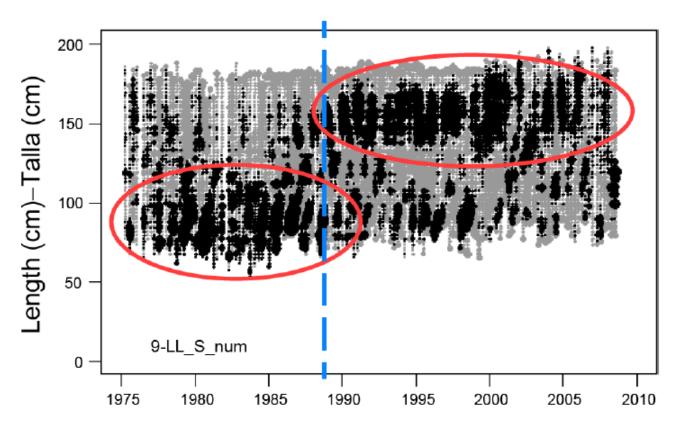

STATUS OF BIGEYE TUNA IN THE EASTERN PACIFIC OCEAN IN 2015

January 1975 – December 2015

7th Meeting of the IATTC Scientific Advisory Meeting La Jolla, California (USA), 9-15 May 2016

Outline

- Full stock assessment (base case model)
 - Fishery data updates
 - Model assumptions
 - Results (recruitment, biomass, fishing mortality)
 - Model diagnostics
 - Stock status (base case)
- Sensitivity analyses
- Summary conclusions
- Future directions

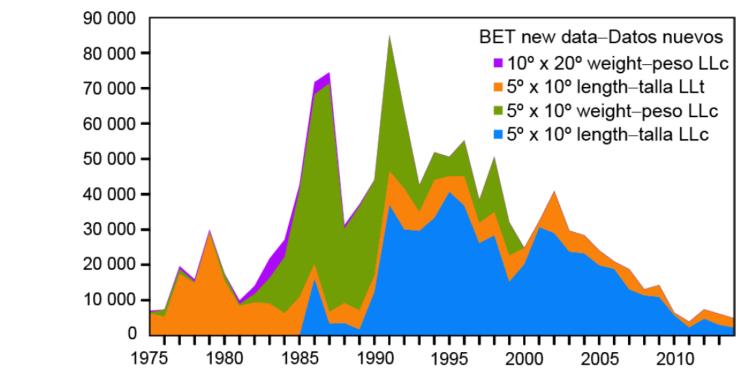


New or updated data

- Surface fisheries
 - Catch, CPUE and size-frequency data updated to include new data for 2015 and revised data for earlier years
- Longline fisheries
 - New or updated longline catch data: China (2014), Chinese Taipei (2012-2014), Japan (2013-2014), Korea (2006, 2014), US (2013-2014), French Polynesia (2013-2014), Vanuatu (2007-2014) and other nations (2013-2015)
 - 2015 longline catch data available from monthly reports: China, Chinese Taipei, Japan and Korea
 - New or updated CPUE data available for Japan (1975-2015)
 - New size-frequency for Japan (1975-2014)

Changes in BET JPN LL size-composition data Residual pattern (revisited)

FIGURE 1. Pearson residual plots for the model fit to the length-composition data for the Southern longline fishery assumed in the base-case assessment in Aires-da-Silva and Maunder (2009). The gray and black circles represent observations that are lower and higher, respectively, than the model predictions. The sizes of the circles are proportional to the absolute values of the residual. The ovals identify clusters of prominent residual patterns. The dashed vertical line indicates where the residual pattern seems to change. From Aires-da-Silva *et al.* (2010).


See Doc BET-01-05 of BET External Review

Changes in BET JPN LL size-composition data

"Back to the raw data"

• See docs SAC-07-03d and SAC-07-04a

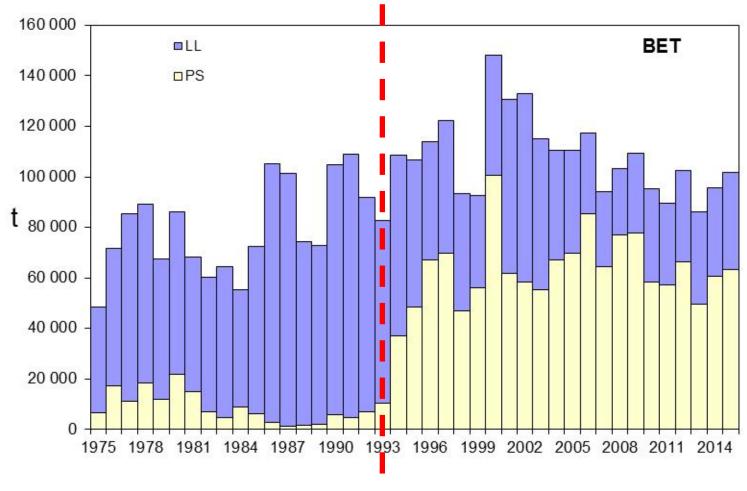
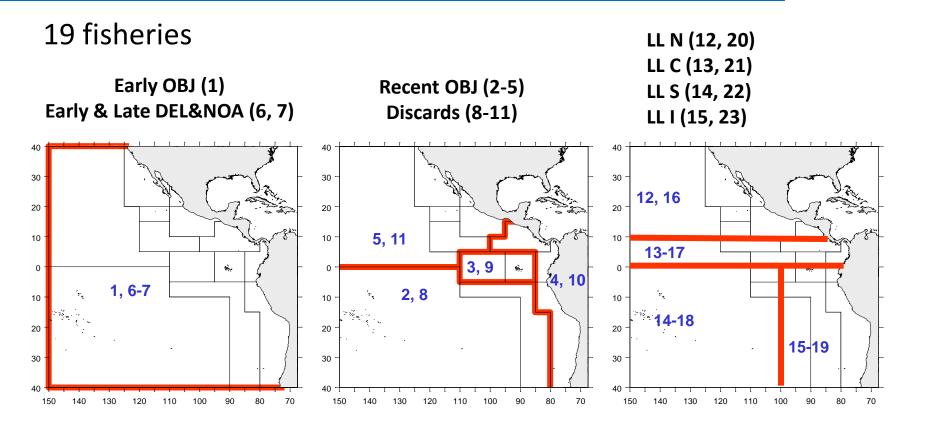


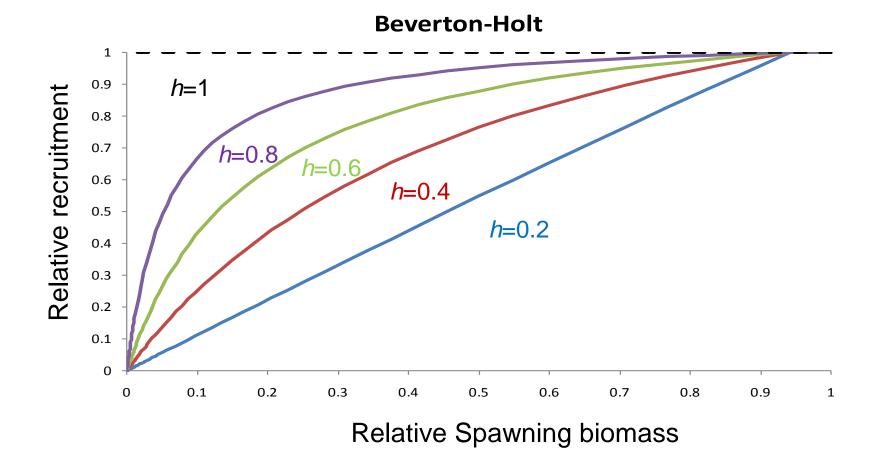
FIGURE 3. Number of size measurements of fish from the EPO during the stock assessment period (1975-2014), by species (yellowfin (YFT), top panel; bigeye (BET), bottom panel), type of vessel (LLc: commercial longline vessel; LLt: longline training vessel), spatial resolution (10° x 20° or 5° x 10°), and measurement type (weight: gilled-and-gutted weight; length: fork length).

Fishery data


Total catches

Expansion of FAD fishery

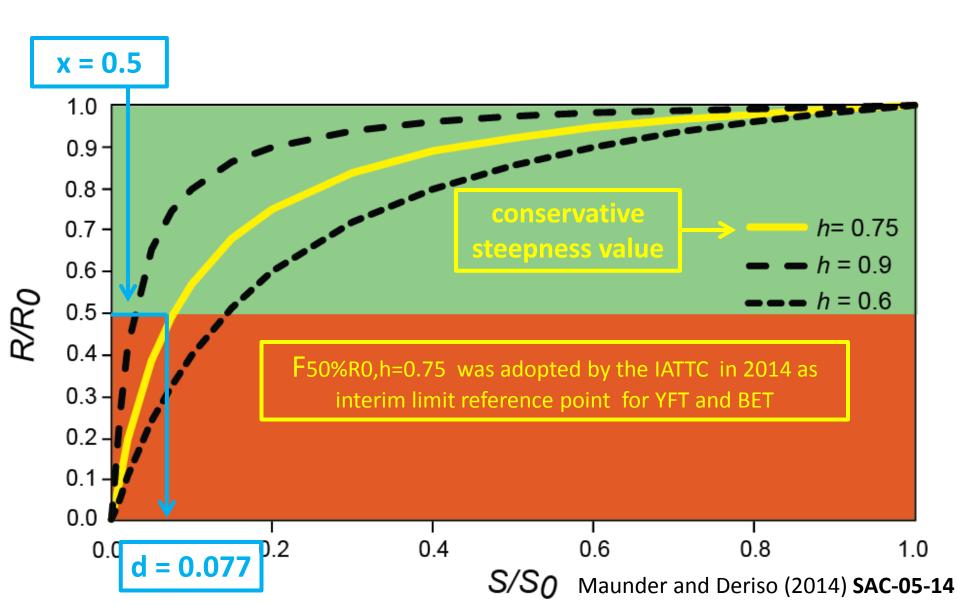
BET fishery definitions



GEAR TYPE: PS, LP, LL PS set type (OBJ, NOA and DOL) Time period The IATTC sampling areas DEL – sets on dolphins NOA – sets on unassociated fish OBJ – sets on floating objects LL – longline sets

Fishery data

Stock-recruitment relationship <


- Base case assumes no S-R relationship (h = 1)
- Sensitivity analysis with h = 0.75 (Appendix B)

Assumptions

Limit reference point: IATTC

Assumptions


BET stock structure

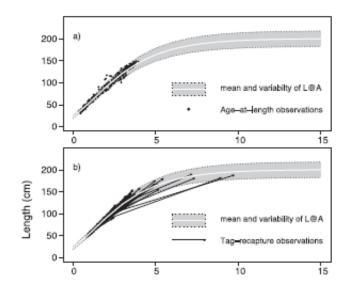
- Minimal net movement of fish between the EPO and WCPO
- Single stock of bigeye in EPO
- Pacific-wide collaborative assessment with SPC and sensitivity analysis extending the western boundary of stock to 170°E
- See SPC Pacific-wide assessment and CPUE analysis

Natural mortality (M)

Assumptions

- Sensitivity analysis
 - Juvenile *M* (Appendix E)
 - Adult *M* (Appendix F)

