
𝑛𝑛𝑘𝑘

𝑘𝑘=1
 

where 𝑑𝑑(𝑘𝑘, 𝑡𝑡) = 𝑝𝑝(𝑘𝑘, 𝑡𝑡) × 𝜆𝜆(𝑘𝑘, 𝑡𝑡) is the predicted catch rate in knot 𝑘𝑘 and year 𝑡𝑡. 

2.2. Length composition 

The length-composition data for yellowfin in the EPO include the catch (in number) at length (in 1-cm 
intervals) and effort (in days fishing) data, by purse-seine set type, during 2000-2016, with a spatial 
resolution of 5° x 5° and a quarterly temporal resolution. Estimates of the length composition for each 
quarter-year-5° grid cell were obtained as follows. First, the length data, which were already raised to 
the total catch of the sampled wells, were summed over months of the same quarter within a set type-
year-5° grid cell. Because of differences in yellowfin length composition by set type (IATTC 2017), the 
length-composition data were then raised to the total catch of each set type in the quarter-year-5° grid 
cell before summing across set types. The nominal catch rate for each grid cell and quarter was 
calculated as the ratio of total catch to total effort. As was done for the analysis of relative abundance, 
we limited the data used in this analysis to vessels that made more than 75% of their sets on tunas 
associated with dolphins. We also limited the data to those sets observed north of the Equator in 
quarter 2 (Figure 3, top). Finally, based on the cumulative distribution function of catch at length, we 
divided the catch data into nine length groups, with groups 1 and 9 representing the smallest and largest 
fish, respectively (Figure 4). 
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We specified the encounter probability and the positive catch rate for sample 𝑖𝑖 as 

𝑝𝑝𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡−1 �𝛽𝛽1(𝑙𝑙𝑖𝑖, 𝑡𝑡𝑖𝑖) + 𝐿𝐿𝜔𝜔1(𝑙𝑙𝑖𝑖)𝜔𝜔1(𝑠𝑠𝑖𝑖, 𝑙𝑙𝑖𝑖) + 𝐿𝐿𝜀𝜀1(𝑙𝑙𝑖𝑖)𝜀𝜀1(𝑠𝑠𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑡𝑡𝑖𝑖)� 

𝜆𝜆𝑖𝑖 = exp �𝛽𝛽2(𝑙𝑙𝑖𝑖,  𝑡𝑡𝑖𝑖) + 𝐿𝐿𝜔𝜔2(𝑙𝑙𝑖𝑖)𝜔𝜔2(𝑠𝑠𝑖𝑖, 𝑙𝑙𝑖𝑖) + 𝐿𝐿𝜀𝜀2(𝑙𝑙𝑖𝑖)𝜀𝜀2(𝑠𝑠𝑖𝑖, 𝑙𝑙𝑖𝑖, 𝑡𝑡𝑖𝑖)� 

where 𝑙𝑙𝑖𝑖 denotes the length group for sample 𝑖𝑖. All other parameters have the same definitions as those 
in the index of relative abundance model. We used the k-means algorithm to cluster all sampling 
locations into 30 spatial knots (Figure 3, bottom), and assumed that both the spatial and spatiotemporal 
residuals were constant within each spatial knot. The predicted catch rate for length group 𝑙𝑙 in knot 𝑘𝑘 
and year 𝑡𝑡 is given by 

𝑑𝑑(𝑘𝑘, 𝑙𝑙, 𝑡𝑡) = 𝑝𝑝(𝑘𝑘, 𝑙𝑙, 𝑡𝑡) × 𝜆𝜆(𝑘𝑘, 𝑙𝑙, 𝑡𝑡). 

To facilitate the comparison of historical mean predicted catch rates among the nine length groups, the 
predicted catch rate for each length group was then normalized by removing the mean and dividing by 
the standard deviation: 

log �d*(k,l,t)� =
�log�d(k,l,t)� -mean�log�d(·,l,·)���

sd�log�d(·,l,·)��
. 

