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ABSTRACT 

Growth rate estimates are more important in stock assessments than is generally considered, particularly 
for assessments that fit to length-composition data. It is therefore important that growth is specified 
correctly in stock assessment models, in order to avoid bias in estimated management quantities. Tropical 
tunas typically show linear growth at young ages, after which the growth rate declines rapidly. The 
traditional von Bertalanffy growth curve, which has been used to model tropical tuna growth, is unable to 
adequately represent this growth pattern. Therefore, the more flexible Richards growth curve is now often 
used. In addition, the reduction in growth rates makes determining the age of older individuals 
problematic, resulting in a lack of length-at-age and maturity-at-age data for older individuals. We 
evaluate two growth curves for bigeye tuna in the eastern Pacific Ocean that include a proxy for the cost 
of reproduction. The growth curves are fitted to both age-length data derived from daily increment counts 
in otoliths and growth increment data from tagging, which together cover nearly the entire range of ages. 
The estimates of management quantities based on these growth curves are compared to those based on the 
von Bertalanffy and Richards growth curves as well as those using the current assessment growth 
assumptions. The growth models that included the proxy for cost of reproduction did not provide a 
substantial improvement over the currently used Richards growth model with age-length and tag-
increment data included. 
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1. INTRODUCTION 

Individual fish growth is generally assumed to be one of the best understood and estimated processes in 
fisheries dynamics. However, individual growth is poorly estimated for most species when evaluated in 
the context of fisheries stock assessment and management, particularly when fitting to length composition 
data (Maunder et al. 2015). Furthermore, most studies in which hard parts, such as otoliths, have been 
used to estimate age at length have employed methods which have not been validated, so the significance 
of the temporal deposition rate of increments is unknown (Campana and Nielsen 1985). Small biases in 
the mean length at age, or possibly the variation of length at age, can result in meaningful biases in 
estimated biomass or fishing mortalities (Aires da Silva et al. 2015; Wang et al. 2015), which are 
commonly used to determine the status of fish stocks. These biases are a manifestation of fitting to length-
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composition data (Maunder and Piner 2015), and are compounded by the typical over-weighting of these 
data (Francis 2011).  

Length-composition data can be very informative about absolute abundance and fishing mortality rates 
(Maunder and Piner 2015). If there are many old large fish in the catch, this implies that the fishing 
mortality is low and the abundance high. Therefore, the estimates of fishing mortality from a stock 
assessment model based on observed length-composition data will depend on how many large fish are 
expected. With respect to growth, this typically relates to how large the fish are expected to grow or, in 
the typical terminology, the asymptotic length. If the asymptotic length is biased, the estimates of fishing 
mortality and biomass will be biased. Unfortunately, there is often little information about the asymptotic 
length (i.e. there are few old fish available for sampling), and the asymptotic length becomes an 
extrapolation from younger fish based on the assumed model functional form (e.g. the von Bertalanffy 
curve).It is therefore important to get the form of the growth curve correct as well as to have information 
from old fish. Using information from multiple sources, such as age-length, tag growth increment, and 
modes in length-composition data, is important (Laslett et al. 2002; Aires da Silva et al. 2015; Carvalho 
et al. submitted). 

The von Bertalanffy growth curve is the most commonly-used growth curve for fish stocks. It is simple 
and generally represents well the growth of the commonly-sampled ages of most fish species. However, it 
is often not adequate for stock assessment purposes when fitting to length-composition data, as the 
extrapolated asymptotic length can be substantially biased. Other growth curves that consider more 
complex growth dynamics, such as decreases in growth rates associated with maturation and reproduction 
(Roff, 1992. Stearns, 1992.), might better represent growth for many fish stocks.  

One additional complication for fitting models to length-composition data is that the expected number of 
large fish is also a function of the variation of length-at-age. Most growth studies focus on estimating 
mean length-at-age and do not consider the assumptions made about the variation of length-at-age or the 
estimates. Therefore, growth studies need to consider estimation of the variation of length-at-age, but the 
estimates need to be consistent with the assumptions and data used in the stock assessment model.  