Assumptions

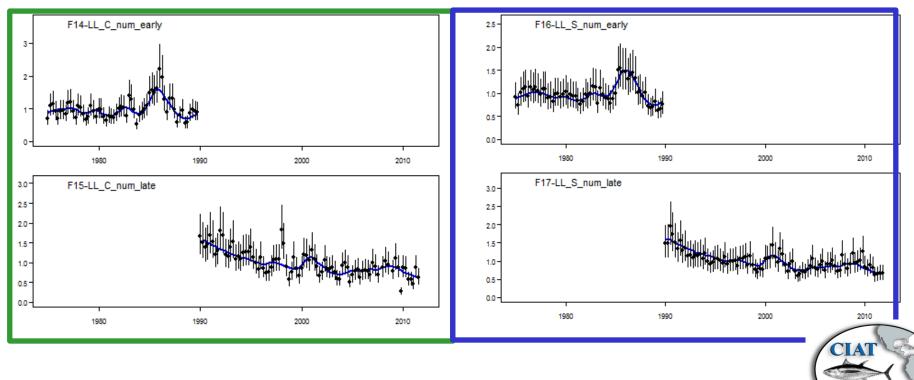

Growth modeling

 New growth curve estimated externally, L₂ and variance of length-at-age fixed

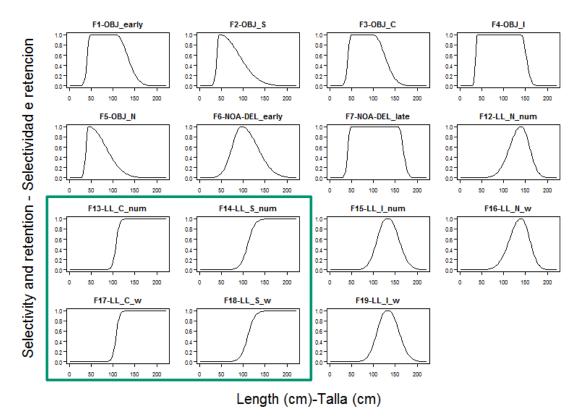
	Pisnenes Research 163 (2015) 119–126	
	Contents lists available at ScienceDirect	Fisheries
	Fisheries Research	Research
ELSEVIER	journal homepage: www.elsevier.com/locate/fishres	

Improved growth estimates from integrated analysis of direct aging and tag-recapture data: An illustration with bigeye tuna (*Thunnus obesus*) of the eastern Pacific Ocean with implications for management

Alexandre M. Aires-da-Silva *, Mark N. Maunder, Kurt M. Schaefer, Daniel W. Fuller Inter-American Tropical Tuna Commission, 8901 La Jolla Shores Drive, La Jolla, CA 92037-1508, United States

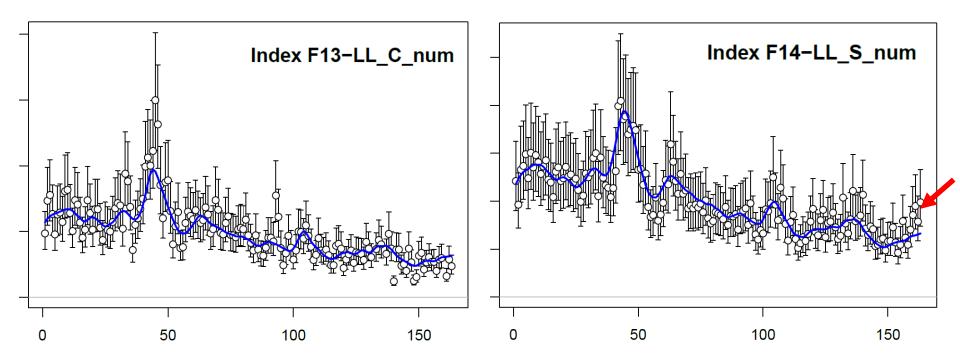

Sensitivity analysis to lower L₂ values (Appendix D)

Catchability


- Drop use of two time blocks for LL fisheries
- One single historic period of Q for all LL fisheries (1975-2015)

Selectivity

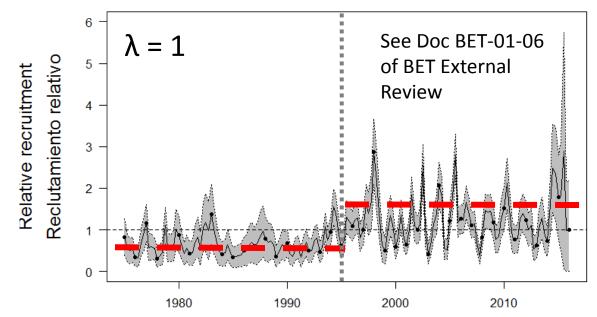
- Drop use of two time blocks for LL fisheries
- Asymptotic selectivities (LL-C, LL-S), dome-shape (LL-N, LL-I)
- Dome-shape selectivity for all surface fisheries



Assumptions

Data weighting (CPUE)

- Fit to Central and Southern LL CPUE series (CV=0.15)
- No fit to purse-seine CPUE



Data weighting (composition)

• Attempt to upweight the size composition data for all fisheries ($\lambda = 1$)

Assumptions

- Maintaining weighting of size composition data for all fisheries as in SAC6 base case ($\lambda = 0.05$)
- Do sensitivity runs with alternative weighting (Appendix B)

New SS output report

Home Bio Sel Timeseries RecDev S-R Catch SPR Index Numbers CompDat LenComp A@LComp Yield Data

EPO Bigeye Tuna 2016 Base Case Assessment

The assessment was conducted using <u>Stock Synthesis</u> (SS). These web pages provide information created automatically by the <u>R4SS</u> program. They also provide the SS output files and files used to run the stock assessment. The information contained in these web pages and files, or any content derived from them, should not be publically redistributed without the permission of the IATTC.

IATTC bigeye tuna stock assessment document

The SS output is also available as a pdf

SS model files in zip archive

SS output files in zip archive

SS version: SS-V3.23b-safe-win64;_11/05/2011;_Stock_Synthesis_by_Richard_Methot_(NOAA)_using_ADMB_10

Starting time of model: Thu Apr 14 15:28:23 2016

Warnings (from file warnings.sso):

Early recdev biasadj is >2 times ratio of rmse to sigmaR Early recdev biasadj is >2 times ratio of rmse to sigmaR N warnings: 2 Number of active parameters on or near bounds: 0

Results

Recruitment

5 -

2 ·

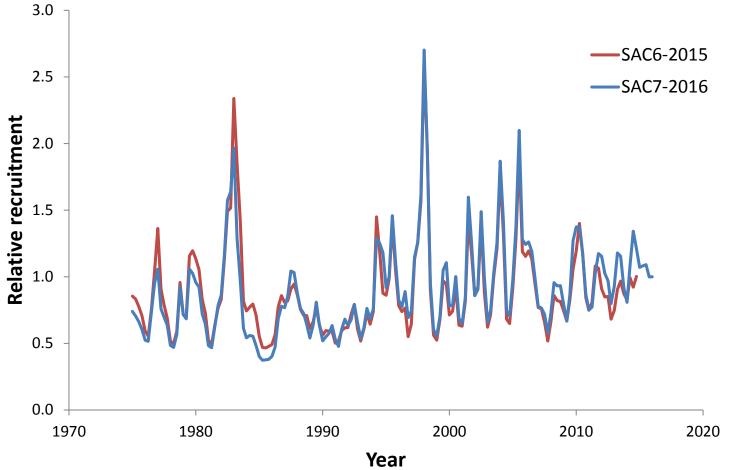
2.5

2.0

1.5

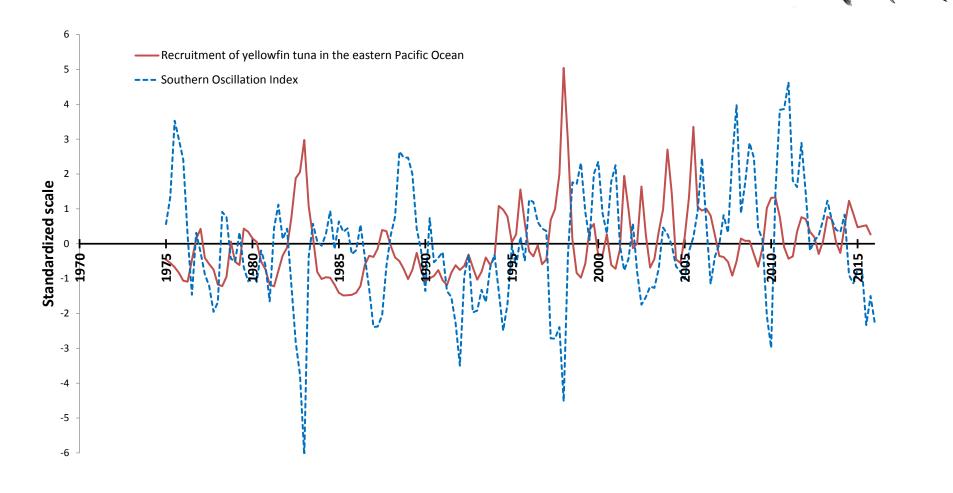
1.0

0.5


0.0

ı

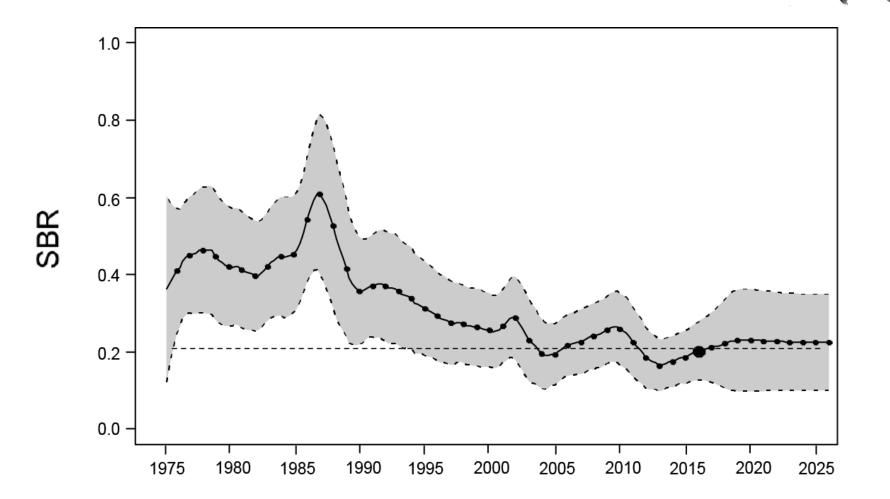
Results (base case) 2001-2006 2010-2015



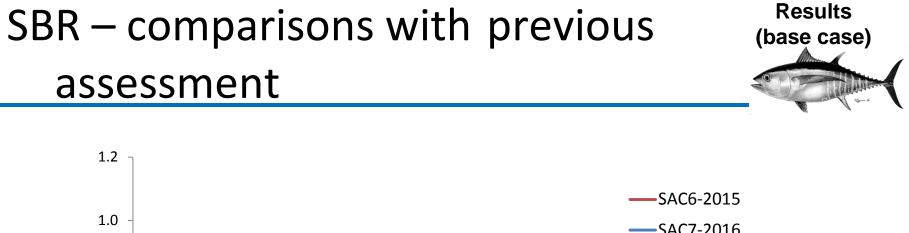
Recruitment – comparisons with (base case) previous assessment

