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1. INTRODUCTION

Indices of rela�ve abundance are a crucial input to stock assessment models as they directly inform the 
changes in popula�on abundance over �me (Francis 2011). Ideally, indices of abundance should be 
calculated using fishery-independent survey data, collected using the same fishing gear and opera�on 
across �me to assure constant catchability and selec�vity, and have a random or fixed sampling design in 
space. However, for most tuna species worldwide, including bigeye tuna in the EPO, survey data are not 
available. Therefore, indices of abundance are derived solely from fishery-dependent CPUE data. These 
data need to be standardized so that the abundance index is approximately propor�onal to popula�on 
abundance (Maunder and Punt 2004). To achieve this, the standardiza�on model needs to remove the 
part of the varia�on in the CPUE data that is not driven by changes in popula�on abundance. Furthermore, 
the standardiza�on model should impute fish abundance for unfished loca�ons and use an area-weigh�ng 
approach to compute the abundance index for the popula�on for the en�re spa�al domain of the stock 
(Thorson et al. 2015). 

We use a delta-generalized linear mixed spa�otemporal model VAST (Thorson and Barnet 2017) to 
standardize the Japanese longline CPUE data for bigeye tuna in the EPO. VAST is an open-source R package1 
that has recently gained increasing popularity in standardizing fishery-dependent CPUE data for tunas 
(Ducharme-Barth et al. 2022, Maunder et al. 2020b, Satoh et al. 2021, Xu et al. 2019). Fishery-dependent 
CPUE data, including those for tunas, are not randomly distributed in space. They tend to concentrate in 
areas with high fish abundance or easy-to-fish loca�ons (a phenomenon referred to as preferen�al 
sampling) and do not cover the en�re spa�al domain of the stock within a quarter or even a year. VAST 
can es�mate spa�al and temporal correla�ons and use that informa�on to impute fish abundance for 
unfished loca�ons using neighboring CPUE data. 

To standardize longline CPUE for the survey fleet, VAST separately models encounter probability and 
posi�ve catch rate to account for zero-inflated catch rate observa�ons. We specify VAST to use the logit 
and gamma link func�ons for the linear predictors of encounter probability and posi�ve catch rate, 
respec�vely. Both linear predictors include an intercept (year-quarter) term, a �me-invariant spa�al term, 
a �me-varying spa�otemporal term, a catchability covariate (using HBF as a 2-knot spline) term, and a 
vessel effects term. Of these five terms, the intercept term and the catchability covariate term are 
es�mated as fixed effects and the other three terms are es�mated as random effects. This VAST model 
treats the four quarters equally (no seasonal component), consistent with the “quarters-as-years” 

1 https://github.com/James-Thorson-NOAA/VAST 
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approach used in the stock assessment model. The coefficient of varia�on (CV) of the longline index of 
rela�ve abundance is also es�mated by VAST and is scaled to have a mean of 0.15 between 1979-2014 for 
use in the stock assessment.  

Since the last benchmark assessment, “survey” fleets have been treated independently from the fisheries 
structure, total catch, and catch composi�on in the assessment models. In the EPO, there were no fishery-
independent surveys of tuna abundance and size composi�on, with the term "survey" in the context of 
the assessment model refers to a fleet that has data (e.g., abundance index and size composi�on) but 
takes no catch (Methot and Wetzel 2013). For the “areas-as-fleets” approach on which the assessment is 
based, the abundance index and the associated composi�on data should reflect the condi�ons of the 
en�re bigeye popula�on in the EPO (Maunder et al. 2020a). Therefore, the abundance index for a survey 
fleet should be computed using an area-weigh�ng approach for the en�re spa�al domain rather than for 
an area defined for the fishery. The composi�on data associated with the survey abundance index should 
be spa�ally weighted by catch rate and aggregated across the en�re spa�al domain as well. 