Estimating growth for tropical tunas is particularly problematic because, unlike temperate species that 
experience seasonal changes in temperature or distinct spawning periods, they typically do not exhibit 
annual increments in hard parts that could be used for aging. Aging often relies on counting daily 
increments in otoliths, and becomes problematic at older ages (4-5 years) as the increments become 
compressed along the counting path and difficult to resolve even at high magnifications with microscopes 
(Wild 1986; Schaefer and Fuller 2006). Therefore, information on the growth of old individuals from 
other sources (e.g. growth increments from tag-recapture data) needs to be combined with the otolith 
daily increment data to extend the ranges in lengths and ages so as to reliably estimate the growth curve 
and the asymptotic length (e.g. Aires da Silva et al. 2015).   

We develop growth curves for bigeye tuna in the eastern Pacific Ocean (EPO), taking into consideration 
the cost of reproduction and fitting to both tagging and age-length data. The implications of these growth 
curves for stock assessment and management is evaluated by including them in the stock assessment and 
comparing the results with those using the current growth curve and with the von Bertalanffy and 
Richards models.  

1.1. Application to bigeye tuna in the EPO 

The growth rate of bigeye tuna in the EPO used in previous stock assessments was based on a growth 
model derived from counts of daily increments in 254 sagittal otoliths from fish between 30 and 149 cm 
long (Schaefer and Fuller 2006; Aires-da-Silva and Maunder 2011). Because of the inability to resolve the 
daily increments after about 4 years of age, this method is unable to provide validated age estimates for 
older fish, and the asymptotic length was extrapolated based on the assumed growth function from 
smaller fish. Recently, growth increment data from tagging (length at release, length at recapture, and 
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time at liberty) have been combined with the age-length data from otolith counts to provide information 
on growth from throughout the length range in the fishery (Aires da Silva et al 2015). The Richards 
growth model, which has an additional parameter making it more flexible, is now commonly used (e.g. 
Aires-da-Silva and Maunder 2011). In addition, information on the variation of length-at-age from growth 
studies has generally not been used in the assessments. 

It has been suggested that the growth of topical tunas slows as they mature, but this has not been 
demonstrated by the studies on age and growth and reproductive biology of yellowfin or bigeye from the 
EPO (Wild 1986; Schaefer 1998; Schaefer et al. 2005; Schaefer and Fuller 2006). Since tropical tunas are 
highly fecund, and spawn batches of eggs at close to a daily frequency throughout the year after reaching 
maturity, provided the water temperature is above about 24°C (Schaefer 2001), it is reasonable to assume 
that growth may be impacted by reproductive costs. It is also possible that growth differs between males 
and females, since their maturity schedules and reproductive energetic costs differ (Schaefer 2001). 
However, for bigeye up to about 4 years of age there was no significant difference in the growth rates 
between males and females (Schaefer and Fuller 2006).  

Minte-Vera et al. (submitted) proposed two growth models that take reproductive costs into 
consideration. One model is based on first principles and reduces growth based on the proportion of 
individuals mature (or equivalently, the probability of being mature) at a given length. The second model 
treats the asymptotic length parameter as a function of the proportion of individuals mature. The reason 
for choosing the asymptotic length over the growth rate (as used by Laslett et al. 2002) may be 
unintuitive, but makes sense based on first principles (see Minte-Vera et al. submitted). Both models rely 
on information about maturity-at-age (or length as described below) and assume a logistic curve for the 
relationship. Our study differs from Minte-Vera et al. (submitted) in that it applies the models to a 
different species (bigeye tuna), uses both otolith age-length data and tag growth-increment data, uses 
maturity-at-length rather than maturity-at-age data, and evaluates the management consequences of the 
different growth curves.   

Due to the inability to age older individuals from hard parts, it is desirable to use both the age-length data 
and the tag growth increment data, if available, to estimate the parameters of growth curves for tropical 
tunas (Aires da Silva et al. 2015). The appropriate approach to combining these two data sets is that 
developed by Lasslet et al. (2002), which treats the two data sets in a consistent statistical framework. 
This requires treating the age-at-release from the tagging data as a random effect, and involves high-order 
integrals using specialized software.   