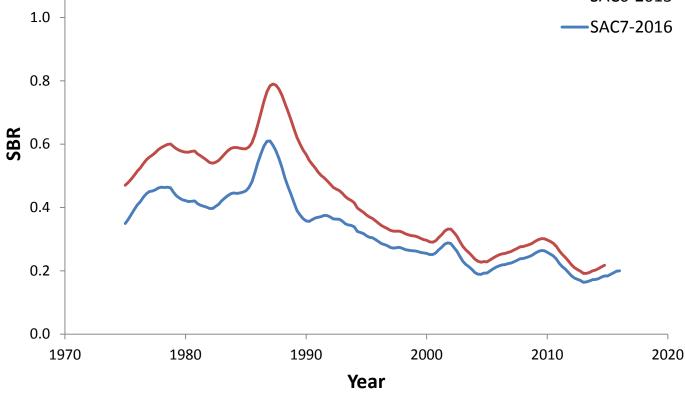
Recruitment and environment

Results (base case)

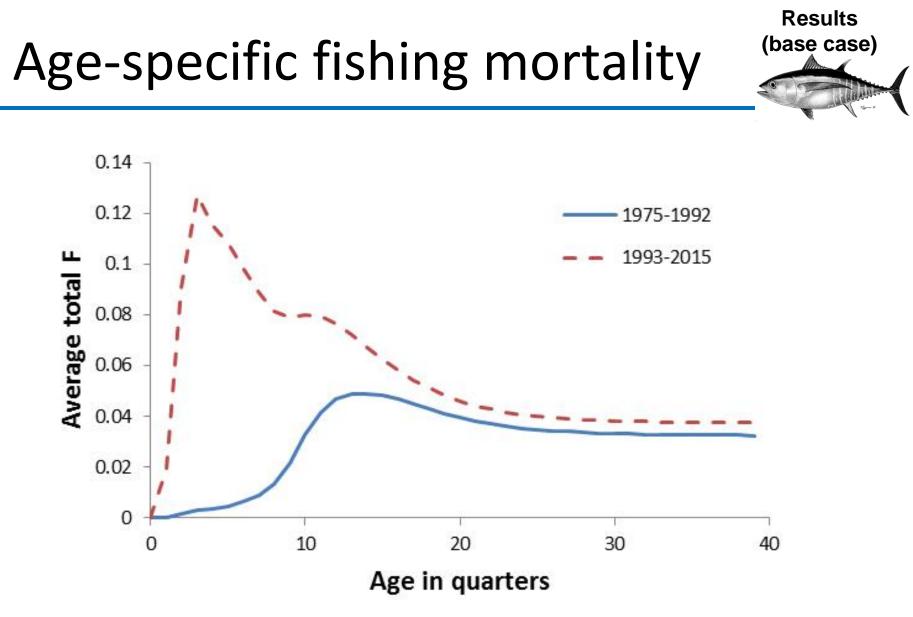

Summary biomass

5 -1983 1998 4 2010 2015 2001-2006 3 2 1 0 000 2010 2015 1990 1995 1975 1980 20 05 85 19 Biomasa sumaria 1e+06 8e+05 6e+05 Summary biomass – 4e+05 2e+05 0e+00 1980 2010 1990 2000

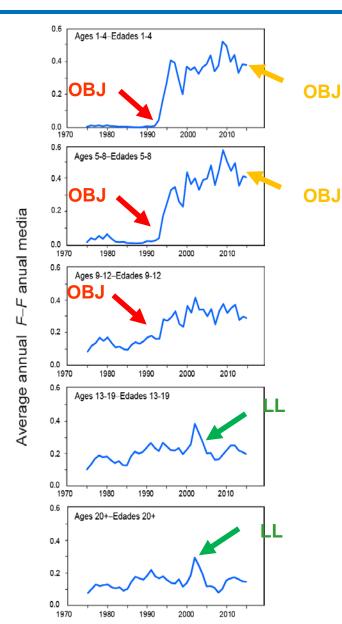


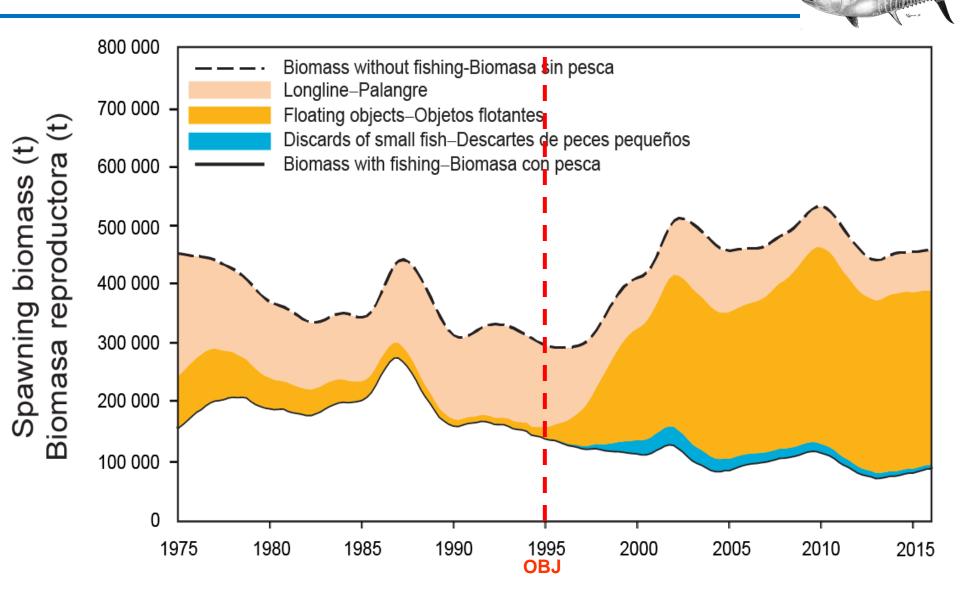

Results (base case)

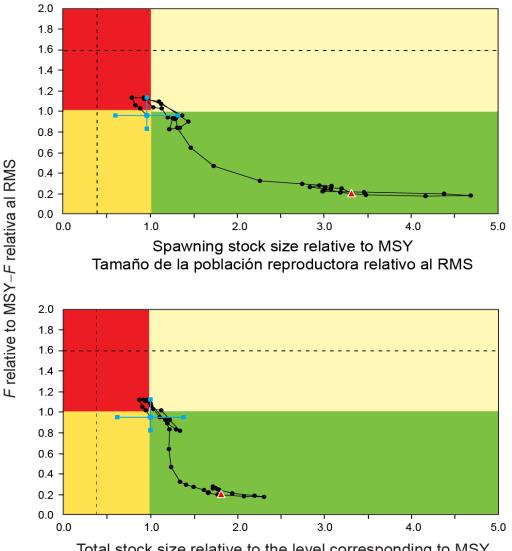
Spawning Biomass Ratio (SBR)



Stock status (base case)




Fishing mortality (F)

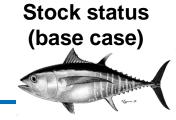


Fishery impact

Results (base case)

Target and Limit Kobe plot

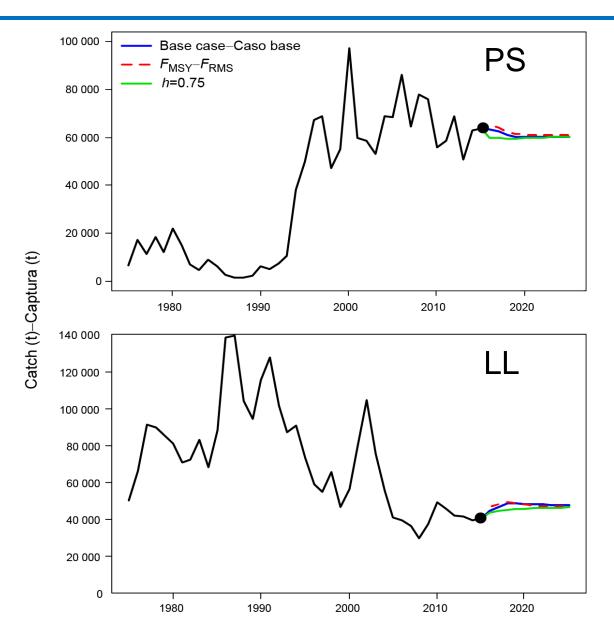



Total stock size relative to the level corresponding to MSY Tamaño total de la población relativo al nivel correspondiente al RMS CLAT

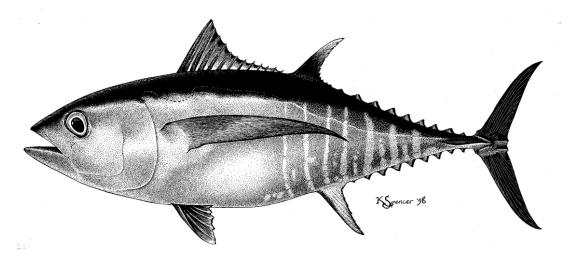
Stock status

(base case)

Time varying indicators


Management quantities

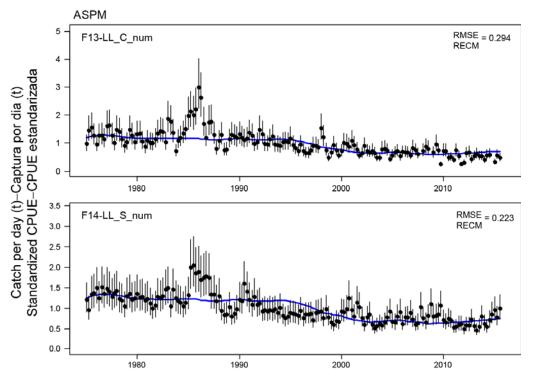
	Base case-
	Caso base
MSY-RMS	107,864
B _{MSY} - B _{RMS}	389,211
S _{MSY} - S _{RMS}	95,101
$B_{\rm MSY}/B_0 - B_{\rm RMS}/B_0$	0.26
$S_{MSY}/S_0 - S_{RMS}/S_0$	0.21
Crecent/MSY- Crecent/RMS	0.97
$B_{\text{recent}}/B_{\text{MSY}} B_{\text{recent}}/B_{\text{RMS}}$	1.00
$S_{\text{recent}}/S_{\text{MSY}}-S_{\text{recent}}/S_{\text{RMS}}$	0.96
F multiplier-	
Multiplicador de F	1.05



Projected catches – Status quo (F_{cur})