In the assessment of bigeye tuna in the EPO, the survey fleet is based on fishery-dependent CPUE and 
length composi�on data collected by Japanese commercial longline vessels that persistently target bigeye 
tuna. Among all distant-water longline vessels operated in the EPO, Japanese longline vessels have the 
highest spa�al coverage within the EPO and the longest history of high-quality logbook data, providing the 
informa�on needed for the standardiza�on of a reliable abundance index with a large contrast across �me. 
In the exploratory assessment model, we revise the defini�on of longline survey fleet as well as the 
methodology used in the standardiza�on of the abundance index and associated length composi�ons. 

2. CHANGES IN THE LONGLINE INDEX SINCE THE LAST BENCHMARK ASSESSMENT 

In the last benchmark assessment model, two longline survey fleets are defined based on the �me of 
opera�on: ‘early’ (1979-1992) and ‘late’ (1995-2019). Catchability and selec�vity are es�mated separately 
for the two survey fleets and the coefficient of varia�on (CV) of the late index of abundance is fixed while 
that of the early index is es�mated. The main reason for spli�ng the longline abundance index into two 
�me periods is that gear configura�ons of Japanese longline vessels changed abruptly in 1993 and 1994. 
Specifically, both hooks-between-floats and mainline material, two key indicators of hooks’ depth 
distribu�on in the water column, changed rapidly in 1993-1994. As the depth distribu�on of bigeye tuna 
in the EPO is influenced by body size (Schaefer and Fuller 2010), these notable changes in gear 
configura�ons may lead to a temporal change in catchability and selec�vity for the survey fleet. 

The current good prac�ces for CPUE modeling advise against spli�ng the abundance index by �me into 
separate non-overlapping �me blocks unless there is clear evidence against constant survey catchability 
and selec�vity (Hoyle et al. accepted). Spli�ng the abundance index by �me ignores a large amount of 
informa�on in the CPUE data, par�cularly the con�nuous trend of popula�on abundance over a long 
period. Hoyle et al. argue that if the assessment model is misspecified, spli�ng the abundance index can 
introduce bias as the model may not be able to reliably scale the split abundance indices. Thus, analysts 
should at least consider whether the es�mated change in catchability at the split makes sense. Regarding 
this point, we revisit the survey defini�on in the exploratory assessment by checking the es�mated change 
in catchability and selec�vity at the split. 

Indeed, the last benchmark assessment model es�mates similar catchability and selec�vity for the early 
and late survey fleets. The es�mated catchability for the early period (1.58 ± 0.39) is slightly higher than 
that for the late period (1.34 ± 0.13). The selec�vity curves es�mated for the two �me periods are also 
closely aligned (Figure 1). This result is contrary to expecta�ons, as the catchability of the main target 
species (Japanese longline fishery in the EPO persistently targets bigeye tuna) is expected to increase over 
�me due to con�nuous improvements in fishing technology and knowledge. This counterintui�ve result 
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suggests that the assessment model may be mis-specified and is unable to reliably scale the two 
abundance indices. Consequently, an analysis is conducted to evaluate the sensi�vity of model results to 
the decision of whether to split the abundance index by �me. 

2.1.  Change No.1: spa�al domain 

The first change implemented in the standardiza�on methodology for the survey fleet is about the spa�al 
domain on which the standardiza�ons of the abundance index and the associated length frequencies are 
based. In the last benchmark assessment, the spa�al domain is restricted to the “core” longline fishing 
ground, which includes only the 1° x 1° cells with at least 80 quarters of CPUE data between 1979 and 
2019 (Figure 2). This was done to address the concern that the marked westward contrac�on of the 
Japanese longline fishing ground in the past decade may result in a biased index for those years. By fi�ng 
the CPUE standardiza�on model to data collected only from the core fishing ground, the poten�al impact 
of biased spa�al imputa�on of fish abundance for unfished loca�ons on the accuracy of the standardized 
abundance index was reduced. 