Variation of length-at-age in a stock assessment model is different than variation of length-at-age in 
growth models. In a stock assessment model, the variation of length-at-age is used to predict the catch-at-
length that is used to fit to the observed catch-at-length. This catch-at-length distribution is the sum of 
catch-at-length over a specified time period (quarterly in our applications), and is influenced by 
(unmodeled) temporal variations in growth and selectivity. Therefore, the variation of length-at-age in a 
stock assessment model differs from (and is probably larger than) that observed in the age-length data (in 
daily increment data, age is expressed in days) or growth-increment data for a point in time. Therefore, it 
may not be appropriate to use estimates of the variation of length-at-age from the growth analysis in the 
stock assessment, but rather estimate the parameters representing the variation of length-at-age inside the 
stock assessment. Zhu et al. (submitted) demonstrated, using simulation analysis, that under conditions 
close to ideal, estimation of the variation of length-at-age parameters inside the stock assessment model is 
feasible, and that the values of those parameters are less critical than those of the parameters of the 
growth model with respect to the estimation of common management quantities. 

We fitted the two growth models that include maturity schedule information and the von Bertalanffy and 
Richards growth models) to age-length and tag growth increment data for bigeye tuna in the EPO. The 
suitability of these models is compared, using AIC and a qualitative evaluation of the realism of the parameter 
estimates and residuals. These growth curves are then used in the current stock assessment model (Aires-da-
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Silva and Maunder 2014), and the estimates of relevant management quantities compared. 

2. MATERIALS AND METHODS 

2.1. Data sources 

2.1.1. Age-at-length data 

Age-at-length data are obtained from direct readings of daily increments in the sagittal otoliths of 
bigeye tuna from the EPO. A detailed description of the data, methodology, and results is found in 
Schaefer and Fuller (2006). Aires-da-Silva et al. (2015) used those age estimates in their analysis of 
bigeye tuna growth. These  data cover fish up to 4 years of age (about 150 cm), or about one-quarter 
of the apparent longevity of bigeye, based on an estimated maximum age of at least 15 years from 
annual age estimates and from information on the tagged fish that were at liberty for the longest 
periods (Aires-da-Silva et al. 2015).  

2.1.2. Tagging growth-increment data 

Length-increment data are from from tagging experiments on bigeye tuna in the EPO. A detailed 
description of the data sources is found in Schaefer and Fuller (2006). The data were updated to include 
additional tagging growth-increment observations collected in recent years. The tagging growth-
increment data are dominated by bigeye less than 150 cm, although some observations from larger bigeye 
up to about 190 cm fork length (FL )are also available, due to the recapture of some individuals that were 
at liberty for up to 8 years. Aires-da-Silva et al. (2015) used a similar data set for their analysis of bigeye 
tuna. The release and recapture lengths are assumed to be measured without error. 

2.1.3. Maturity-at-length data 

Due to the difficulty of aging older tropical tunas, reliable maturity-at-age data are not available, and 
inferences about maturity have to be made based on maturity-at-length data. Data on proportion mature, 
batch fecundity, and frequency of spawning at length are available for yellowfin tuna (Schaefer 1998). All 
three of these contribute to the cost of reproduction. Therefore, their product should be used as a proxy for 
the relative cost of reproduction used in the growth models. Other factors (e.g. behavior) may also impact 
the costs of reproduction, but data on these are generally not available. Information on the maturity-at-
length is available for female bigeye tuna only (Schaefer et al. 2005), and therefore the relative cost of 
reproduction is assumed to be equal to the proportion mature at age times the cube of mean length–at-age. 
The cube of length is a commonly-used proxy for weight, and weight is a commonly used as a proxy for 
relative egg production.  