3. RESULTS 

The spatial distribution of predicted catch rates during 1975-2016 showed large year-to-year variations 
in all four quarters (Figures 5a-d). The historical mean predicted catch rate was higher north of the 
Equator, especially during quarters 2 and 3 (Figure 6, left column). Moreover, the highest predicted 
catch rates north of the Equator were consistently located around 10 ° N, where sea surface 
temperatures (SSTs) were high (Figure 6, right column) and the depth of the thermocline (TCD) was 
shallow (Figure 6, middle column). In fact, the regions of highest mean predicted catch rates all had a 
strong zonal component, regardless of quarter, probably because environmental conditions (e.g. SST 
and TCD) were more consistent east-to-west than north-to-south. 

Based on the predicted catch rate for each quarter, we computed the standardized index of relative 
abundance for 1975-2016 with a quarterly time step (Figure 7). While the year-to-year variation in the 
standardized and nominal CPUE were generally in accordance with each other, the nominal CPUE 
tended to be lower and higher, respectively, than the standardized CPUE before 1985 and after 2005 
(Figure 7). In other words, the nominal CPUE under-estimated initial abundances and over-estimated 
terminal abundances in comparison to the standardized CPUE. The noticeable difference between the 
two CPUEs underlines the importance of standardizing CPUE.  

Spatial segregation of yellowfin by length was found in the predicted spatial distribution of historical 
mean catch rate at length (Figure 8). Specifically, the rate for small yellowfin (<95 cm) was predicted to 
be high in the coastal region off Mexico, but low in the pelagic region west of 120°W and the equatorial 
region south of 5°N, whereas for the largest yellowfin (>115 cm) it was predicted to be high in the latter 
two regions and low in the former. There was no strong spatial pattern for medium-sized yellowfin (95-
115 cm). 

4. DISCUSSION 

4.1. Potential biases in the standardized CPUE 

In our standardization procedure, we fitted each quarter’s yellowfin fisheries data to the spatiotemporal 
model separately, and then combined the four annual indices of relative abundance into one quarterly 
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index for the current stock assessment model, which has a quarterly time step. This procedure includes 
three assumptions that could bias the results. First, catchability was assumed to be the same for the 
four quarters, but it could be quarter-specific: the fishing ground of the dolphin-associated yellowfin 
fishery and the environmental conditions that may affect the catch rate of the fishery both had a 
pronounced seasonal cycle. Second, the imputed catch rates for the unsampled region beyond the 
spatial extent of the data could be biased in different ways by quarter, since the region without fisheries 
data is quarter-specific. To ensure that the spatial domain over which the index of relative abundance 
was standardized is the same for all four quarters, it was specified by aggregating all fishing locations in 
the EPO during 1975-2016. However, the spatial distribution of fishing activity varied among quarters, so 
it was necessary to impute the quarterly catch rate for the unsampled region from sample data at 
neighboring locations and the estimated spatial autocorrelation structure. In the model, the spatial 
autocorrelation structures for both the encounter probability and the positive catch rate were assumed 
to be constant across space (i.e., independent of spatial location). Any violation of this assumption could 
lead to biased imputation of catch rates and, consequently, a biased index of relative abundance for 
each quarter. If the biases in the indices of relative abundance were inconsistent among the four 
quarters, the combined relative index to be used in the stock assessment would be biased as well. Third, 
VAST assumed that the autocorrelation patterns in the spatial and spatiotemporal residuals were the 
same, which was not necessarily the case for yellowfin in the EPO. Since the spatial and spatiotemporal 
residuals for yellowfin were likely to be affected by different environmental processes (static vs. 
dynamic), their autocorrelations in space could also be different. 