Findings in recent studies (Xu et al. in prep) suggest that restricting the CPUE standardization to the core 
fishing ground, where the depletion rate is relatively slow, likely leads to a hyper-stable abundance index 
for bigeye tuna in the EPO. In the past two decades, an obvious local depletion of the bigeye tuna 
population has been observed in the eastern EPO. Catch rates of bigeye in both longline (Xu et al. in 
prep) and OBJ (FAD-05 INF-D) fisheries have decreased pronouncedly faster in the tropical fishing ground 
east of 110°W than west of 110°W. During the same period, Japanese longline vessels gradually 
retreated from the eastern fishing ground, which is relatively data-poor and excluded from the core 
fishing ground (Figure 2). Thus, the abundance index standardized for bigeye in the less-depleted core 
fishing ground does not reflect the population trend at the EPO-wide level. It likely underestimates the 
rate at which the bigeye population in the EPO decreased over time. In this exploratory assessment, we 
broaden the definition of the core fishing ground to include the 1° x 1° cells with at least 20 quarters of 
CPUE data between 1979 and 2022, allowing the eastern EPO to be included in the spatial domain for 
the CPUE standardization (Figure 2). As expected, the abundance index estimated based on the new 
spatial domain decreases faster between 1979 and 2022 (Figure 3). However, this approach requires 
imputing many more spatiotemporal cells (see below). 

2.2.  Change No.2: temporal structure of spa�otemporal random effects 

The second change we make in the standardiza�on methodology for the survey fleet is the assump�on on 
which the imputa�on of fish abundance for unfished loca�ons is based. Given that the spa�al domain 
extends beyond the previous core fishing ground to encompass loca�ons with rela�vely sparse CPUE data, 
the abundance index for this exploratory assessment is subject to greater influence by imputed fish 
densi�es for unfished loca�ons. As such, it is crucial to address poten�al biases associated with the 
imputa�on process, par�cularly in this case where fishery-dependent CPUE data is preferen�ally sampled. 
Most CPUE standardiza�on models, including the one we use in this exploratory assessment, cannot 
explicitly account for preferen�al sampling in the imputa�on process. Ignoring preferen�al sampling in 
fishery-dependent CPUE data results in posi�ve bias in imputed fish density for unfished loca�ons. As the 
extent of unfished loca�ons expands over �me due to the deple�on-induced contrac�on of the Japanese 
longline fishery, the posi�vely biased imputa�on plays an increasingly more important role in the area-
weighted abundance index, leading to a hyper-stable abundance index. 

The spa�otemporal term, which describes how the spa�al patern of fish density changes over �me, needs 
to be interpolated for each loca�on and �me. In the CPUE standardiza�on model developed for the last 
benchmark assessment, the spa�otemporal term is assumed to be temporally independent but spa�ally 
correlated according to the Matérn func�on. Thus, the spa�otemporal terms for the unfished eastern EPO 

https://www.iattc.org/GetAttachment/85e4536f-9179-4a0e-b870-d670b00c43e9/FAD-05a-INF-D_Relationship-between-fishing-mortality-and-number-of-OBJ-sets-for-BET-in-the-EPO.pdf
https://en.wikipedia.org/wiki/Mat%C3%A9rn_covariance_function
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are interpolated solely based on data collected from the fished western EPO during the same year-quarter. 
This approach ignores the concurrence of local deple�on and preferen�al sampling, poten�ally leading to 
posi�vely biased imputa�ons of bigeye density in the eastern EPO. To achieve more realis�c imputa�ons 
of bigeye density for the eastern EPO, we modify the assump�on for the spa�otemporal terms to be 
correlated in both space and �me. Specifically, the spa�otemporal terms are now assumed to follow a 
random-walk process in �me to capture the direc�onal change in the spa�al distribu�on of bigeye 
abundance over �me (the pronounced local deple�on patern). Under this assump�on, the 
spa�otemporal terms for the unfished eastern EPO are interpolated based on data collected not only from 
the fished western EPO in the same year-quarter but also from the eastern EPO in adjacent fished years. 
The spa�otemporal dynamics of bigeye density predicted by the improved CPUE standardiza�on model 
demonstrate the evolu�on of bigeye deple�on in the EPO (Figure 4). A recent simula�on study conducted 
by the staff (Xu et al. in prep) shows that this assump�on leads to a less-biased abundance index for bigeye 
tuna in the EPO than the previous assump�on. As expected, the abundance index es�mated based on this 
assump�on indicates a more pessimis�c popula�on trend than the abundance index es�mated based on 
the previous assump�on (Figure 3). 