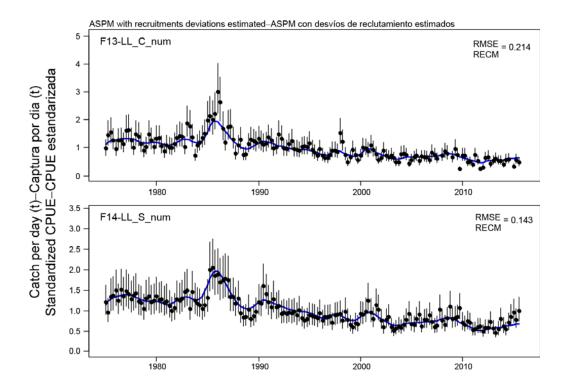
Diagnostics

Age-structured production model (ASPM) diagnostic



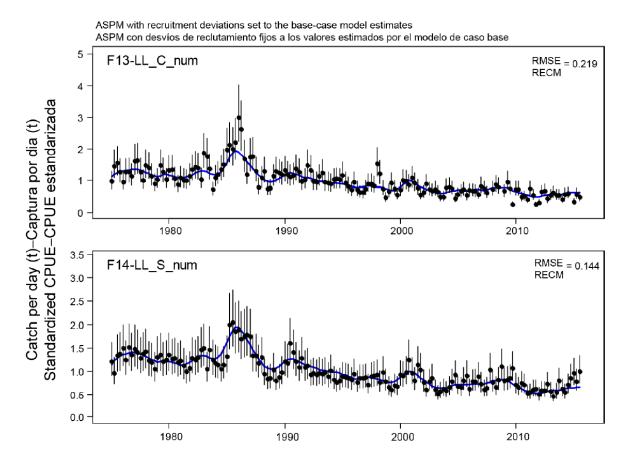
ASPM diagnostic no recruitment deviates

Diagnostics

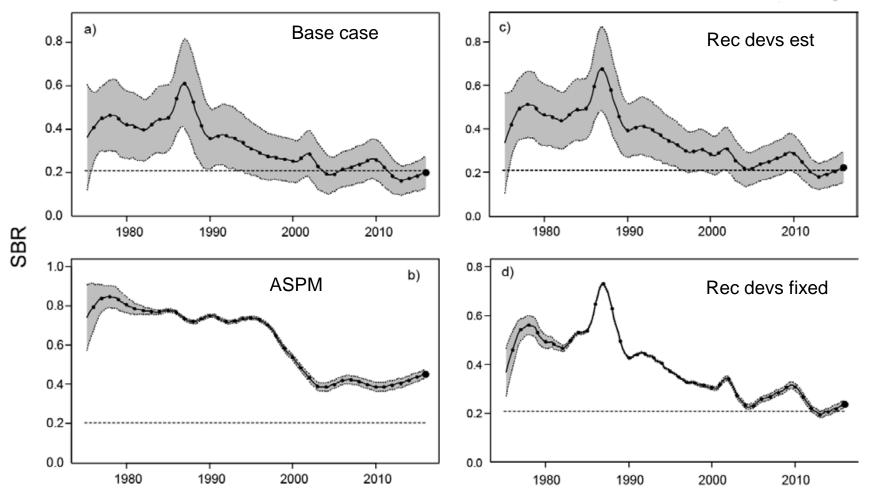

- Can catch alone explain the trends in CPUE
 - General decline over time with OBJ expansion,
 - Model unable to fit major fluctuations in abundance cause by recruitment

ASPM diagnostic Diagnostics with recruitment deviates estimated

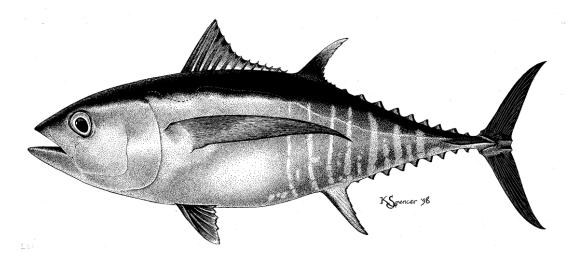
Model able to fit major fluctuations in abundance caused by recruitment



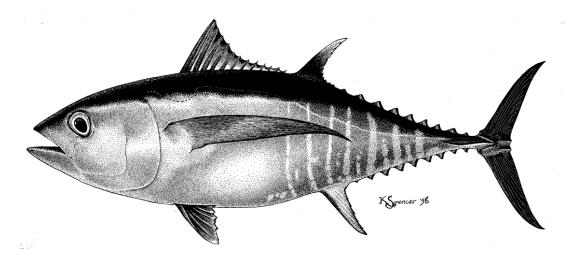
ASPM diagnostic with recruitment deviates fixed


Diagnostics

- Model able to fit major fluctuations in abundance caused by recruitment
- The composition data are having little influence on absolute abundance and relative trends

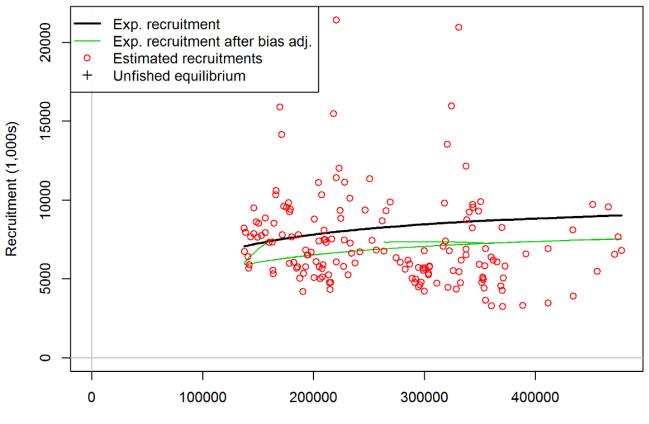


ASPM diagnostic SBR comparisons (uncertainty)


Diagnostics

Sensitivity analyses

- Steepness of SR relationship (Appendix B)
- Weighting assigned to the size-composition data (Appendix C)
- Lower values of average size of oldest fish (L_2) (Appendix D)
- Higher rates of juvenile *M* (Appendix E)
- Lower and higher rates of adult *M* (Appendix F)

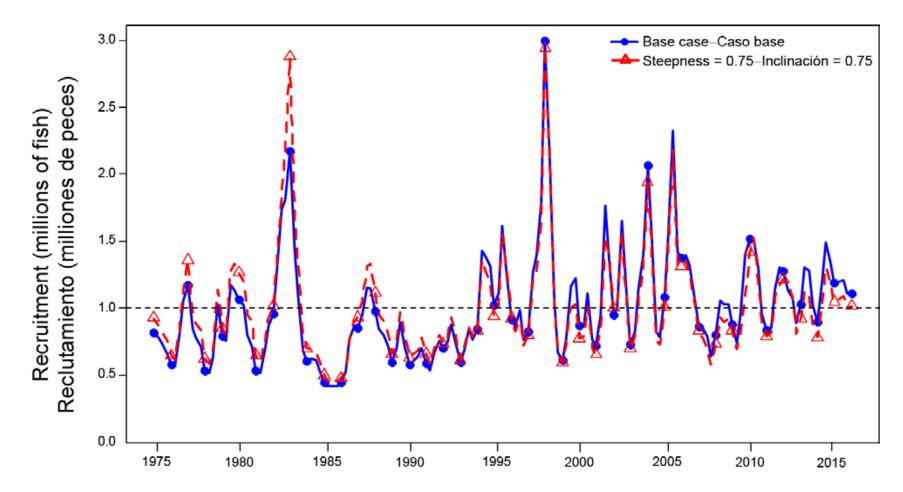


Sensitivity analyses

- Steepness of SR relationship (Appendix B)
- Weighting assigned to the size-composition data (Appendix C)
- Lower values of average size of oldest fish (L₂) (Appendix D)
- Higher rates of juvenile *M* (Appendix E)
- Lower and higher rates of adult *M* (Appendix F)

Spawner-recruitment curve

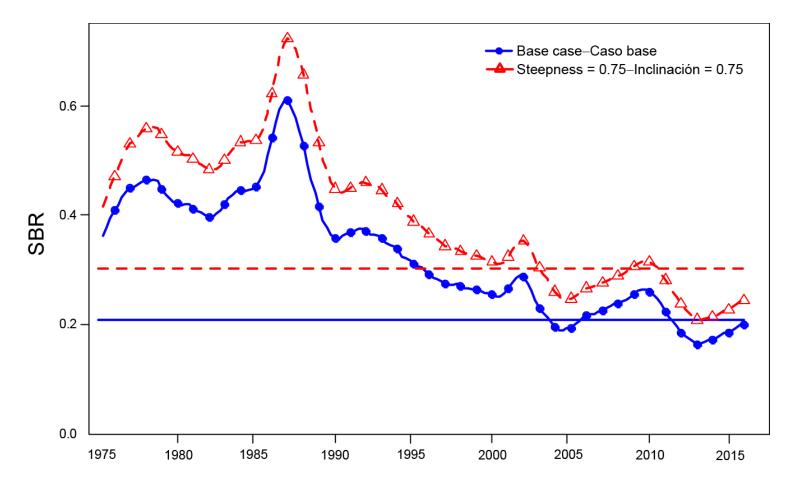
Spawning biomass (mt)

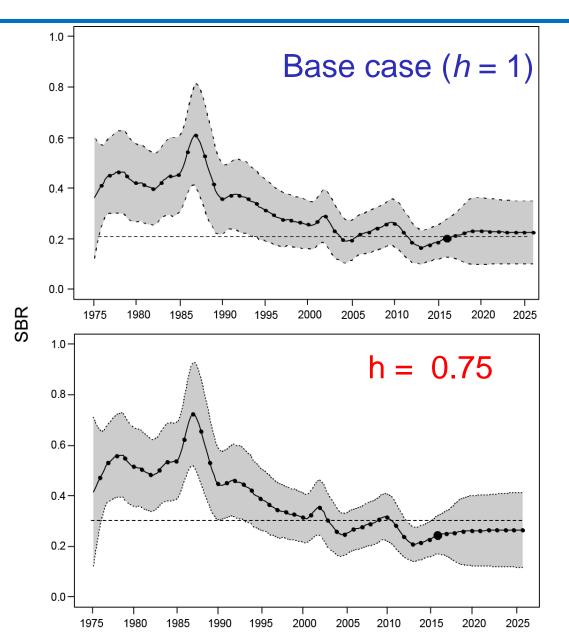


Sensitivities

(Steepness)

Recruitment

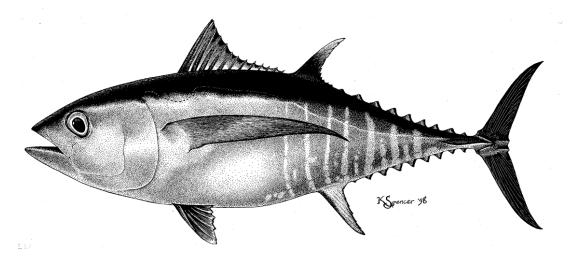



Spawning biomass ratio

Spawning Biomass Ratio (SBR)

Sensitivities (Steepness)