2.2. Analytical methods 

2.2.1. Growth models 

2.2.1.a Von Bertalanffy 

𝐿𝑎 = 𝐿∞(1− exp (−𝐾(𝑎 − 𝑡0)))    (1) 

2.2.1.b Richards 

𝐿𝑎 = 𝐿∞ �1 + 1
𝑝

exp (−𝐾(𝑎 − 𝑡0))�
−𝑝

    (2) 

2.2.1.c Von Bertalanffy Log-Linf 

Equation (1) where  

𝐿∞(𝑎) = 𝐿∞,1 + ϕ(𝑎)�𝐿∞,2 − 𝐿∞,1�    (3) 

where ϕ(𝑎) is the proportion mature at age a (see equation 9) 
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2.2.1.d Cost of reproduction (CoR) Model 

Growth is modelled by explicitly including a term that takes into account the cost of reproduction in the 
growth increment; this equation represents the average growth of a population, rather than the individual 
growth, and is based on the differential equation: 

𝑑𝑑
𝑑𝑎

= 𝛼 − 𝛽𝐿 − 𝛾τ𝑎    (4) 

where  

L is length  

a is age 

τ𝑎 is the relative cost of reproduction 

α, 𝛽, and γ are parameters. 

The relative cost of reproduction may be a function of several factors, including fecundity and frequency 
of spawning. We assume that these factors that influence the relative cost of reproduction, in combination 
with the proportion mature at age, represent the average (over all individuals in the population) relative 
(the oldest individuals are generally assumed to have the highest costs) age-specific energetic costs 
associated with reproduction, and not the absolute cost of reproduction. Costs related to behavior are 
ignored, since there is generally no information available for them, but the model implies that they are 
either constant, proportional to length, or proportional to the measure of reproductive costs from the other 
factors. This relative value is then scaled to an absolute value by an estimated parameter. In data-limited 
cases it might simply be assumed that the relative cost of reproduction is a function of the proportion 
mature at age and individual weight as represented by length cubed.  

τ𝑎 = ϕ(𝑎)𝛾𝐿3    (5) 

where 

ϕ(𝑎) is the proportion of fish mature at each age a  

We approximated the differential equation by a difference equation with small time steps (e.g. days), so 
that the growth increment is: 

𝐺𝑎 = 𝛼 − 𝛽𝐿𝑎−1 − ϕ(𝑎)𝛾𝐿𝑎−13     (6) 

The length at age a is: 

𝐿𝑎 = 𝐿𝑎−1 + 𝐺𝑎   (7) 

The model is started from 𝐿0, the length at age a0, which is also a parameter. Age a0 can be chosen to be 
an age close to the minimum age in the data, well before the onset of maturity; we chose a0 to be equal to 
age zero for convenience. We also reparameterized the model in terms of the length when growth is zero 
(the asymptotic length in certain formulations of the model), which is conventionally termed L∞. This 
parameterization makes choosing initial parameter values and bounds constraining the possible parameter 
values more intuitive.   

𝛼 = 𝛽𝐿∞ + ϕ(𝑎)𝛾𝐿∞3     (8) 

The growth function was also reparameterized so that  𝛽 = exp (ln _𝛽), γ = exp (ln _γ) 𝐿∞ = exp (ln _𝐿∞) 
and 𝐿0 = exp (ln _𝐿0) 

The proportion mature-at-age ϕ(𝑎) is modelled using a logistic function:  

ϕ(𝑎) = 1

1+𝑒
−ln(19)∗(𝑎−𝑡50)

(𝑡95−𝑡50)
    (9) 
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where 𝑡50 is the age at which 50% of the individuals are mature, and 𝑡95 the age at which 95% of the 
individuals are mature, which is parameterized as 𝑡95 = 𝑡50 + exp (ln _𝛿𝑡95). 

The maturity-growth model depends on six parameters: ln _𝛽, ln _γ , ln _𝐿∞, ln _𝐿0, 𝑡50, and ln _𝛿𝑡95. 

2.2.2. Model fitting 

2.2.2.a Length-at-age likelihood 

The observed length of fish i at age t was assumed to be: 

𝐿𝑜𝑜𝑜,𝑡,𝑖 = 𝐿𝑡� + 𝑒𝑖       (10) 

where 𝐿𝑡�  is the predicted average length-at-age t, and 𝑒𝑖 is a normally-distributed random variable 
𝑒𝑖~𝑁(0, 𝜎𝑖2 ). The likelihood is 

ℒ𝑖[𝐿|𝑎, 𝜃] = 𝑁�(𝐿𝑖 −  𝐿�𝑎𝑖�, 𝜎𝑎𝑖
2 )   (11) 

Where 𝜃 is the parameters of the growth model. 