4.2. Standardized CPUE vs. nominal CPUE 

Despite the potential biases noted above, the CPUE standardized by this spatiotemporal approach 
represents an improvement over the nominal CPUE used in the current stock assessment, from at least 
three perspectives. First, the spatiotemporal approach can account for vessel effects on catchability. 
Lennert-Cody et al. (2013) showed that ignoring these effects on the catchability of the dolphin-
associated yellowfin fishery led to overly-optimistic estimates of CPUE for the most recent years. 
Second, it can account for preferential sampling, which is a common phenomenon in fishery-dependent 
catch and effort data. The nominal CPUE is based on the data from regions with fishing activity, where 
the abundance of yellowfin is likely to be higher than in the rest of the EPO. In contrast, the 
spatiotemporal approach imputes catch rates in regions without fishing activity, and calculates the 
standardized CPUE based on the same spatial domain every year. Finally, the spatiotemporal approach 
can estimate the coefficient of variation of the standardized CPUE, which is important for data-
weighting in stock assessments. It is worth noting that the estimated coefficient of variation was 
greatest in the first decade of the time series, when the spatial coverage of the dolphin-associated 
yellowfin fishery in the EPO was most limited. This time-varying coefficient of variation estimated for the 
standardized CPUE trend is considered more realistic than the constant coefficient of variation assumed 
for the nominal CPUE trend in the stock assessment model. In the next phase of this project, we plan to 
investigate how best to incorporate the standardized index of relative abundance in the stock 
assessment, and the effects of the incorporation on model outputs. 

4.3. Importance of modelling spatiotemporal dynamics by length  

The length-composition data for yellowfin in the EPO north of the Equator showed a clear pattern of 
spatial segregation by length. One possible explanation for this is that small and large yellowfin have 
different preferred habitats within that region. More specifically, the distinct patterns in predicted catch 
rates by length group may imply that the preferred habitat of yellowfin changes from coastal to pelagic 
regions over the lifespan of the fish. In addition to these environmental drivers, the spatial segregation 
pattern could also be caused by spatial patterns in growth rates or fishing effort. Another important 
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topic for future research is the relationship between size-specific spatiotemporal residuals. In this 
preliminary study, we specified that the spatiotemporal residuals for both the encounter probability and 
the positive catch rate were identical and independent among the nine length groups. However, VAST 
also allows for internally estimating the correlation matrix for size-specific spatiotemporal residuals. If 
the correlation pattern in the spatiotemporal residuals is also clear, this information could be used to 
improve the spatial management of the dolphin-associated yellowfin fishery, by predicting preferred 
fishing grounds (for instance, where only large yellowfin are abundant). In the EPO, both environmental 
conditions and the predicted catch rates by length showed large spatiotemporal variation. Therefore, 
being able to accurately predict the location of “hotspots” for catching large yellowfin is extremely 
valuable for the industry and the conservation of the stock. 
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Figures 