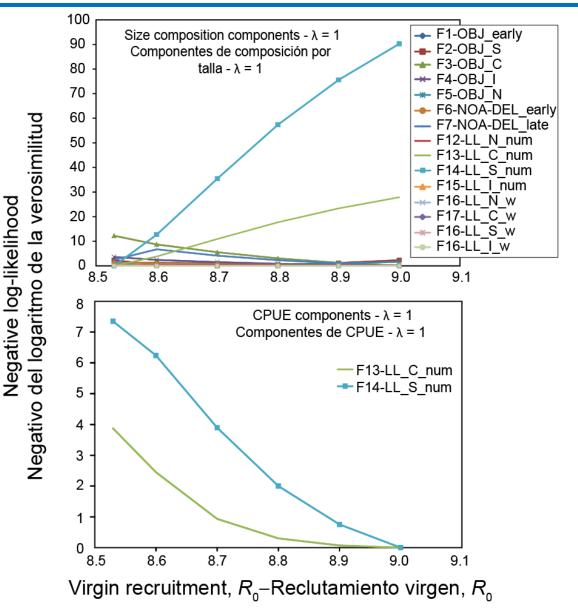
Management quantities



	Base case- Caso base	h = 0.75
MSY-RMS	107,864	107,595
B _{MSY} - B _{RMS}	389,211	726,606
S _{MSY} - S _{RMS}	95,101	200,215
$B_{\rm MSY}/B_0 - B_{\rm RMS}/B_0$	0.26	0.34
$S_{\rm MSY}/S_0 - S_{\rm RMS}/S_0$	0.21	0.30
C _{recent} /MSY- C _{recent} /RMS	0.97	0.97
$B_{\rm recent}/B_{\rm MSY}$ - $B_{\rm recent}/B_{\rm RMS}$	1.00	0.83
$S_{\rm recent}/S_{\rm MSY}$ - $S_{\rm recent}/S_{\rm RMS}$	0.96	0.81
F multiplier-Multiplicador de F	1.05	0.91

• Lower h

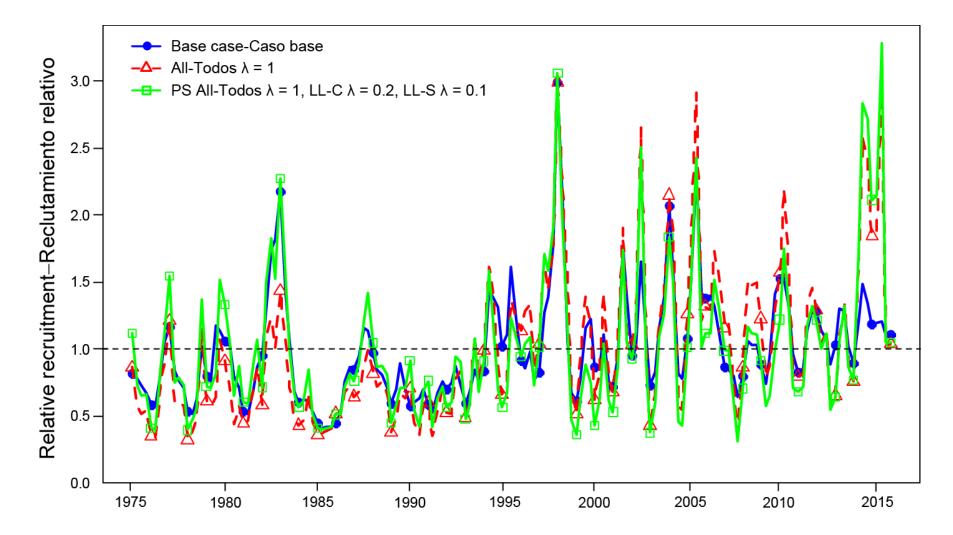
More pessimistic stock status

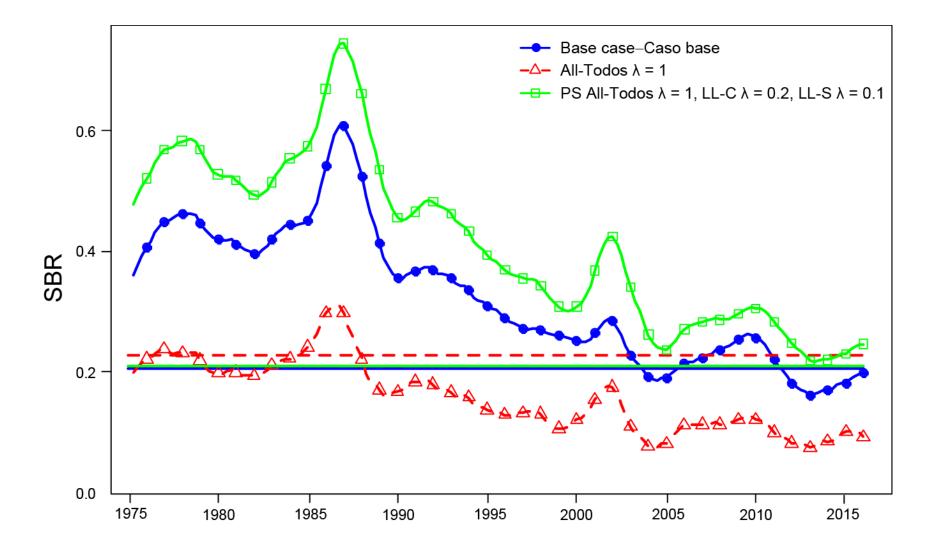


Sensitivity analyses

- Steepness of SR relationship (Appendix B)
- Weighting assigned to the size-composition data (Appendix C)
- Lower values of average size of oldest fish (L₂) (Appendix D)
- Higher rates of juvenile *M* (Appendix E)
- Lower and higher rates of adult *M* (Appendix F)

R_0 profile



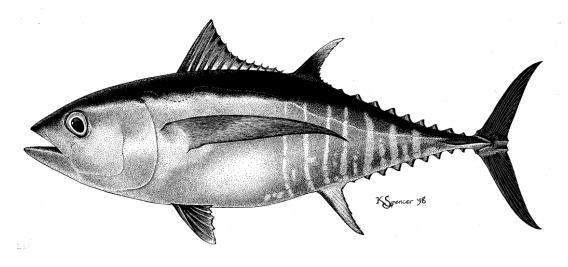


Recruitment

Spawning biomass ratio

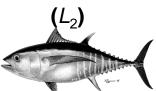
Sensitivities

(Weighting)


Management quantities

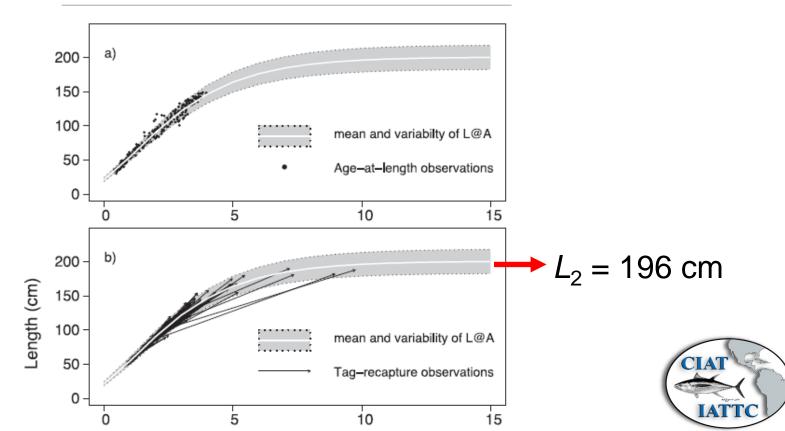
	Base case- Caso base	λ = 1	F13: $\lambda = 0.2$ F14: $\lambda = 0.1$ Others/Otros: $\lambda = 1$
MSY-RMS	107,864	95,544	114,954
B _{MSY} - B _{RMS}	389,211	340,276	456,082
S _{MSY} - S _{RMS}	95,101	82,911	115,464
$B_{\rm MSY}/B_0 - B_{\rm RMS}/B_0$	0.26	0.29	0.26
$S_{MSY}/S_0 - S_{RMS}/S_0$	0.21	0.23	0.21
C _{recent} /MSY- C _{recent} /RMS	0.97	1.09	0.91
$B_{\rm recent}/B_{\rm MSY} - B_{\rm recent}/B_{\rm RMS}$	1.00	0.59	1.35
$S_{\text{recent}}/S_{\text{MSY}}-S_{\text{recent}}/S_{\text{RMS}}$	0.96	0.41	1.16
F multiplier-Multiplicador de F	1.05	0.57	1.30

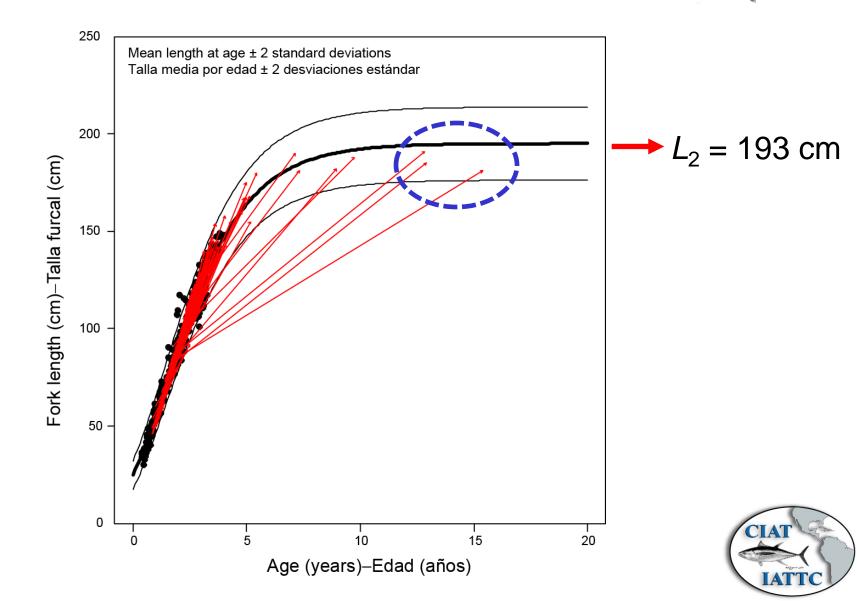
- Unweighting size composition data of LL fisheries
 - More pessimistic stock status
 - Strong "two-stage" recruitment pattern


Sensitivity analyses

- Steepness of SR relationship (Appendix B)
- Weighting assigned to the size-composition data (Appendix C)
- Lower values of average size of oldest fish (L_2) (Appendix D)
- Higher rates of juvenile *M* (Appendix E)
- Lower and higher rates of adult M (Appendix F)

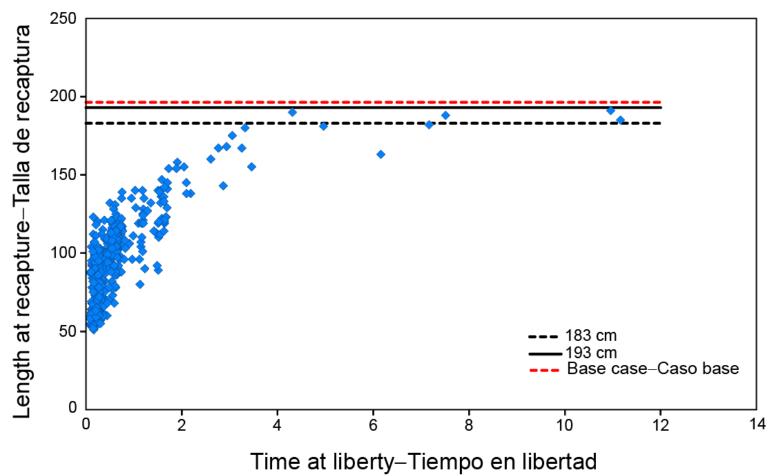
Average size of oldest fish (L_2) ?



