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Why is large-scale spatial pattern of interest? 

• Current IATTC stock assessment areas are formed 
from the areas used to guide collection of port-
sampling data. 
 

• Sampling spatial stratification was developed in 
1960s (refined in 1990s). 
 

• As fisheries evolve over time, it is useful to consider 
alternative strata. 
 

• There are three types of purse-seine sets and 
species composition of the catch differs by set type; 
yellowfin tuna is the dominant catch of dolphin sets. 

 
• This work focuses on data for yellowfin tuna from 

purse-seine sets on dolphins for 2000-2011 (large-
vessels). 



General approach to studying large-scale pattern 

Identify similar large-scale structure:  
• length-frequency distributions, and  
• catch-per-unit-effort trends.  

 
Need length-frequency distributions and catch-per-unit-effort trends on a fine-
scale spatial-temporal grid for the EPO fishery area.  
 
Spatial-temporal grid: 5° latitude by 5° longitude by quarter-of-the-year.  
 
Why? 

• 5° spatial information available for virtually all length-frequency data. 
• Assessment model has quarterly time step and would like to know if large-

scale spatial pattern varies seasonally. 



Length-frequency distributions 

IATTC port-sampling data, 2000-2011 (2611 well samples). 
 
For each sample, have the month, 5° latitude and 5° longitude of fishing. 
 
Regard samples from months of the same quarter as ‘replicates’ for the quarter. 
 
Data processing: 

- Raise sample data to the well catch (to accommodate samples from 
‘sorted’ unloadings). 
 

- Grown/shrink lengths to mid-month of each quarter (Gompertz growth 
model). 
 

- Summarize each sample (𝑙) by proportion of fish in each of 11 length 
intervals, {𝑝𝑙 𝑗 , 𝑗 = 1, … , 11}: ≤ 58cm, 59-69cm, …,136-146cm, 147-159cm, ≥ 
160cm. 

 



Summary of yellowfin tuna length-frequency distributions 
October-December 



Catch-per-unit-effort trends 
Catch and effort data from observer and logbook data bases, 1975-2011. 
 

Catch per day fishing (CPD) for each month and 5° area was computed by the same 
method as that of the assessment. 
 

Regard samples from months of the same quarter as ‘replicates’ for the quarter. 
 

Within each 5° area by quarter (𝑖) with sufficient data: 
• Fit a smooth model to the temporal trend in nominal CPD using penalized cubic 
regression splines: 

square root 𝑐𝑝𝑑𝑖,𝑦,𝑛𝑦 = 𝑓 𝑦𝑦𝑦𝑦𝑖,𝑦,𝑛𝑦 + 𝑦𝑦𝑦𝑒𝑦𝑖,𝑦,𝑛𝑦  
where  

cpd  is catch divided by days fishing; 
f is a smooth function; 
y indexes year and 𝑛𝑦  indexes data points; 
basis dimension, knot locations and smoothing parameter same for all 𝑖. 
 

• Predict annual time series of CPD (on scale of square root), �̂�𝑖 . 



Yellowfin tuna CPD trends 
October-December 



Methods of analysis 
Use tree-based methods to study large-scale pattern in both length-frequency 
distributions and CPD trends. 
 
Small trees are built by binary recursive partitioning (no pruning). 
 
Predictors: 5° latitude (numeric), 5° longitude (numeric), quarter (numeric, but 
including cyclic quarter values). 
 
Build three types of trees: 

• using only the length-frequency distributions; 
• using only the CPD trends; 
• using length-frequency distributions and CPD trends, simultaneously 
(‘simultaneous’ tree). 
 

To build the trees, need: 
• response variable(s), and  
• measures of impurity (heterogeneity) to define the split criterion. 



Response variables and impurity measures 

Length-frequency distributions 
• Response 

• Proportion of fish  in each size bin; {𝑝𝑙(𝑗)}. 
• Impurity 

• Kullback-Leibler divergence (‘KLD’): 𝐼𝐾𝐾𝐾 =  ∑ ∑ 𝑝𝑚 𝑗 𝑙𝑒𝑙 𝑝𝑙(𝑗)
�̅�.(𝑗)𝑗𝑙  

CPD trends 
• Response 

• Vector of first-differenced annual CPD time series (�̂�𝑖), ∆�̂�𝑖. 
• Impurity 

𝐼𝑆𝑆_𝑤𝑤𝑖𝑤𝑤𝑤𝑤𝑤 = � �̂�𝑖 − �̃�
𝑇
∆𝑇 Σ�∆�̂�𝑖

−1
∆ �̂�𝑖 − �̃�

𝑖

 

where �̃� is estimated from the pooled data, and Σ�∆�̂�𝑖  is a diagonal matrix of 
variance estimates. 