 
FIGURE 1. Geographic distribution of the CPUE observations of purse-seine vessels that made more than 
75% of their sets on tunas associated with dolphins, by quarter, 1975-2016. 
FIGURA 1. Distribución geográfica de las observaciones de CPUE de buques cerqueros que realizaron 
más del 75% de sus lances sobre atunes asociados a delfines, por trimestre, 1975-2016. 
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FIGURE 2. Geographic distributions of the per-set CPUE observations used to estimate the index of 
relative abundance of yellowfin in the EPO (top, in both Lat-Lon and Northing-Easting coordinates), and 
the corresponding 400 spatial knots generated using the k-means algorithm (bottom, in Northing-
Easting coordinates). The spatiotemporal model used the Northing-Easting coordinates to calculate the 
Cartesian distance between two observations. 
FIGURA 2. Distribución geográfica de las observaciones de CPUE por lance usadas para estimar el índice 
de abundancia relativa de atún aleta amarilla en el OPO (arriba, en Lat-Lon y coordinadas Northing-
Easting), y los 400 nudos espaciales correspondientes generados usando el algoritmo de k-medias 
(abajo, en coordinadas Northing-Easting). El modelo espaciotemporal usó las coordinadas Northing-
Easting para calcular la distancia cartesiana entre dos observaciones. 
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FIGURE 3. Geographic distributions of the yellowfin length-composition observations in the EPO (top, in 
both Lat-Lon and Northing-Easting coordinates), and the corresponding 30 spatial knots generated using 
the k-means algorithm (bottom, in Northing-Easting coordinates). The spatiotemporal model used the 
Northing-Easting coordinates to calculate the Cartesian distance between two observations. 
FIGURA 3. Distribución geográfica de las observaciones de composición por talla de atún aleta amarilla 
en el OPO (arriba, en Lat-Lon y coordinadas Northing-Easting), y los 30 nudos espaciales 
correspondientes generados usando el algoritmo de k-medias (abajo, en coordinadas Northing-Easting). 
El modelo espaciotemporal usó las coordinadas Northing-Easting para calcular la distancia cartesiana 
entre dos observaciones. 
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FIGURE 4. Cumulative distribution function of catch-at-length of yellowfin tuna in the dolphin-associated 
purse-seine fishery in the EPO in quarter 2. The length-composition data were divided into 9 length 
groups for the spatiotemporal analysis.  
FIGURA 4. Función de distribución acumulada de la captura por talla de atún aleta amarilla en la 
pesquería de cerco asociada a delfines en el OPO en el trimestre 2. Los datos de composición por talla 
fueron divididos en 9 grupos de talla para el análisis espaciotemporal. 
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FIGURE 5a. Spatiotemporal distribution of the predicted log catch rate, in tons per day, of yellowfin tuna 
in the EPO in quarter 1, 1975-2016. 
FIGURA 5a. Distribución espaciotemporal del logaritmo de la tasa de captura predicha, en toneladas por 
día, de atún aleta amarilla en el OPO en el trimestre 1, 1975-2016. 
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FIGURE 5b. Spatiotemporal distribution of the predicted log catch rate, in tons per day, of yellowfin tuna 
in the EPO in quarter 2, 1975-2016. 
FIGURA 5b. Distribución espaciotemporal del logaritmo de la tasa de captura predicha, en toneladas por 
día, de atún aleta amarilla en el OPO en el trimestre 2, 1975-2016. 
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FIGURE 5c. Spatiotemporal distribution of the predicted log catch rate, in tons per day, of yellowfin tuna 
in the EPO in quarter 3, 1975-2016. 
FIGURA 5c. Distribución espaciotemporal del logaritmo de la tasa de captura predicha, en toneladas por 
día, de atún aleta amarilla en el OPO en el trimestre 3, 1975-2016. 
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FIGURE 5d. Spatiotemporal distribution of the predicted log catch rate, in tons per day, of yellowfin tuna 
in the EPO in quarter 4, 1975-2016. 
FIGURA 5d. Distribución espaciotemporal del logaritmo de la tasa de captura predicha, en toneladas por 
día, de atún aleta amarilla en el OPO en el trimestre 4, 1975-2016. 
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FIGURE 6. Historical mean predicted log catch rate, in tons per day, thermocline depth (TCD), in meters, 
and sea-surface temperature (SST), in °C, by quarter, 1975-2016. 
FIGURA 6. Logaritmo de la tasa de captura media histórica predicha, en toneladas por día, profundidad 
de la termoclina (PTC), en metros, y temperatura superficial del mar (TSM), en °C, por trimestre, 1975-
2016. 
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FIGURE 7. Nominal (blue dots) and standardized (red line) indices of relative abundance of yellowfin 
tuna in the EPO. The shaded area indicates the 95% confidence interval of the standardized index.  
FIGURA 7. Índice de abundancia relativa nominal (puntos azules) y estandarizado (línea roja) del atún 
aleta amarilla en el OPO. El área sombreada indica el intervalo de confianza de 95% del índice 
estandarizado. 
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FIGURE 8. Historical mean normalized log catch rate of yellowfin tuna in the EPO for each of the nine 
length groups considered in the spatiotemporal length-composition analysis. 
FIGURA 8. Logaritmo de la tasa de captura media histórica normalizada del atún aleta amarilla en el OPO 
correspondiente a cada uno de los nueve grupos de talla considerados en el análisis espaciotemporal de 
composición por talla. 
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