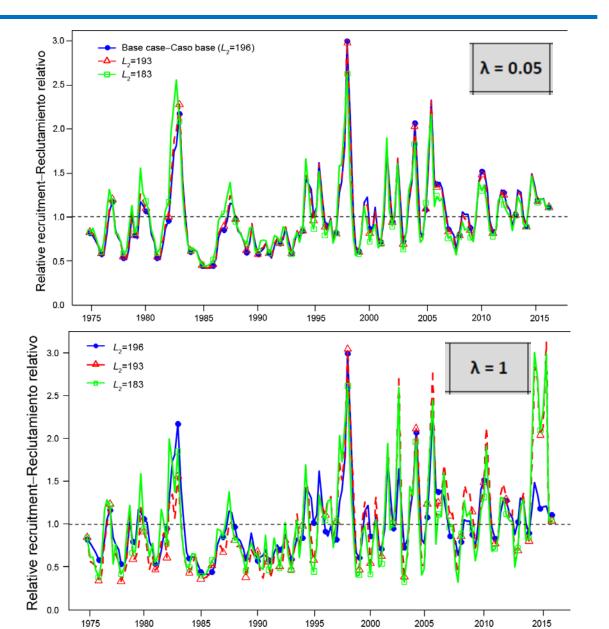

Improved growth estimates from integrated analysis of direct aging and tag-recapture data: An illustration with bigeye tuna (*Thunnus obesus*) of the eastern Pacific Ocean with implications for management

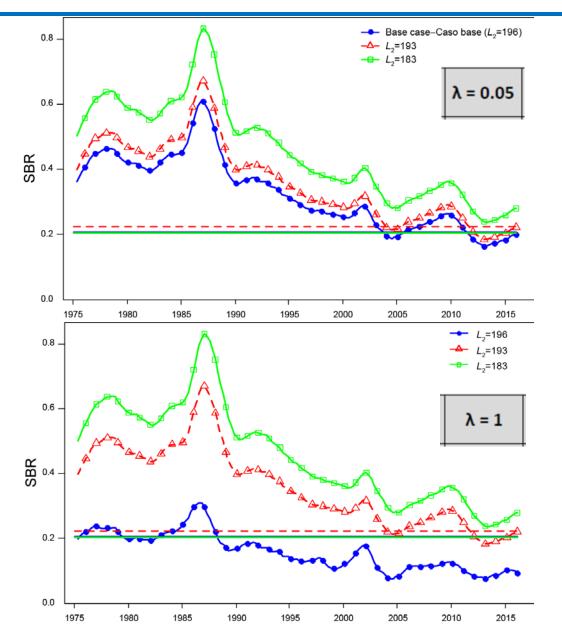
Alexandre M. Aires-da-Silva^{*}, Mark N. Maunder, Kurt M. Schaefer, Daniel W. Fuller Inter-American Tropical Tuna Commission, 8901 La Jolla Shores Drive, La Jolla, CA 92037-1508, United States

CrossMark

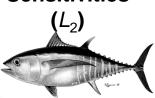

Average size of oldest fish (L_2) ?

Sensitivities

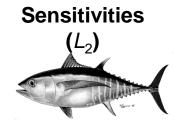

(L₂)



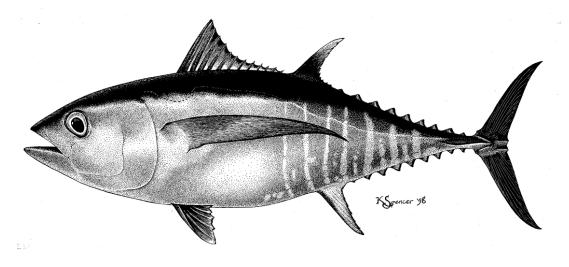
Recruitment



Sensitivities (L₂)

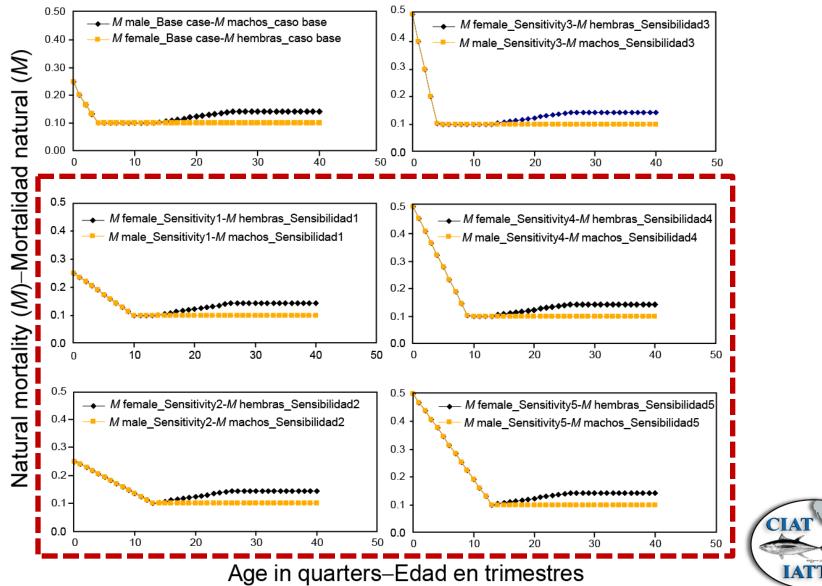

Spawning biomass ratio

Sensitivities

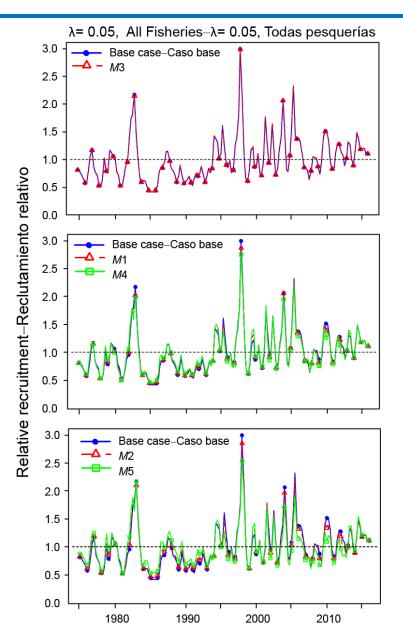

Management quantities

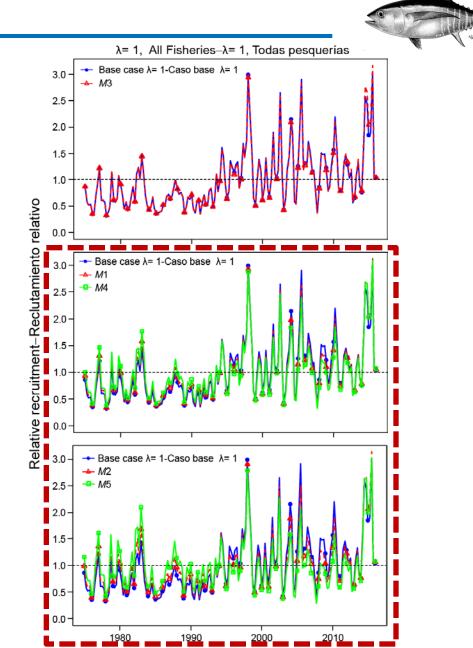
	Base case- Caso base	λ = 0.05	λ = 0.05	λ = 1	λ = 1	λ = 1
L ₂	196	193	183	196	193	183
MSY-RMS	107,864	110,115	120,434	95,544	100,872	107,620
B _{MSY} - B _{RMS}	389,211	399,907	432,280	340,276	352,365	382,856
S _{MSY} - S _{RMS}	95,101	94,726	90,508	82,911	81,834	79,086
$B_{\rm MSY}/B_0 - B_{\rm RMS}/B_0$	0.26	0.26	0.25	0.29	0.29	0.27
S _{MSY} /S ₀ -S _{RMS} /S ₀	0.21	0.21	0.19	0.23	0.22	0.2
C _{recent} /MSY- C _{recent} /RMS	0.97	0.95	0.87	1.09	1.03	0.97
$B_{\rm recent}/B_{\rm MSY}$ - $B_{\rm recent}/B_{\rm RMS}$	1.00	1.11	1.39	0.59	0.77	1.29
$S_{\rm recent}/S_{\rm MSY}$ - $S_{\rm recent}/S_{\rm RMS}$	0.96	1.08	1.45	0.41	0.53	1.06
F multiplier-Multiplicador de F	1.05	1.16	1.53	0.57	0.69	1.16

- Lower L_2
 - More optimistic stock status
 - Improves "two-stage" recruitment pattern

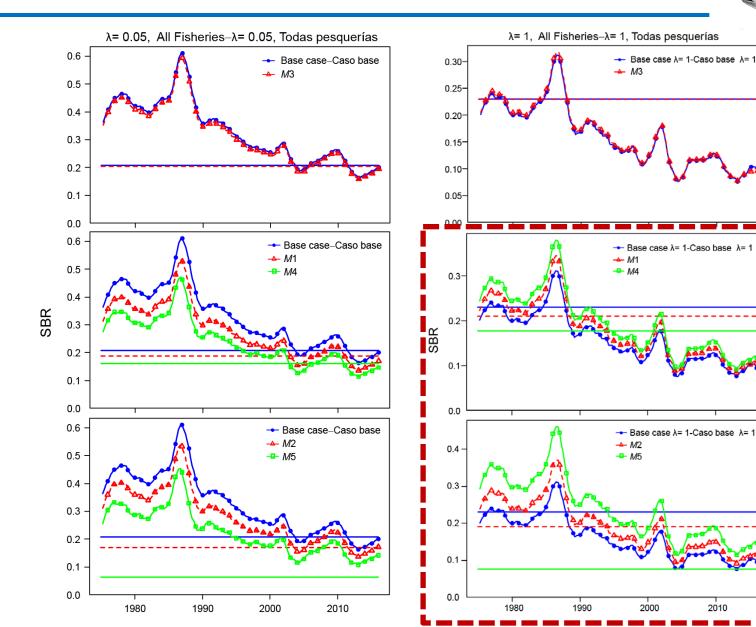

Sensitivity analyses

- Steepness of SR relationship (Appendix B)
- Weighting assigned to the size-composition data (Appendix C)
- Lower values of average size of oldest fish (L_2) (Appendix D)
- Higher rates of juvenile M (Appendix E)
- Lower and higher rates of adult *M* (Appendix F)




Juvenile M schedules

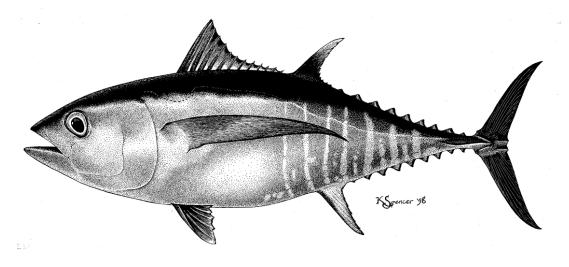
Recruitment



Sensitivities (Juvenile *M*)

