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Exploring large-scale pattern in yellowfin tuna data
from dolphin sets of the eastern Pacific Ocean purse-
seine fishery
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Why is large-scale spatial pattern of interest?

Current IATTC stock assessment areas are formed
from the areas used to guide collection of port-
sampling data.

Sampling spatial stratification was developed in
1960s (refined in 1990s).

As fisheries evolve over time, it is useful to consider
alternative strata.

There are three types of purse-seine sets and
species composition of the catch differs by set type;

yellowfin tuna is the dominant catch of dolphin sets.

This work focuses on data for yellowfin tuna from
purse-seine sets on dolphins for 2000-2011 (large-
vessels).
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General approach to studying large-scale pattern

Identify similar large-scale structure:
e |ength-frequency distributions, and
e catch-per-unit-effort trends.

Need length-frequency distributions and catch-per-unit-effort trends on a fine-
scale spatial-temporal grid for the EPO fishery area.

Spatial-temporal grid: 5° latitude by 5° longitude by quarter-of-the-year.

Why?
e 5°spatial information available for virtually all length-frequency data.

e Assessment model has quarterly time step and would like to know if large-
scale spatial pattern varies seasonally.




Length-frequency distributions

IATTC port-sampling data, 2000-2011 (2611 well samples).
For each sample, have the month, 5° latitude and 5° longitude of fishing.

Regard samples from months of the same quarter as ‘replicates’ for the quarter.

Data processing:

- Raise sample data to the well catch (to accommodate samples from
‘sorted’ unloadings).

- Grown/shrink lengths to mid-month of each quarter (Gompertz growth
model).

- Summarize each sample (l) by proportion of fish in each of 11 length
intervals, {p;(j),j = 1, ..., 11}: £58cm, 59-69cm, ...,136-146cm, 147-159cm, >
160cm.




Summary of yellowfin tuna length-frequency distributions
October-December
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Catch-per-unit-effort trends

Catch and effort data from observer and logbook data bases, 1975-2011.

Catch per day fishing (CPD) for each month and 5° area was computed by the same
method as that of the assessment.

Regard samples from months of the same quarter as ‘replicates’ for the quarter.

Within each 5° area by quarter (i) with sufficient data:

* Fit a smooth model to the temporal trend in nominal CPD using penalized cubic
regression splines:

square root(cpdi,y’ny) =f (yeari,y,ny) +erroriyn,
where
cpd is catch divided by days fishing;
fis a smooth function;
y indexes year and n,, indexes data points;

basis dimension, knot locations and smoothing parameter same for all i.

* Predict annual time series of CPD (on scale of square root), Ci :




Yellowfin tuna CPD trends
October-December
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Methods of analysis

Use tree-based methods to study large-scale pattern in both length-frequency
distributions and CPD trends.

Small trees are built by binary recursive partitioning (no pruning).

Predictors: 5° latitude (numeric), 5° longitude (numeric), quarter (numeric, but
including cyclic quarter values).

Build three types of trees:
 using only the length-frequency distributions;
 using only the CPD trends;
 using length-frequency distributions and CPD trends, simultaneously
(‘simultaneous’ tree).

To build the trees, need:
e response variable(s), and
 measures of impurity (heterogeneity) to define the split criterion.




Response variables and impurity measures

Length-frequency distributions
* Response
* Proportion of fish in each size bin; {p;(j)}.
* Impurity

* Kullback-Leibler divergence (‘KLD’): Ig;p = le pm()log (pl(f))

p.(J)
CPD trends
* Response
e Vector of first-differenced annual CPD time series (C;), AC;.
* Impurity

ISS_weighted — z(él - C)TAT(EAéi)_lA(CAi — C~')

where C is estimated from the pooled data, and fAéi is a diagonal matrix of
variance estimates.




Building the trees

Repeatedly partition the data set(s) at predictor values that maximize the following
split criteria:

e Length-frequency distributions:
Imp_KLD

- Brore () ) , Dright U)
= nlefthleft () log < ;f(t]) ) T Nyight Z Pright () log ( p_g}(l]t) )

e CPD-based trends:
Imp_SS = Iss, au — (Iss; tere + Iss; right)

* Both data types, simultaneously (0<y<1; used y=0.5):

Imp_KLD

MaXcandiate splits (Imp_KLD)

Imp_SS

MAaXcandidate splits (Imp_SS)
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Length-frequency
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CPD trends, variance-weighted
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Simultaneous tree, variance-weighted

(YFT-01-02 Table 2)

Scaled improvement

Scaled improvement

Simultaneous tree

length-frequency CPD trends split rank

(split rank) (split rank)
(a) Full data set (26)
Latitude 20°N 0.537 (3) 1.000 (1) 2
Latitude 15°N 0.531 (4)
Latitude 10°N 0.638 (2) 0.723 (4) 3
Latitude 5°N 1.000 (1) (9) 1
Latitude 0° (5)
Longitude 115°W 0.851 (2) 4
Quartersl; 2-4 (5)
Quarters 1-2; 3-4
Quarters 1-3; 4 0.782 (3)




Simultaneous tree, variance-weighted
(YFT-01-02 Table 2)

Scaled improvement| Scaled improvement | Simultaneous tree
length-frequency CPD trends split rank
(split rank) (split rank)
(b) North of 5°N (22)
Latitude 20°N 0.960 (2) 1.000 (1) 1
Latitude 15°N (5) 0.600 (4) 3
Latitude 10°N 0.598 (3)
Longitude 125°W 0.857 (4)
Longitude 120°W 0.924 (3) 4
Longitude 115°W 1.000 (2) (5) 2
Longitude 100°W
Longitude 95°W
Quarter 1-3; 4 0.629 (2)




Simultaneous tree, variance-weighted
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Future work

Sensitivity analyses:
e criteria used to select 5°-quarters with sufficient data;

e revisions to trends model (other transformations; revisit CPD
calculation);

o effects of growing/shrinking length bins;
e inter-annual variability.

Apply the tree-based methods to fishery data from other purse-seine
sets types:

* vellowfin tuna, skipjack tuna in unassociated sets;
* bigeye tuna, skipjack tuna in floating-object sets.
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