3. RECENT RESEARCH USING OPERATIONAL DATA 

The opera�onal longline CPUE dataset was provided by Japan to the IATTC staff in the summer of 2023 for 
a 5-week period of collabora�ve research on the standardiza�on of the Japanese longline index of 
abundance for bigeye and yellowfin tunas in the EPO. This research was focused on two main topics: 1) 
the impact of using aggregated vs. opera�onal CPUE data on the standardized index of rela�ve abundance; 
and 2) the sensi�vity of the standardized index to the specifica�on of HBF as a catchability covariate. 

3.1.  Aggregated vs. operational data 

We compare four indices of rela�ve abundance to inves�gate the impact of using opera�onal vs. 
aggregated Japanese longline CPUE data on the standardized longline index for bigeye tuna in the EPO. 
The four indices of abundance are standardized by four spa�otemporal models with a factorial design: 
iden�cal spa�otemporal models except for the source of input CPUE data (aggregated vs. opera�onal) and 
the link func�on for the posi�ve catch rate (gamma vs. log). The aggregated data has been used to 
compute the index of rela�ve abundance for bigeye tuna in the EPO since 2019. It includes catch and effort 
informa�on aggregated from the opera�onal dataset by 1° x 1° grid, year, month, vessel, and HBF. 

The same filter is applied to the aggregated and opera�onal Japanese longline CPUE data to remove the 
vessels and grids with very limited samples. Specifically, the filter removes the vessels with less than 40 
quarters of available CPUE data and the grids with less than 20 quarters of available CPUE data between 
1979-2022. A�er the filter is applied, the data frame of aggregated CPUE remains 302,564 rows from 224 
unique vessels; the data frame of opera�onal CPUE remains 760,537 rows from 226 unique vessels. The 
ra�o of the two numbers of rows indicates that a vessel makes, on average, 2.5 sets within a 1° x 1° x 
month stratum. 

According to the QQ plot, the gamma link is more appropriate than the log link for bigeye tuna regardless 
of which CPUE dataset is used (Figure 5). Model residuals appear to follow closely to the normal 
distribu�on only when the gamma link func�on is assumed in the spa�otemporal model for the posi�ve 
catch rate. Moreover, the comparison of the QQ plot suggests that the spa�otemporal model fits 
no�ceably beter to the opera�onal dataset than the aggregated dataset (Figure 5). 

For the two standardized indices based on the gamma link func�on for the posi�ve catch rate, we compare 
the ra�o of the two to evaluate the impact of the data source on CPUE standardiza�on. Overall, the two 
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indices are very similar without a no�ceable difference in the long-term trend (Figure 6). The rela�ve 
difference between the two indices is generally within ±5% before 2005 and within ±10% a�er 2005. The 
increased difference between the two indices is likely due to the reduced sample size in the last two 
decades - the aggrega�on has a larger impact on the standardized index when the sample size is small. 
The CV of the two indices have very minor differences in both scale and trend (Figure 6). The reduced 
sample size in recent years has resulted in a rapid increase in the uncertainty associated with the index. 

3.2. HBF as a catchability covariate 

It is s�ll unclear how HBF should be parameterized in the spa�otemporal model as a catchability covariate. 
HBF is currently parameterized as a 2-knot spline for both the encounter probability and posi�ve catch 
rate in the spa�otemporal model (a 3-knot spline was explored ini�ally but the spa�otemporal model did 
not converge). Data suggests that HBF increased persistently over �me from 1979, including a rapid rise in 
1993-1994 (Figure 7) due to the concurring change of mainline material. The density of the mainline 
material changed in 1993-1994 so did the interpreta�on of a given HBF with respect to catchability. The 
current spa�otemporal model, however, does not account for the adjustment of HBF caused by the change 
of mainline material. 