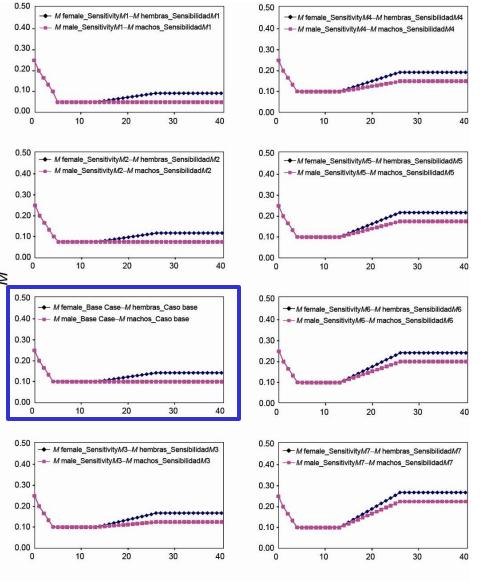
Spawning biomass ratio

2010


Management quantities

λ = 0.05, all fisheries—	<i>M</i> ₀ =	<i>M</i> ₀ = 0.5	M ₀ =	$M_0 = 0.5$	M ₀ =	$M_0 = 0.5$
todas pesquerías	0.25	$N_0 = 0.5$	0.25	$N_{0} = 0.5$	0.25	$N_0 = 0.5$
Age (quarters)	5	5	10	10	13	13
Edad (trimestres)	5	5	10	10	12	12
MSY-RMS	107,864	107,692	108,830	111,450	112,312	126,262
B _{MSY} - B _{RMS}	389,211	374,742	326,723	281,092	305,120	211,981
S _{MSY} - S _{RMS}	95,101	90,427	71,794	52,902	60,632	16,596
$B_{\rm MSY}/B_0 - B_{\rm RMS}/B_0$	0.26	0.26	0.26	0.26	0.25	0.22
$S_{MSY}/S_0 - S_{RMS}/S_0$	0.21	0.21	0.19	0.16	0.17	0.064
C _{recent} /MSY- C _{recent} /RMS	0.97	0.97	0.96	0.94	0.93	0.83
$B_{\rm recent}/B_{\rm MSY}$ - $B_{\rm recent}/B_{\rm RMS}$	1.00	0.99	0.97	1.00	1.06	1.55
$S_{\rm recent}/S_{\rm MSY}$ - $S_{\rm recent}/S_{\rm RMS}$	0.96	0.95	0.9	0.91	1.01	2.22
F multiplier-						
Multiplicador de F	1.05	1.04	1.01	1.03	1.11	1.77
λ = 1, all fisheries—	<i>M</i> ₀ =	M ₀ =	M ₀ =	M - 0 5	M ₀ =	M - 0 5
	M ₀ = 0.25	M ₀ = 0.5	M ₀ = 0.25	<i>M</i> ₀ = 0.5	M ₀ = 0.25	<i>M</i> ₀ = 0.5
λ = 1, all fisheries—	0.25	0.5	0.25		0.25	
λ = 1, all fisheries— todas pesquerías	v	v	•	<i>M</i> ₀ = 0.5 10	-	M ₀ = 0.5
λ = 1, all fisheries— todas pesquerías Age (quarters)	0.25	0.5	0.25		0.25	13
λ = 1, all fisheries— todas pesquerías Age (quarters) Edad (trimestres)	0.25 5	0.5 5	0.25 10	10	0.25 13	13
λ = 1, all fisheries— todas pesquerías Age (quarters) Edad (trimestres) MSY-RMS	0.25 5 95,544	0.5 5 102,822	0.25 10 105,136	10 109,484	0.25 13 107,477	13 126,703
λ = 1, all fisheries—todas pesqueríasAge (quarters)Edad (trimestres)MSY-RMSB _{MSY} - B _{RMS}	0.25 5 95,544 340,276	0.5 5 102,822 345,811	0.25 10 105,136 319,633	10 109,484 286,226	0.25 13 107,477 301,285	13 126,703 225,595
λ = 1, all fisheries—todas pesqueríasAge (quarters)Edad (trimestres)MSY-RMSB _{MSY} - B _{RMS} S _{MSY} - S _{RMS}	0.25 5 95,544 340,276 82,911	0.5 5 102,822 345,811 82,195	0.25 10 105,136 319,633 70,235	10 109,484 286,226 54,692	0.25 13 107,477 301,285 60,012	13 126,703 225,595 19,854
λ = 1, all fisheries— todas pesquerías Age (quarters) Edad (trimestres) MSY-RMS $B_{MSY} - B_{RMS}$ $S_{MSY} - S_{RMS}$ $B_{MSY}/B_0 - B_{RMS}/B_0$	0.25 5 95,544 340,276 82,911 0.29	0.5 5 102,822 345,811 82,195 0.3	0.25 10 105,136 319,633 70,235 0.29	10 109,484 286,226 54,692 0.28	0.25 13 107,477 301,285 60,012 0.28	13 126,703 225,595 19,854 0.23
$\begin{aligned} \lambda &= 1, \text{ all fisheries} \\ & \text{todas pesquerías} \\ \hline & \text{Age (quarters)} \\ \hline & \text{Edad (trimestres)} \\ \hline & \text{MSY-RMS} \\ & B_{\text{MSY}} - B_{\text{RMS}} \\ & S_{\text{MSY}} - S_{\text{RMS}} \\ & B_{\text{MSY}} / B_0 - B_{\text{RMS}} / B_0 \\ & S_{\text{MSY}} / S_0 - S_{\text{RMS}} / S_0 \end{aligned}$	0.25 5 95,544 340,276 82,911 0.29 0.23	0.5 5 102,822 345,811 82,195 0.3 0.23	0.25 10 105,136 319,633 70,235 0.29 0.21	10 109,484 286,226 54,692 0.28 0.18	0.25 13 107,477 301,285 60,012 0.28 0.19	13 126,703 225,595 19,854 0.23 0.076
$\begin{aligned} \lambda &= 1, \text{ all fisheries} \\ & \text{todas pesquerías} \\ \hline & \text{Age (quarters)} \\ \hline & \text{Edad (trimestres)} \\ \hline & \text{MSY-RMS} \\ & B_{\text{MSY}} - B_{\text{RMS}} \\ & S_{\text{MSY}} - S_{\text{RMS}} \\ & B_{\text{MSY}} / B_0 - B_{\text{RMS}} / B_0 \\ & S_{\text{MSY}} / S_0 - S_{\text{RMS}} / S_0 \\ & C_{\text{recent}} / \text{MSY} - C_{\text{recent}} / \text{RMS} \end{aligned}$	0.25 5 95,544 340,276 82,911 0.29 0.23 1.09	0.5 5 102,822 345,811 82,195 0.3 0.23 1.01	0.25 10 105,136 319,633 70,235 0.29 0.21 0.99	10 109,484 286,226 54,692 0.28 0.18 0.95	0.25 13 107,477 301,285 60,012 0.28 0.19 0.97	13 126,703 225,595 19,854 0.23 0.076 0.82
$\begin{split} \lambda &= 1, \text{ all fisheries} - \\ & \text{todas pesquerías} \\ \hline & \text{Age (quarters)} \\ \hline & \text{Edad (trimestres)} \\ \hline & \text{MSY-RMS} \\ & B_{\text{MSY}} - B_{\text{RMS}} \\ & S_{\text{MSY}} - S_{\text{RMS}} \\ & B_{\text{MSY}} / B_0 - B_{\text{RMS}} / B_0 \\ & S_{\text{MSY}} / S_0 - S_{\text{RMS}} / S_0 \\ & C_{\text{recent}} / \text{MSY- } C_{\text{recent}} / \text{RMS} \\ & B_{\text{recent}} / B_{\text{MSY}} - B_{\text{recent}} / B_{\text{RMS}} \end{split}$	0.25 5 95,544 340,276 82,911 0.29 0.23 1.09 0.59	0.5 5 102,822 345,811 82,195 0.3 0.23 1.01 0.66	0.25 10 105,136 319,633 70,235 0.29 0.21 0.99 0.81	10 109,484 286,226 54,692 0.28 0.18 0.95 1.03	0.25 13 107,477 301,285 60,012 0.28 0.19 0.97 0.94	13 126,703 225,595 19,854 0.23 0.076 0.82 1.88

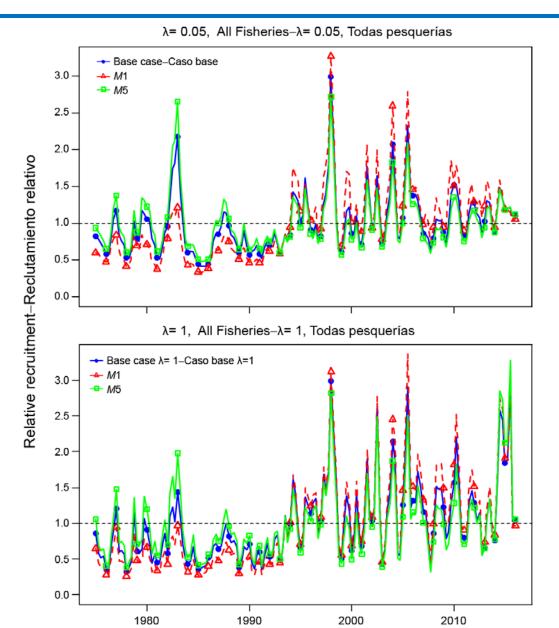
- Higher *juvenile M*
 - More optimistic stock status
 - Only extreme cases improves "two-stage" recruitment pattern, not biologically reasonable

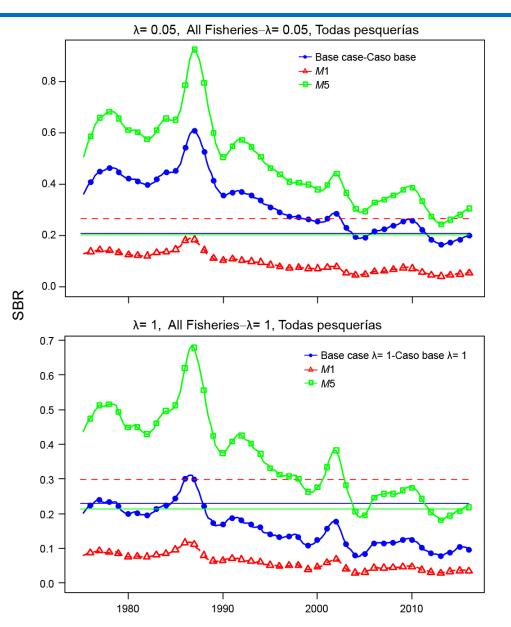


Sensitivity analyses

- Steepness of SR relationship (Appendix B)
- Weighting assigned to the size-composition data (Appendix C)
- Lower values of average size of oldest fish (L₂) (Appendix D)
- Higher rates of juvenile *M* (Appendix E)
- Lower and higher rates of adult *M* (Appendix F)

Adult M schedules


Age (quarters)–Edad (trimestres)

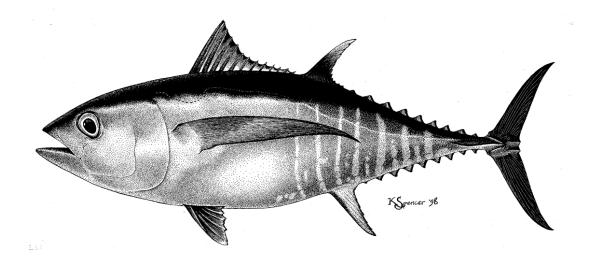


Recruitment

Sensitivities (Adult M)

