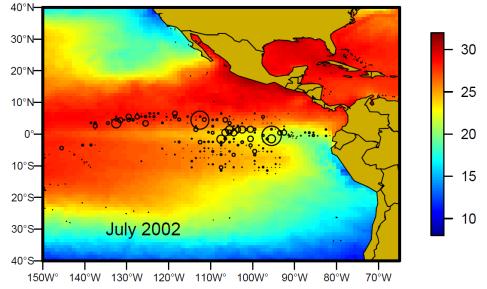
Spatio-Temporal Analysis for Near Real-Time Spatial Management of Large Pelagic Predators in the Eastern Pacific Ocean

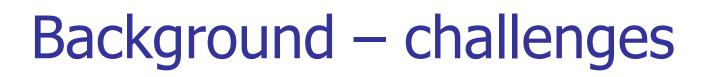


Alex da Silva, Cleridy Lennert-Cody, Mark Maunder and Michael Hinton Inter-American Tropical Tuna Commission (IATTC)

> 3rd Meeting of the Scientific Advisory Committee La Jolla, USA, May 15-18, 2012

Background - management

- IATTC management responsibilities in EPO:
 - Tuna (target species)
 - Bycatch species (elasmobranchs, small pelagics, others)
- Management measures:
 - Fishing effort reductions (temporal closures)
 - Static Spatial closures ("el corralito")



• Tuna:

- Skipjack (SKJ) and bigeye (BET) are mixed on floating object (OBJ) sets
- Reduce BET catch while not decreasing SKJ yields
- Optimism about use of eco-sounder technologies to guess tuna composition (but experience required)
- Fishing gear mitigation measures (no solution yet)
- Bycatch species:
 - Avoid large aggregations of juveniles/pregnant sharks (pupping/nursery grounds)
 - Avoid large aggregations of sea turtles

- Species distribution is highly dependent on oceanographic conditions which are dynamic
- Species are highly migratory
- Dynamic (rather than static) spatial closures

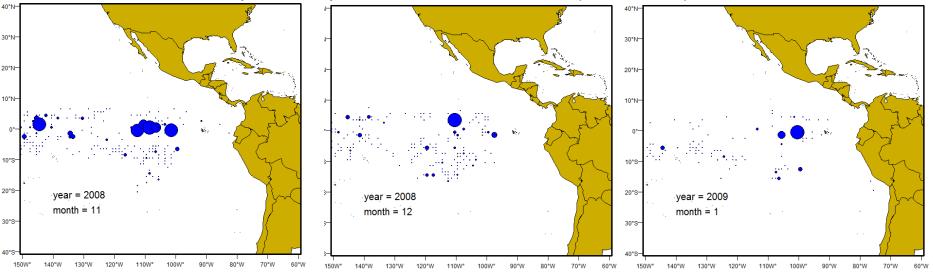
- Develop a spatio-temporal modeling approach which could guide dynamic spatial management in EPO
- Bigeye tuna (BET) as case study species

- Near real-time fishery data:
 - IATTC fishery observer program (100% coverage)
 - High spatio-temporal resolution (near real-time!)
- Near real-time oceanographic data
- Spatio-temporal model:
 - We want to predict catch in space over time (forecast)
 - Incorporate spatial structure of catches
 - Use oceanographic data as explanatory variables

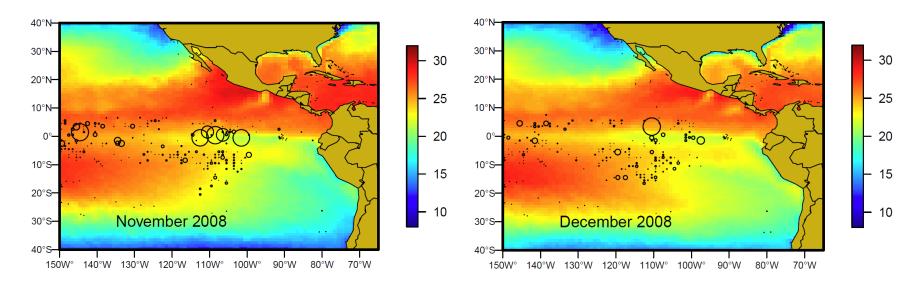
Data sources - fishery

- Fishery data:
 - BET catch per set (from logbook and observer records)
 - Large (class 6) and medium-size vessels (classes 1-5)
 - Monthly aggregates at 1x1 degree squares
 - Training dataset (2005-2008); testing dataset (2009-2010)