The standard deviation of the error, which is assumed to be process error (i.e. the variation in the lengths 
of individuals of a given age in the population, and not the observation (e.g. measurement error)), was 
modeled as proportional to the average length-at-age: 

𝜎𝑖 = 𝛽𝜎𝐿𝑡       (12) 

2.2.2.b Tagging data likelihood 

To ensure that the likelihood for the tag growth-increment data is consistent with the age-length data, the 
likelihood is formulated in terms of length given age. However, age is not observed, and is therefore 
treated as an unknown random variable, and the likelihood is calculated by integrating over age: 

ℒ𝑑𝑡𝑎𝐿,𝑑𝐿𝑒𝐿,𝛿 = �𝑝(𝑎) ∗ 𝑁�(𝐿𝑡𝑎𝐿 −  𝐿�𝑎�,𝜎𝑎2) ∗ 𝑁�(𝐿𝐿𝑒𝐿 −  𝐿�𝑎+𝛿�,𝜎𝑎+𝛿
2 )𝑑𝑎      (13) 

where  

a is age in days 

A is the maximum age in days 

p(a) is the prior distribution for age at release (uniform(1,A) in our application) 

Ltag is the length at tagging 

Lrec is the length at recovery 

δ is the time at liberty in days  

2.2.2.c Maturity-at-length likelihood 

We assume that maturity is a function of age, but we have only maturity-at-length data. Therefore, the 
maturity-at-length likelihood becomes somewhat complicated. Similar to the tag growth-increment data, 
we integrate over age and fit to both the length data and the maturity data.   

ℒ(𝑚𝑎𝑡|𝑙) = ∫𝑃(𝑚𝑎𝑡|𝑎)𝑝(𝑎|𝑙)𝑑𝑎    (14) 

𝑝(𝑎|𝑙) = 𝑁((𝑑 − 𝑑�𝑎),𝜎𝑎2)𝑝(𝑎)
𝑝(𝑙)

     (15) 

𝑝(𝑙) = ∫𝑝(𝑙|𝑎)𝑝(𝑎)𝑑𝑎 is a constant    (16) 

The likelihood for the maturity-at-length data is therefore: 
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ℒ𝑚𝑎𝑡 = �𝑝(𝑎) ∗ 𝑃(𝑚𝑎𝑡|𝑎) ∗ 𝑁�(𝐿 −  𝐿�𝑎�,𝜎𝑎2)𝑑𝑎      (17) 

where  

a is age in days 

A is the maximum age in days 

p(a) is the prior distribution for each age (uniform(1,A) in our application) 

L is the observed length 

P(mat|a) is the probability of being mature at age, P(mat|a) ~ Bernoulli (ϕ), where ϕ comes from the 
equation for maturity-at-age (Equation 6). 

2.2.3. Parameter estimation 

The reproductive cost growth model of Minte-Vera et al. (2015) is implemented by modelling the growth 
on a small time increment (e.g. day) using a recursive approach, which is not conducive to random effect 
implementation in AD Model Builder (Fournier et al. 2012) or Template Model Builder (Kristensen et al. 
2014), which are the preferred tools for non-Bayesian implementation of random-effect models involving 
high dimensional integrals. We therefore use a brute force approach to integrate across age, by 
constructing the objective function that sums the likelihood evaluated at a range of ages on a daily basis. 

ℒ𝑑𝑡𝑎𝐿,𝑑𝐿𝑒𝐿,𝛿 = �𝑝(𝑎) ∗ 𝑁�(𝐿𝑡𝑎𝐿 −  𝐿�𝑎�,𝜎𝑎2) ∗ 𝑁�(𝐿𝐿𝑒𝐿 −  𝐿�𝑎+𝛿�,𝜎𝑎+𝛿
2 )

𝐴

𝑎=1

     (18) 

ℒ𝑚𝑎𝑡 = �𝑝(𝑎) ∗ 𝑃(𝑚𝑎𝑡|𝑎) ∗ 𝑁�(𝐿 −  𝐿�𝑎�, 𝜎𝑎2)
𝐴

𝑎=1

     (19) 

A further complication arises because, when the predicted maturity is zero, the Bernoulli probability is 
equal to zero for mature individuals, thus eliminating the contribution of the length component of the 
likelihood. Therefore, the model prefers to estimate a high age at maturity. To avoid this bias, we use a 
two-step iterative process.  

