Progress report on development of an index of relative abundance for dolphins from purse-seine observer data

SAC-05-11d

Background

- Under the Antigua Convention the IATTC has the responsibility to monitor the status of all species involved in the purse-seine fishery in the EPO, including dolphins.
- Historically, population dynamics modelling has been the primary means of monitoring stock status for dolphins.
- Populations dynamics models require information on population trends, typically inferred from indices of relative or absolute abundance.

Background

- Historically, EPO dolphin indices have been computed from:
 - Fishery-dependent data (purse-seine observer data)
 - Based on line-transect methodology, 1975-2000
 - Index not computed since 2000 due to concerns about trends in biases caused by changes bearing data quality and changes in fishing behavior
 - Fishery-independent data (NMFS surveys)
 - Conducted intermittently, 1979-2006 (1986-2006 used for recent modelling)
- With hiatus in NMFS surveys, purse-seine observer data are the only source of information with which to try to monitor EPO dolphin population status.
- The present work focuses on the northeastern stock of offshore spotted dolphins because of its historical involvement with the fishery.

Outline of presentation

- Data
 - What is available
 - What was excluded
- Search effort
- Search behavior
- Current state of trends model development
 - modeling considerations
 - preliminary results
 - insights provided by comparison of preliminary results to other indices
- Conclusions
- What's next

Data

- Observer data for large purse-seiners
 - Vessel activities (e.g., running, searching, drifting, setting)
 - Operational information (e.g., location, date, time)
 - Dolphin sightings (e.g., herd size, species composition)
- Information specific to searching
 - Sighting methods used by vessel crew:
 - Binoculars
 - Helicopter
 - Radar
 - When a sighting is made, the sighting method is recorded.
 - Positions and times during searching are available for the purse-seiner.
 - However, the following are not available:
 - Times of use of each sighting method.
 - Distance covered by the helicopter during search.

Data

- To try to standardize searching practices, data were limited to:
 - Years 1990-2012
 - Trips with at least than 5% sets on dolphins
 - Trips with at least one sighting by each sighting method
 - Days when the vessel was below 90% full capacity
 - Beaufort sea state ≤ 4
- And, finally, any search between a set-sighting and the set itself was excluded.

Data

- Dolphin sightings
 - Dolphin sightings are made by vessel crew
 - Up to three estimates of herd size and species composition
 - Crew initial
 - Observer initial
 - Observer best
 - Distance and bearing to sighting; sighting cue
 - Did not use:
 - sightings with only a crew initial estimate
 - sightings of "other" origin
 - sightings behind the vessel
 - cue information