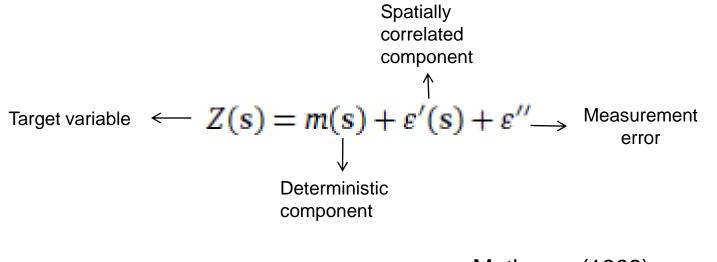
Spatio-temporal series of 48 months (2005-2008)



- Oceanographic data:
 - Sea surface temperature (SST), sea surface height (SSH), chlorophyll a (CHLa), bottom depth, distance to land
 - Obtained from NOAA's Coastwatch
 - Monthly aggregates at 1x1 degree squares (2005-2010)

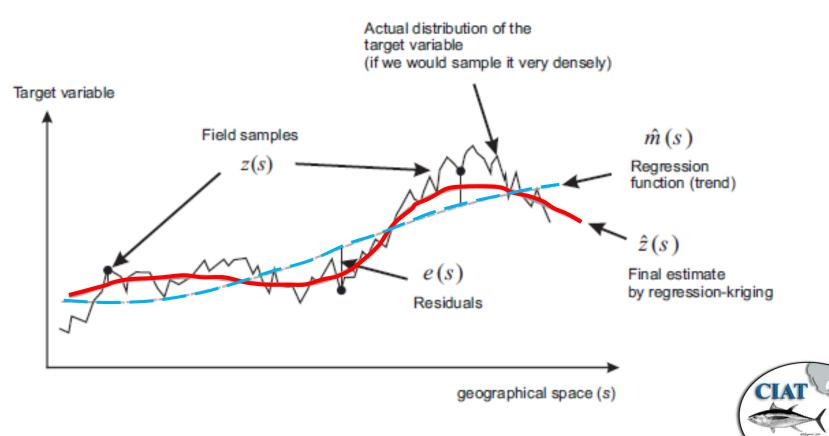


- Hybrid model (2 components)
 - Correlation with auxiliary predictors (regression)
 - Spatial autocorrelation (ordinary kriging)
- Universal model of spatial variation

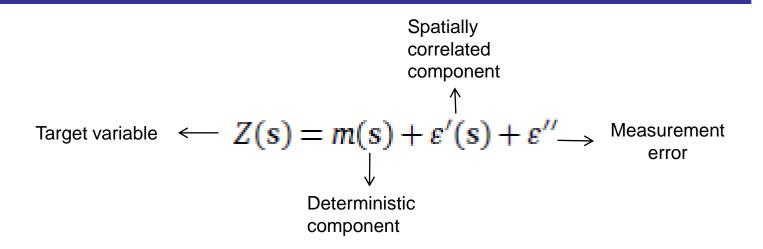


Matheron (1969)

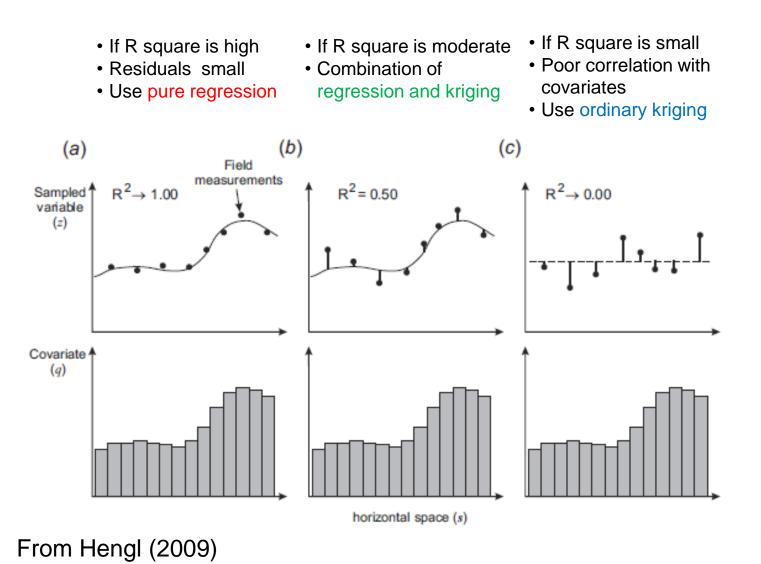

```
Z(s) = m(s) + \varepsilon'(s) + \varepsilon''
```