1. Estimate the growth parameters (including for the variation of length-at-age) conditioned on fixed 
values of the maturity parameters and using only the age-length and tag growth-increment 
likelihood components. 

2. Estimate the maturity parameters conditioned on fixed values of the growth parameters and using 
only the maturity likelihood component. 

The parameter estimates from step 1 are used in step 2, and those from step 2 are used in step 1. Good 
estimates of both the growth and maturity parameter values should be obtained before starting step 1 for 
the first time. The steps are iterated until the parameter values no longer change. 

3. RESULTS 

The model fits to the data are evaluated by using AIC, which takes into consideration the different 
number of parameters among the four models. The four models are not fitted to the same data sets, so the 
overall likelihood is not comparable, and the Von Bertalanffy and Richards models are not fitted to the 
maturity data. However, the models can be compared from the fits to the combined age-length and tag 
growth-increment data, although the two models that include the cost of reproduction are disadvantaged 
because the fit to these two data sets is traded off with the fit to the maturity data. The CoR model has a 
lower AIC than the log-Linf model, and the Richards model has a lower AIC than the von Bertalanffy 
model (Table 1). Despite the disadvantage of fitting to the maturity data, the CoR model has a lower AIC 
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than the other models if the AIC is based only on the age-length and the tag growth-increment data. The 
CoR model fits the tagging growth-increment data and the maturity data best (lowest negative log-
likelihood), and the von Bertalanffy model fits the age-length data best.    

The growth curves are all similar for ages less than about 4 years and fit the data similarly, however the 
log-Linf and von Bertalanffy models estimate higher asymptotic lengths and are a worse fit to the greater 
lengths-at-recovery (Figure 1). The influence of the cost of reproduction in the CoR model occurs only 
for the last few ages in the age-length data (Figure 2).  

The estimated spawning biomass ratio (SBR: the spawning biomass divided by the virgin spawning 
biomass) using the CoR and Richard growth models is similar to that of the current assessment, which 
uses the Richards growth model from Aires da Silva et al. (2015) (Figure 3). The assessments using the 
log-Linf and von Bertalanffy growth models estimate higher depletion levels (lower SBR), presumably 
because they have higher asymptotic lengths, which interact with the length-composition data.     

4. DISCUSSION 

Growth rate is an essential parameter in stock assessment models, particularly those that are fitted to 
length-composition data. Length-composition data have generally been given too much weight in stock 
assessment models (Francis 2011), and moderate model misspecification can result in substantial bias in 
estimated management quantities (Maunder and Piner 2015; Lee et al. 2014). It is therefore important that 
growth is correctly specified in stock assessment models. This is particularly true for tropical tuna 
assessments, which lack the luxury of survey-based indices of abundance and regular catch-at-age data, as 
well as catch-induced contrast in indices of abundance, and are therefore largely dependent on length-
composition data to provide information about absolute abundance and fishing mortality rates. 

Growth models for tropical tunas have been greatly improved by combining age-length and tag growth-
increment data into a single analysis (Laslet et. al. 2002; Aires da Silva et al. 2015). We have further 
improved these models over the standard von Bertalanffy model by including the cost of reproduction, as 
represented by the proportion mature and cube-of-length proxy, in the bigeye tuna growth model (Minte-
Vera et al. submitted). However, the Richards growth curve provides a similar fit to the data and is less 
complicated to implement. Both of these developments have reduced the impact of extrapolating the size 
of old individuals from information about intermediate-aged individuals, reducing the bias caused by 
fitting to length-composition data. We believe that this will result in major improvements in the reliability 
of stock assessment results and estimated management quantities for tropical tunas compared to using the 
von Bertalanffy growth curve fitted to age-length data only. Further developments could be made in 
growth modelling, such as more detailed modelling of energy expenditure, but it is not clear whether the 
available data will support such detailed modelling. A major improvement would be to include sex-
specific information, since the cost of reproduction in tunas differs between males and females (Schaefer 
2001). In our application we used the female maturity schedule for bigeye from the EPO, but it should be 
noted that the maturity schedule for males is expected to be quite different, with males reaching maturity 
at smaller sizes and younger ages, as was found for yellowfin in the EPO (Schaefer 1998). 

