Indices of relative abundance of yellowfin tuna derived from purse-seine catch and effort data

SAC-04-04c

Background

- Indices of relative abundance are an essential component of contemporary stock assessments.
- Catch-per-unit-effort (CPUE) indices are standardized to avoid bias.
- In the current yellowfin assessment only longline indices are standardized.
- Because of the level of yellowfin catch and spatial distribution of effort, purse-seine CPUE may yield a useful standardized index.
- SAC-04-04c presents preliminary work standardization of purse-seine CPUE.

- Data used in the analysis
 - IATTC observer data for Mexican and Venezuelan vessels (size-class 6).
 - Data set was limited to vessel making a minimum of 5% of their sets per year on tunas associated with dolphins, with a minimum of 3 years in the database.
 - Time period of the analysis: 1986-2012.

Vessel time lines

8	8	8	8	8	8	8	8	8	0	8	8	0	0	0	o 8	8	8	8	8	8	8	8	0000	8	8000	800
0000	0 0000	000000	00000	00000	0 8 0	0 8 0	8	8	8	8 0	8 0	00000	8 00 0	8000	8	8000	8 00 0	80 00 0	8000	00 00 0	00 00 0	00000	00000	00000	00000	00000
800	0	000000	0 000000	0 000000	0 80 80	0 000000	000000	8000	80000	00000	8000	0000	0000	0000	0 00	0 00	0 000	0 00	8 8	8 8	8 8	8 8	8 8	8 8	8 8	8000
0	8	0 0000	8 8000	8 8 8	0000	8000	000 0	0000	800	8000	800	800	800	800	800	800	800	800	800	8	800	8	8	8	8	8
		8	8	8 0	000	8 0	8 0	8 0	8 0	8 0	8000	00000	8000	8000	8000	8000	000000	000000	000000	000000	0000000	0000000	0000000	0000000	0000000	0000000
8	0 8	8	8	0 8	0 0	0	0	0	0	0	0	0	o 8	0000	0 000000000000000000000000000000000000	0	8	8	8	0	0 0	0 0	0 0	0 0	0 0	0 0
8	800	0 0 0	8	0000	000000	8000	000000	00000	800	800	800	0000	8000	80	00000	0000	00000	8	8	8	8	0 0	8 8	8 0	8 0	o Q
8	8 0	8 8	8 8	8 8	8	0 0	0 0	0 0	8 0	8 0	8 0	80	8	8	800	8000	0000	8	00000	ð 0	ð	ð o	8 0	0 0	0	ð o
		0	0	-															0	0	0	8	8	8	8	8
985	1990						ہ 1995						2000				ו 2005				2010					

Vessels

- Variables used in the analysis
 - CPUE = metric tons yellowfin catch per day of fishing
 - Explanatory variables
 - Year-quarter
 - Latitude, longitude
 - Vessel and gear characteristics
 - vessel capacity, year of construction, vessel ID
 - presence/absence of bird radar, sonar
 - number speedboats
 - presence/absence of ring stripper, power block diameter
 - net length and depth, dolphin safety panel length
 - Data unit used in the analysis: 1° area month trip

Distribution of CPUE

Gear characteristics time lines

- Trend estimation
 - Delta-lognormal generalized additive models fitted to the data:
 - (i)

```
logit(p) = constant + year-quarter effect + smooth(days) + smooth(lat,long)
```

```
log(CPUE<sub>+</sub>) = constant + year-quarter effect + smooth(lat,long)
```

(ii)

- Models fitted separately to data of Mexican and Venezuelan vessels, by stock assessment area.
- Standardized trends computed from model coefficients by partial dependence.

• Purse-seine dolphin-set stock assessment areas

Results: year-quarter effect coefficients

Results: standardized trends

Year-quarter

Gray: GAM with gear and vessel predictors

Effect on yellowfin spawning biomass ratio

Summary and future work

- Summary
 - Observer data of Mexican and Venezuelan vessels were used to compute standardized purse-seine indices for 1986-2012.
 - Estimated trends showed a general decline, except around ~2001-2003.
 - Standard errors for year-quarter effect coefficients were large.
 - Percent deviance explained and residual diagnostics indicated model fit could be improved.
- Future work
 - Explore alternative ways of computing days fishing.
 - Explore other distributional models for CPUE data.