From Hengl (2009)



- Deterministic component (global trend)
 - Generalized additive modes (GAM)
 - Oceanographic explanatory variables: SST, SSH, CHLa, bottom depth, distance to land
- Spatially correlated component (local trend)
 - Ordinary kriging on GAM residuals



CLAT

Spatial-temporal regression kriging

- Time-series analysis is well known, but mixed spatio-temporal processes are still an experimental field of geostatistics (Banerjee et al., 2004)
- A simplification of the space-time models is to make time the 3rd dimension of space (variogram estimated in 3 dimensions)

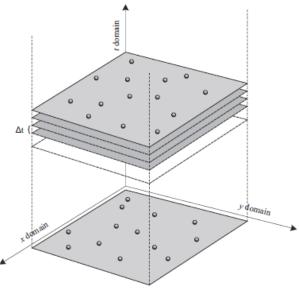


Fig. 2.10: Extension of a 2D prediction model to the space-time domain. Note that in the space-time cube, the amount of pixels needed to store the data exponentially increases as a function of: width \times height \times number of predictors \times number of time intervals.

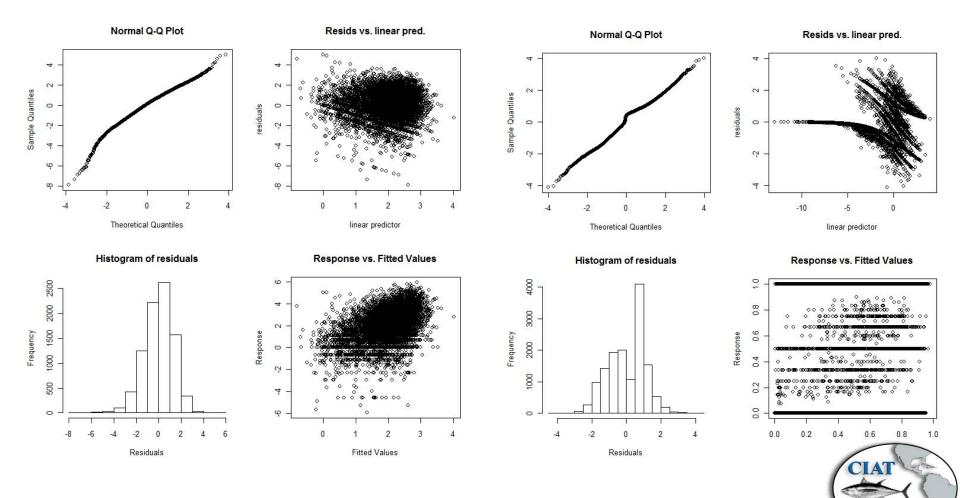
Hurdle model

- Hurdle (delta-lognormal) model
 - 2 components (CPUE of positive sets and presence/absence)
 - Each component assumes: mean = large-scale 'trend' + small-scale spatio-temporal process
- CPUE of positive sets
 - lognormal GAM (identity link)
 - log(cpue) ~ s(lon, lat) + month + s(SST) + s(SSH) + s(CHLa) + s(depth) + s(distKM)
- Presence absence
 - binomial GAM (logit link)
 - PosZeroMat ~ s(lon, lat) + month + s(SST) + s(SSH) + s(CHLa) + s(depth) + s(distKM)

GAMs on global trends - diagnostics

CPUE positive sets - lognormal

Presence/absence - binomial



GAMs on global trends

CPUE positive sets - lognormal

	edf	Ref.df F	p-value
s(lon,lat)	26.263	27.844	14.238 < 2e-16 ***
s(SST)	6.552	7.726	4.935 5.77E-06 ***
s(SSH)	1.543	1.946	8.886 0.000164 ***
s(CHLa)	7.538	8.454	7.352 3.16E-10 ***
s(depth)	1.907	2.5	1.068 0.354232
s(distKM)	7.742	8.455	2.706 0.004718 **