There was a rapid change in the mainline material between 1993 and 1995, during which the type of mainline 
changed from predominantly type 2 to predominantly type 1 (Figure 8). This rapid change concurred with a 
rapid increase in HBF from a mean of 13 in 1993 to a mean of 16 in 1995. The target species of the fishery was 
unchanged (bigeye tuna) before and after that period, so the increase of HBF is likely used to compensate for 
the change in mainline material. It is hypothesized that the 3-unit increase in HBF is to compensate for the 
reduction in mainline weight. Accordingly, the effect of HBF as a catchability in the CPUE standardization model 
needs to be adjusted according to the type of mainline. We compare four CPUE standardization models to 
investigate the effect of adjusting HBF on the index of abundance for bigeye tuna. The first model (adjusted1) 
was adjusted by using the type of mainline information provided by the operational data. Specifically, the HBF 
associated with type 1 mainline is subtracted by 3 (Figure 9). The effect of adjusted HBF on encounter 
probability and positive catch rate is estimated by the spatiotemporal model to be dome-shaped and 
persistently positive, respectively (Figure 9). The second model (adjusted2) uses the year of operation as an 
approximation to adjust. Specifically, the HBF since 1995 is subtracted by 3 and the CPUE data in 1994 is 
removed because the mainline in 1994 is a mixture of the two types. The third model (unadjusted) includes 
HBF as a catchability covariate without any adjustment. The fourth model (ignored) does not include HBF as a 
catchability covariate. The comparison of standardized indices from the four models suggests that the index for 
bigeye tuna is not very sensitive to how HBF is specified in the spatiotemporal model (Figure 10). Only the index 
associated with ignoring HBF’s effect on catchability is obviously different from the others. 

3.3. Joint longline index of abudance 

Due mainly to the increased uncertainty associated with the Japanese longline index of abundance for 
bigeye tuna in the EPO, it has been recommended to explore developing a joint longline index of 
abundance by basing the standardiza�on on CPUE data from mul�ple CPCs. We briefly explore it by 
comparing the selec�vity of the two currently most important longline fleets for bigeye tuna in the EPO: 
Japan and Korea. The comparison shows that the two longline fleets have apparent differences in fishery 
selec�vity within the same spa�otemporal windows. Therefore, more research is needed to develop a 
length-specific spa�otemporal model where the different selec�vity paterns between Japan and Korea 
can be accounted for in the standardiza�on of the joint longline index of abundance. 
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FIGURE 1. Es�mated selec�vity curves for the early and late longline survey fleets in the last benchmark 
assessment model. 

 

 
FIGURE 2. Comparison of the spa�al domain on which the CPUE standardiza�on for the last benchmark 
assessment (SAC11) and this exploratory assessment (SAC14) is based. 
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FIGURE 3. Comparison of the longline abundance indices standardized for bigeye tuna in the EPO. SAC11 
represents the abundance index es�mated for the last benchmark assessment; SAC14-1 represents the 
abundance index es�mated for this exploratory assessment based on the assump�on that spa�otemporal 
terms are independent in �me but correlated in space; and SAC14-2 represents the abundance index 
es�mated for this exploratory assessment based on the assump�on that spa�otemporal terms are 
correlated in space and follow a random-walk process in �me. The color dots and lines are the quarterly 
es�mates and smoothed values, respec�vely. All three indices are scaled to have a mean of 1 for easy 
comparison. 
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FIGURE 4. Maps of predicted bigeye density by year from the CPUE standardiza�on model developed 
based on Japanese longline data. 
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FIGURE 5. Comparison of the QQ plot for the four spa�otemporal models that are built to standardize the 
longline index of rela�ve abundance for bigeye tuna in the EPO. 
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FIGURE 6. The longline indices of abundance es�mated by the spa�otemporal models that are fit to the 
aggregated or opera�onal dataset (top le�); the ra�o of the two indices (top right); and the coefficient of 
varia�on of the two indices. 
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FIGURE 7. The distribu�on of HBF by year. The read line shows the trend of effort-weighted mean HBF in 
each year. 
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FIGURE 8. The distribu�on of mainline material of the Japanese longline fishery in the EPO. 
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FIGURE 9. Effects of mainline type adjusted HBF (top) on the encounter probability (botom le�) and 
posi�ve catch rate (botom right) for bigeye tuna in the EPO. The effects are es�mated by model adjusted1. 
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FIGURE 10. Comparison of the indices of rela�ve abundance from four spa�otemporal models with 
different specia�on of HBF as a catchability covariate. 
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