We assumed in our analysis that maturity is a function of age, which complicated the calculations because 
we had only maturity-at-length data. Assuming that maturity was a function of length may have 
simplified the computations, but  it is not clear which of these assumptions is correct and whether it 
would make a difference.  

It is well known that the particular parameterization of a growth model can influence the ability to 
estimate the model’s parameters. We implemented some forms of reparameterization of the growth 
models, but these were based on intuition and convenience and are not necessarily optimal. Optimization 
of the objective function was difficult, and additional reparameterization might improve estimation 
performance (e.g. Schnute 1981). The maturity likelihood was problematic to implement, and further 
refinement of that component of the model may be beneficial.  
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There is a general lack of understanding about the importance of growth, as well as maturity, in stock 
assessment models, especially when estimating such values as spawning biomass. It is commonly thought 
that a reasonable approximation of the mean length-at-age of the fish of the most common age is 
adequate, but this is not the case for stock assessment modelling, particularly when fitting to length-
composition data. We encourage a more thorough evaluation of the data collection for growth estimation 
and consequent analysis of the data, so that growth analysis provides the information required for 
contemporary stock assessment models. For example, Piner et al. (submitted) show that the sampling 
design (e.g. sampling by length group), which is not taken into consideration in this modelling approach, 
can also negatively bias the estimates of the variation of length-at-age. Francis et al. (submitted) explain 
how ignoring the correlation between the length at release and the length at recapture of tagged fish can 
bias the estimates when using the methods designed to treat the age-length and tagging growth-increment 
data more consistently. Schaefer and Fuller (2006) also reported that there is a shrinkage error introduced 
by death, freezing, and thawing of tunas, which should be accounted for by adjusting the recapture 
lengths of tagged tunas and thus making data input into growth rate models using age-length and tag-
increment data comparable. Shrinkage in the lengths of tunas following capture and death has routinely 
been ignored in studies of growth, and in the length- composition data used in stock assessments, but 
should be considered in future evaluations of such data sets.  
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TABLE 1. Negative log likelihoods for the four models tested. The von Bertanlanffy and Richards 
growth curves do not include the maturity data component. The component likelihoods and AIC are given 
as differences from the model with the lowest value. The AIC difference is calculated separately for the 
von Bertanlanffy and Richards growth curves. *these quantities cannot be compared with the CoR and 
logLinf models.   

 CoR log-Linf VB Richards 
f -13820.40 -13782.96 -6902.87* -6918.29* 

age 4.33 0.58 0.00 3.60 
tag 0.00 25.81 30.36 11.34 
mat 0.00 15.38   

age+tag 0.00 22.06 26.03 10.61 
pars 7 7 4 5 
AIC 0.00 74.89 28.84* 0.00* 

AIC age+tag 0.00 44.12 46.06 17.23 
 

TABLE 2. Parameter estimates for the four models. 

 CoR log-Linf VB Richards 
Linf 199 236 288 212 
K  0.00058 0.00044 0.00100 
t0  -115 -131 396 
p    -2.48 
Linf2  254   
β 0.00019    
γ 0.00890    
L0 19    
A50 1191 1315   
A95 1460 1711   
sd 0.050 0.053 0.053 0.051 
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FIGURE 1. Fit to the bigeye tuna age-length data (upper panel) and to the length at recapture based on 
the estimated age (lower panel). The estimated age at recapture is based on predicting the age at release 
from the growth curve estimated using the CoR growth model.  



SAC-06-04a – Growth curves for tropical tunas  13 

 
FIGURE 2. Fit to the bigeye tuna age-length data of the CoR growth model and the CoR growth model 
with the parameters fixed at their best estimates, but with the CoR component removed (No CoR).  
 

 
FIGURE 3. Estimates of bigeye tuna spawning biomass ratio (SBR: spawning biomass divided by virgin 
spawning biomass) using the different growth curves. 
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