Computing search effort

	No. DEL CRUCERO / CRUISE NO. 0800 DAILY ACTIVITY RECORD																		
FECHA	SUCESO	LOE TURNOT ON EFFORT?	HORA DEL SUCESO	POSICION AL MOMENTO DEL SUCESO POSITION AT TIME OF EVENT	NO X 20 / MU 0	CION DESDE ARCO FROM SHIP	TANCIA	BSERVACION BHT NO.	OCIDAD 	DEL AGUA			DA AEREA? U. ASSIST?	NO. LANCE SET NO.	CAPTUR	A (TON. C	TONS)	R SP. CODE	MELLS WELLS
DATE	EVENT		TIME OF EVENT		OBSERV POR OBSERVEI		80	NO. O	VEL	WAT	CLOUD C	VISIBIL	LAYUC AERIA		M YF	BA 	OTRAS	000 1HO	-
3/20	DEDUA	193	1813		19/38				1.1953				83			家的感觉	SHACES.		
	COLUMN STATE		1010			1.1		200	No.	Sec.	0.020	teris!						5882	388431
3/3/	BUSCAR	5	080/	2056 N 1/157W	<i>P3</i>	Constant of	CONTRACTOR IN	5155	12.2	643	33	8	88.80	10.00	A. P. State	1.16.0	STATES OF	1423	668203
	PAJAROS	10000	0940		X20	32.5	05.0	3	LOCKOVIS .	in an	NIC 20 61133	N GANGUS	E CONECC	NORTH N				01665170	
()	MAMIE	ESS:	0945	2049 NI 11/56 W		No. C. B.		3				89.5958	5.63						
	8	1200	2011			1. 1.	Star an	128		18 6		10.00							Note: C
RIGHT	DUSTAR	3	0147		+1	NAME OF		16350	13.5		4 3	128.835	850	10110	ABURACE			1010	No al
200-2002	CAZA		1002		Long South		COLORADO D	3	and and	in the second			3			and the second second	1	1000	224,492.00
100	LANMAM		1030	2044N11153W				3		64.5		1320	3	4	0521	1	AND AN AND A		E7
總統領		1.01	1.3.6			Children of		1.5		1. TO.	34, 28	12.4	0803		142160		es de la cel		1858M
的形式	TERLAN	1345	1302		1.5.0.00	100	a stig	122			938 (M)		1	1000	Distant			100	
200000000	BUSCAR	N	1303		PI			10000	12.0	and and a second	63	6		00000					
	BUSCAR	3	1308	2043N111152W	P3		alle ye. s	DARK!	12.0	S. Sectors	6 4	6	8363	2559	A SAME AND	1.		10055	100000000
Sec.		38							196	Salle.	100			9.53					
	MAMIF	2050	1310	<u>2043N /// 520</u>	HA	043	05.9	4	2015	E STOR	100	12555	1952			1922-101		1000	and the second
A STOCKARDO	BUSCAR	5	13/1		PI				13.5		64	6		Horizon					Contraction of the
62973836	CAZA	6500	1325		CN3.943	100.100	12030	4	52,80005	1.200	1994	5:0849	5		Sets Shark	小社人公司		1005	
		1623	17.67			6.763		ti,	35		300		980		1500	NAMESIA.		64555	100
	LANMAM		105 /	<u>2040N ///50N</u>	Sauce	30.018	NY SOL	4	0.016.0	643	100	.ne.	3	5	0	1		1988	
	TERLAN		1645														I		
DATOS REVISADOS CIAT ATUN-DEL/FIN DATA REVIEWED INTO TUN-DEL/FIN 1.D/DAR 849																			

)

0

Computing search effort

- Distance travelled while searching is based on movement of the purse-seiner.
- Search effort was computed for each pair of daily events ("a segment") when:
 - Observer on duty
 - Vessel crew actively searching
 - At least two positions available for the day
- Segment start and end positions were estimated when not available.
- Search effort, in km, was computed from start/end positions using the great circle distance formula.
- Search effort was summed across segments for each trip-day-1° area.

Search effort, 1990-2012

Search behavior

- Even with data restrictions, heterogeneity in search behavior remains:
 - There are changes over the years in the relative use of the three sighting methods.
 - There are changes within a trip in search tactics, depending on whether a vessel is in transit between fishing areas or at a fishing area.

Search behavior: changes across years

Search behavior: changes across years

Search behavior: herd size

Search behavior: sighting distance

Search behavior: changes within a trip

Longitude-Longitud

Top panel

black open circles: 1° areas with effort, size proportional to amount

gray dotted line: connects 1° areas through time.

Bottom panel

solid black circles: non-set sightings

blue crosses: set-sightings

pink diamonds: helicopter sightings.

Trends model development

- Would like an index of relative abundance of dolphins, taking into consideration effects of variables such as area, season, and herd-specific covariates.
- In addition, would like to account for changes in search behavior across years and within trips in the standardization model.
- A model of this form is still work in progress...
- Thus, as a start, we used a simplified approach to estimating standardized trends, and compared those results to other indices in order to obtain insights for further model development.

Trends model

- Take a CPUE-type approach to trend estimation, instead of using line-transect methods.
- Data unit of analysis: trip-day-1°area
- Most trip-day-1° areas had no sightings (69%), 22% had one sighting, and few had more than three sightings.
- Dolphin herd size was right-skewed, with considerable rounding, particularly to multiples of 50 and 100 animals.

Trends model

- Delta-lognormal generalized additive models (GAMs)
 - Logistic regression model for presence/absence of dolphins in a trip-day-1°area
 - Lognormal model for the total number of dolphins per km in a trip-day-1° area
- Because we are modeling aggregated sightings, to try to control for heterogeneity in sightings characteristics, fit to two subsets of the data:
 - use only sightings that led to sets (herd size more similar across sighting methods);
 - use all sightings within 20nm of the vessel (attempt to include all sightings that would have been seen by binoculars if not reported by radar or helicopter).