R-sq.(adj) = 0.171 Deviance explained = 17.7%

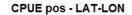
Presence/absence - binomial

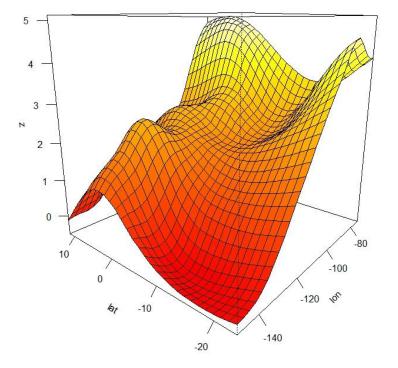
	edf	Ref.df	Chi.sq	p-value	
s(lon,lat)	28.736	28.979	1159	< 2e-16	***
s(SST)	6.65	7.813	80.666	2.85E-14	***
s(SSH)	6.918	8.032	228.119	< 2e-16	***
s(CHLa)	4.158	5.16	6.051	0.319	
s(depth)	7.272	8.341	56.61	3.07E-09	***
s(distKM)	8.804	8.983	59.177	1.90E-09	***

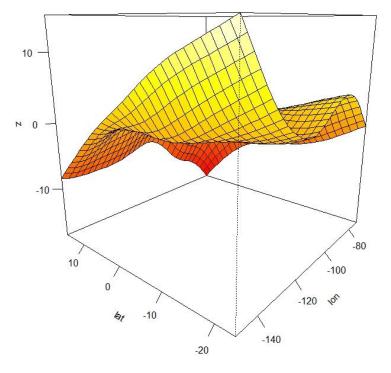
R-sq.(adj) = 0.61 Deviance explained = 36%

GAM cpue positive – spatial effects

s(lon,lat)