Building the trees 

Repeatedly partition the data set(s) at predictor values that maximize the following 
split criteria: 
 

• Length-frequency distributions: 
𝐼𝐼𝑝_𝐾𝐾𝐾

= 𝑛𝑙𝑤𝑙𝑤��̅�𝑙𝑤𝑙𝑤
𝑗

𝑗  𝑙𝑒𝑙
�̅�𝑙𝑤𝑙𝑤 𝑗
�̅�. 𝑗

+  𝑛𝑟𝑖𝑤𝑤𝑤��̅�𝑟𝑖𝑤𝑤𝑤
𝑗

𝑗  𝑙𝑒𝑙
�̅�𝑟𝑖𝑤𝑤𝑤(𝑗)
�̅�. (𝑗)

 

 

• CPD-based trends: 
𝐼𝐼𝑝_𝑆𝑆 =  𝐼𝑆𝑆; 𝑎𝑙𝑙 − 𝐼𝑆𝑆; 𝑙𝑤𝑙𝑤 + 𝐼𝑆𝑆; 𝑟𝑖𝑤𝑤𝑤  
 

• Both data types, simultaneously (0<𝛾<1; used 𝛾=0.5): 
 

𝛾
 𝐼𝐼𝑝_𝐾𝐾𝐾

𝐼𝑦𝑚𝑐𝑎𝑛𝑤𝑖𝑎𝑤𝑤 𝑠𝑝𝑙𝑖𝑤𝑠 𝐼𝐼𝑝_𝐾𝐾𝐾
 + 1 − 𝛾

𝐼𝐼𝑝_𝑆𝑆
𝐼𝑦𝑚𝑐𝑎𝑛𝑤𝑖𝑤𝑎𝑤𝑤 𝑠𝑝𝑙𝑖𝑤𝑠 𝐼𝐼𝑝_𝑆𝑆

 



Length-frequency CPD trends, variance-weighted 



Simultaneous tree, variance-weighted 
(YFT-01-02 Table 2) 

  Scaled improvement  
length-frequency 

(split rank) 

Scaled improvement  
CPD trends 
(split rank) 

Simultaneous tree 
split rank 

(a)  Full data set (26)       
Latitude 20°N  0.537 (3) 1.000 (1) 2 
Latitude 15°N  0.531 (4)     
Latitude 10°N  0.638 (2) 0.723 (4) 3 
Latitude 5°N  1.000 (1) (9) 1 
Latitude 0° (5)     
        
Longitude 115°W   0.851 (2) 4 
        
Quarters1; 2-4   (5)   
Quarters 1-2; 3-4       
Quarters 1-3; 4   0.782 (3)   



  Scaled improvement  
length-frequency 

(split rank) 

Scaled improvement  
CPD trends 
(split rank) 

Simultaneous tree 
split rank 

(b) North of 5°N  (22)       
Latitude 20°N 0.960 (2) 1.000 (1) 1 
Latitude 15°N (5) 0.600 (4) 3 
Latitude 10°N   0.598 (3)   
        
Longitude 125°W 0.857 (4)     
Longitude 120°W 0.924 (3)   4 
Longitude 115°W 1.000 (1) (5) 2 
Longitude 100°W       
Longitude 95°W       
        
Quarter 1-3; 4   0.629 (2)   

Simultaneous tree, variance-weighted 
(YFT-01-02 Table 2) 



Simultaneous tree, variance-weighted 



Future work 

Sensitivity analyses: 
• criteria used to select 5°-quarters with sufficient data; 
• revisions to trends model (other transformations; revisit CPD 
calculation); 
• effects of growing/shrinking length bins; 
• inter-annual variability. 

 
Apply the tree-based methods to fishery data from other purse-seine 
sets types: 

• yellowfin tuna, skipjack tuna in unassociated sets; 
• bigeye tuna, skipjack tuna in floating-object sets. 
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