Trends model

- In addition to fitting to two different subsets of the data, two different approaches to trend estimation were taken:
 - Data-weighted index
 - Fit full GAM:

 $logit(p) = overall constant + year effect + f_1(month) + f_2(1^{\circ}latitude, 1^{\circ}longitude) + f_3(km)$ $log(CPUE^+) = overall constant + year effect + f_4(month) + f_5(1^{\circ}latitude, 1^{\circ}longitude)$

- Compute index from predicted overall CPUE by partial dependence
- Area-weighted (equal-weighted) index
 - For each year, fit reduced GAM:

 $logit(p) = overall constant + f_2(1^{\circ}latitude, 1^{\circ}longitude) + f_3(km)$ $log(CPUE^+) = overall constant + f_5(1^{\circ}latitude, 1^{\circ}longitude)$

- Predict overall CPUE on fixed 1° area grid
- Sum predicted values over 1° area grid cells

Trends model: sample size by year

Year	Number of trip- day-1° areas with effort	Number of set-sightings	Number of sightings within 20 nm
1990	5,412	1,124	1,482
1991	5,736	1,347	1,726
1992	7,849	2,279	2,904
1993	7,551	1,590	2,198
1994	7,516	1,755	2,327
1995	7,343	2,107	2,680
1996	9,187	2,510	3,106
1997	9,882	2,364	2,987
1998	13,277	2,796	3,653
1999	12,765	2,456	3,155
2000	9,886	1,771	2,219
2001	7,057	1,678	1,947
2002	9,275	3,098	3,527
2003	10,620	2,679	3,229
2004	11,963	2,481	3,085
2005	14,018	2,985	3,707
2006	10,886	1,778	2,354
2007	9,699	1,748	2,219
2008	8,770	1,595	1,964
2009	8,348	1,836	2,208
2010	9,965	1,950	2,385
2011	8,192	1,740	2,076
2012	7,211	1,437	1,741
Total	212,408	47,104	58,879

Preliminary results

- Model fit
 - All model terms were highly significant.
 - However, simple diagnostics suggest improvements need to be considered.
- Trends
 - All standardized indices show an overall decreasing trend over the 1990-2012 period.
 - There was little difference between the trends computed from set-sightings and those computed from all sightings within 20nm.
 - The trends based on equal weighting (area weighting) showed a greater decrease compared to those based on data-weighting.

Preliminary results: trends

Data-weighted trends

Area-weighted (equal weighted) trends

Black: set-sightings Red: all sightings within 20nm

Preliminary results: trends

black:/gray: data-weighted

dark/light blue: equalweighted

Discussion: comparison to other dolphin indices

Discussion: comparison to yellowfin tuna indices

Conclusions

- Data collected by purse-seine observers represent an extensive data resource, with broad spatial-temporal coverage compared to survey data.
- It would be advantageous to be able to use these data to develop an index of relative abundance for dolphins.
- These data, however, do not represent random search and may contain time-varying biases due to temporal changes in fishing behavior.
- Preliminary dolphin trend estimates are very similar to yellowfin purseseine indices, suggesting the non-random search may be problematic.
- At this point, it is unclear whether purse-seine observer data can be used to reliably track dolphin absolute abundance.

What is next...

- Occupancy-abundance mixture models are being developed that will allow for individual sightings and sighting-specific covariates.
- This occupancy/abundance model is being formulated in terms of:
 - a Poisson/zero-inflated Poisson regression model for the number of dolphin herds;
 - a negative binomial/lognormal/other regression model for the number of dolphins per herd.
- For these models, two additional covariates will be included:
 - a daily trip-specific indicator of 'transit' *versus* 'area' search;
 - a trip-specific sighting reporting rate indicator.
- Options to address the problem of non-random search will be explored.
- This work will be presented at the 2014 International Statistical Ecology Conference in July.
- If this work shows promise, other modeling options, sensitivities, and dolphin species/stock may be tackled...