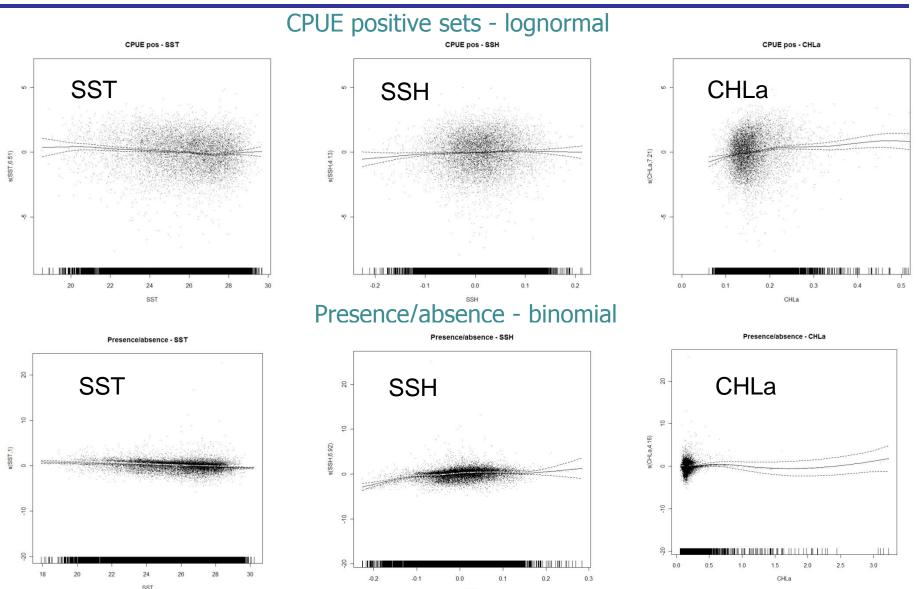




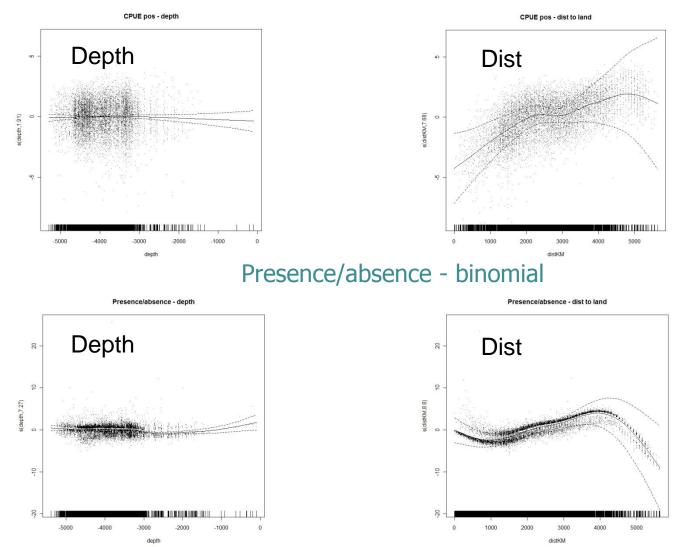


Presence/absence - LAT-LON

GAM cpue positive – oceanographic effects

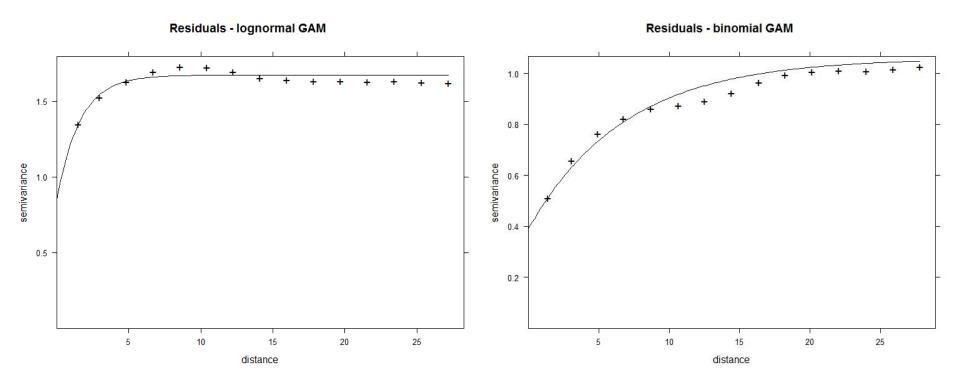


GAM cpue positive – other effects

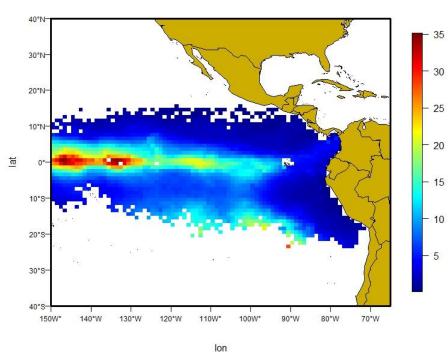


CPUE positive sets - lognormal

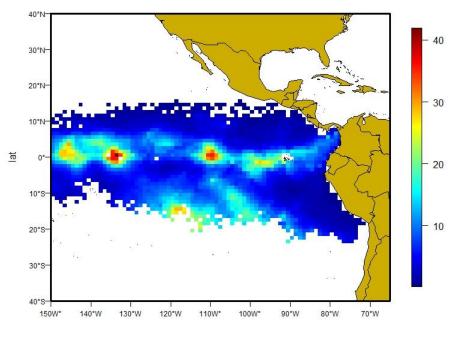
Presence/absence - binomial



Global trend - GAM



Regression Kriging

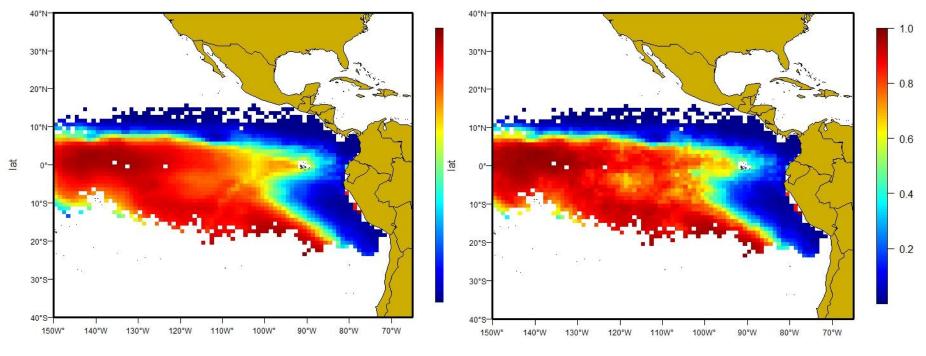


lon

Global trend - GAM

Regression Kriging

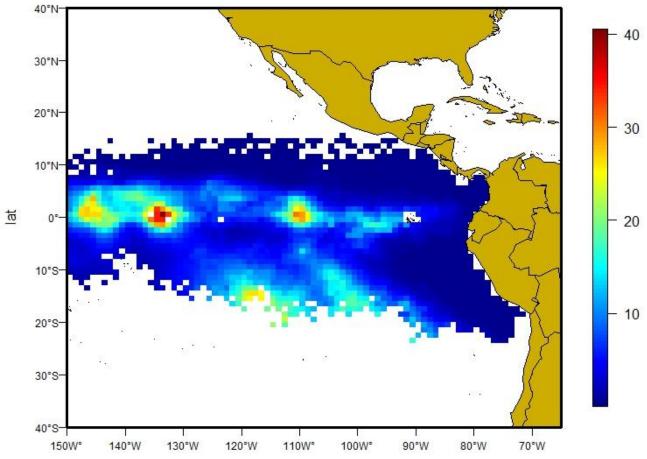
lon



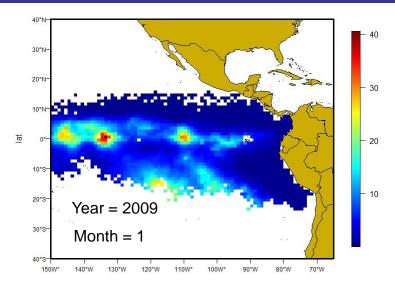
lon

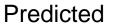
CIA

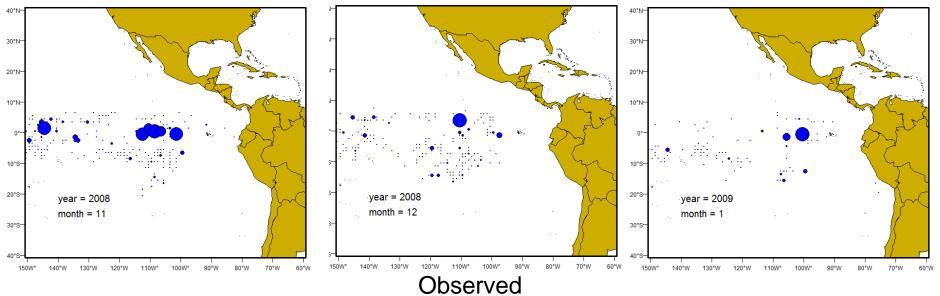
Spatio-temporal prediction – hurdle model



Prediction versus observed



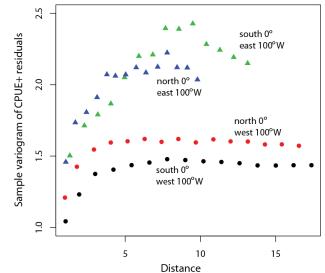




- R-K shows potential as a tool for spatio-temporal modeling of large pelagics in EPO
- Improvements could be made:
 - The % deviance explained is fairly low (~18%) for all trend models of log(CPUE) of positive sets
 - There may be correlation among environmental variables
 - Other environmental variables could be used (e.g., mixing layer depth)
 - Finer spatio-temporal

Conclusions (cont.)

- The assumption of stationary for the small-scale spatiotemporal process is probably not realistic
- Variograms of residuals from both components of hurdle model showed spatial structure:
 - Magnitude of residual variance is greater inshore than offshore
 - "distance" over which residuals are correlated (i.e., practical range) is greater inshore than offshore



Future work

- Global trend (GAMs):
 - Improve choice of oceanographic covariates
 - Different spatio-temporal resolution?
 - Local trend (kriging):
 - Challenge the stationary assumption (spatial differences)

- Others species
 - Bycatch, etc...

- Nick Vogel (IATTC)
- Vardis Tsontos and Juan Zwolinsky (NMFS-SWFSC)
- Tim Lam (UNH)