Spawning biomass ratio

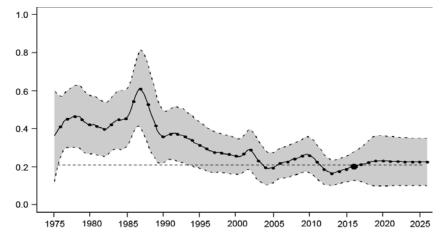
Management quantities



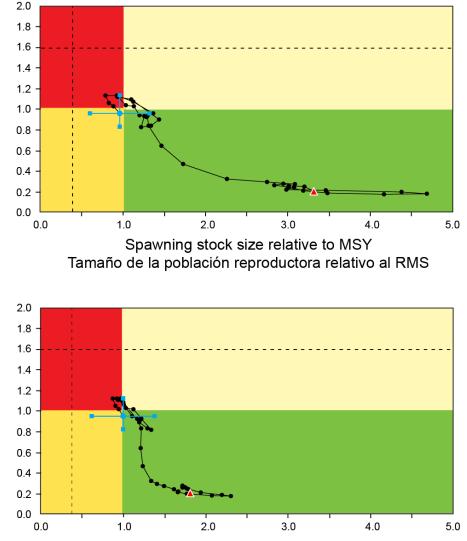
			Base					
λ = 0.05, all fisheries—	Mad-	Mad-	case	Mad-	Mad-	Mad-	Mad-	Mad-
todas pesquerías	sens1	sens2	Caso	sens3	sens4	sens5	sens6	sens7
			base					
MSY-RMS	123,379	105,537	107,864	114,673	121,037	126,395	130,515	134,010
B _{MSY} - B _{RMS}	565,617	425,993	389,211	406,529	416,454	421,992	424,606	426,046
S _{MSY} - S _{RMS}	169,233	115,829	95,101	97,768	97,168	96,336	94,607	92,750
$B_{\rm MSY}/B_0$ - $B_{\rm RMS}/B_0$	0.28	0.27	0.26	0.26	0.26	0.26	0.26	0.27
$S_{MSY}/S_0 - S_{RMS}/S_0$	0.27	0.23	0.21	0.21	0.2	0.2	0.2	0.2
C _{recent} /MSY- C _{recent} /RMS	0.84	0.99	0.97	0.91	0.86	0.82	0.8	0.78
$B_{\rm recent}/B_{\rm MSY}$ - $B_{\rm recent}/B_{\rm RMS}$	0.31	0.58	1.00	1.21	1.35	1.44	1.5	1.55
$S_{\rm recent}/S_{\rm MSY}-S_{\rm recent}/S_{\rm RMS}$	0.2	0.47	0.96	1.22	1.39	1.5	1.58	1.63
F multiplier-								
Multiplicador de F	0.4	0.64	1.05	1.29	1.48	1.62	1.72	1.81
$\lambda = 1$, all fisheries—	Mad-	Mad-		Mad-	Mad-	Mad-	Mad-	Mad-
,	maa							
todas pesquerías	sens1	sens2	λ = 1	sens3	sens4	sens5	sens6	sens7
· ·		sens2 111,103	A = 1 95,544	sens3 100,851	sens4 102,766	sens5 108,296	sens6 115,942	sens7 122,755
todas pesquerías	sens1							
todas pesquerías MSY-RMS	sens1 133,834	111,103	95,544	100,851	102,766	108,296	115,942	122,755
todas pesquerías MSY-RMS B _{MSY} - B _{RMS}	sens1 133,834 663,082	111,103 454,769	95,544 340,276	100,851 338,034	102,766 337,600	108,296 350,831	115,942 371,995	122,755 388,208
todas pesquerías MSY-RMS B _{MSY} - B _{RMS} S _{MSY} - S _{RMS}	sens1 133,834 663,082 205,439	111,103 454,769 126,585	95,544 340,276 82,911	100,851 338,034 78,926	102,766 337,600 76,612	108,296 350,831 78,414	115,942 371,995 81,777	122,755 388,208 83,760
todas pesquerías MSY-RMS B _{MSY} - B _{RMS} S _{MSY} - S _{RMS} B _{MSY} /B ₀ - B _{RMS} /B ₀	sens1 133,834 663,082 205,439 0.3	111,103 454,769 126,585 0.3	95,544 340,276 82,911 0.29	100,851 338,034 78,926 0.29	102,766 337,600 76,612 0.29	108,296 350,831 78,414 0.28	115,942 371,995 81,777 0.28	122,755 388,208 83,760 0.28
todas pesquerías MSY-RMS B _{MSY} - B _{RMS} S _{MSY} - S _{RMS} B _{MSY} /B ₀ - B _{RMS} /B ₀ S _{MSY} /S ₀ - S _{RMS} /S ₀	sens1 133,834 663,082 205,439 0.3 0.3	111,103 454,769 126,585 0.3 0.26	95,544 340,276 82,911 0.29 0.23	100,851 338,034 78,926 0.29 0.22	102,766 337,600 76,612 0.29 0.22	108,296 350,831 78,414 0.28 0.21	115,942 371,995 81,777 0.28 0.21	122,755 388,208 83,760 0.28 0.21
todas pesquerías MSY-RMS B _{MSY} - B _{RMS} S _{MSY} - S _{RMS} B _{MSY} /B ₀ - B _{RMS} /B ₀ S _{MSY} /S ₀ - S _{RMS} /S ₀ C _{recent} /MSY- C _{recent} /RMS	sens1 133,834 663,082 205,439 0.3 0.3 0.78	111,103 454,769 126,585 0.3 0.26 0.94	95,544 340,276 82,911 0.29 0.23 1.09	100,851 338,034 78,926 0.29 0.22 1.03	102,766 337,600 76,612 0.29 0.22 1.01	108,296 350,831 78,414 0.28 0.21 0.96	115,942 371,995 81,777 0.28 0.21 0.9	122,755 388,208 83,760 0.28 0.21 0.85
todas pesquerías MSY-RMS B _{MSY} - B _{RMS} S _{MSY} - S _{RMS} B _{MSY} /B ₀ - B _{RMS} /B ₀ S _{MSY} /S ₀ - S _{RMS} /S ₀ C _{recent} /MSY- C _{recent} /RMS B _{recent} /B _{MSY} - B _{recent} /B _{RMS}	sens1 133,834 663,082 205,439 0.3 0.3 0.78 0.21	111,103 454,769 126,585 0.3 0.26 0.94 0.39	95,544 340,276 82,911 0.29 0.23 1.09 0.59	100,851 338,034 78,926 0.29 0.22 1.03 0.83	102,766 337,600 76,612 0.29 0.22 1.01 1.03	108,296 350,831 78,414 0.28 0.21 0.96 1.24	115,942 371,995 81,777 0.28 0.21 0.9 1.43	122,755 388,208 83,760 0.28 0.21 0.85 1.56

• Higher adult *M*

- More optimistic stock status
- Only extreme cases improves "two-stage" recruitment pattern, not biologically reasonable

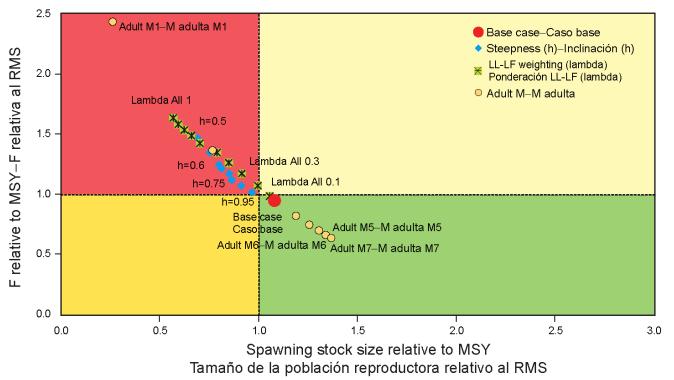

Summary

Summary: key results


- Population decline observed since the early 1990s ceased around 2005 following IATTC conservation resolutions
- The recent decline since 2010 may be related to series of below average recruitments coinciding with strong La Nina events (since 2007)
- The recent improvement since 2012 is driven by a recent increase in the longline CPUE data
- At current fishing mortality levels, and average recruitment, SBR is predicted to stabilize slightly above SBR at MSY

Summary

Summary: key results (cont.)


- The recent levels of spawning biomass are estimated to be slightly below the MSY level $(S_{\text{recent}} < S_{\text{MSY}})$, overfished
- The recent fishing mortality relativa al RMS rates are estimated to be below the level corresponding to MSY ($F_{recent} < F_{MSY}$), [±] relative to MSY overfishing not taking place
- But the recent estimates are uncertain (low precision)
- Proposed limit reference points of 0.38 S_{MSY} and 1.6 F_{MSY} have not been exceeded

Total stock size relative to the level corresponding to MSY Tamaño total de la población relativo al nivel correspondiente al RMS

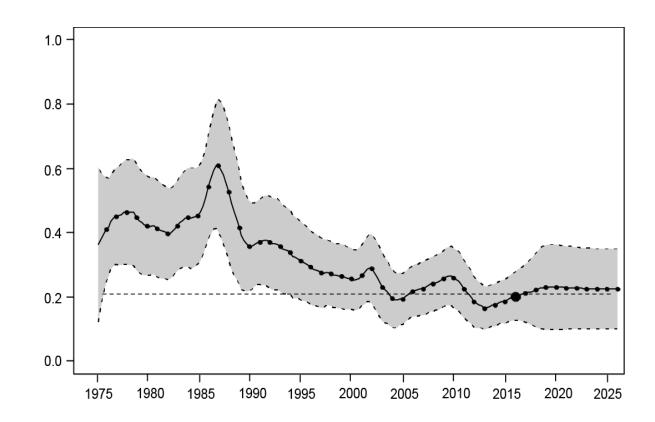
Summary: key results (cont.)

- However, these interpretations are highly sensitive about the following assumptions:
 - Steepness of stock-recruitment relationship
 - Average size of the oldest fish (L₂)
 - Natural mortality levels
 - Weighting assigned to the size composition data

Summary

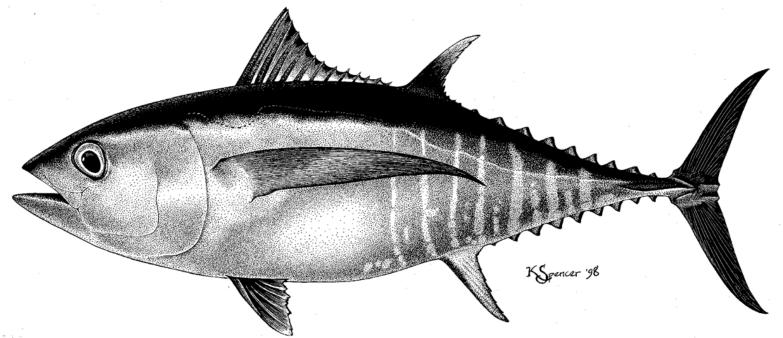
• Results are more **pessimistic** with:

- The inclusion of a stock-recruitment relationship
- Lower rates of adult natural mortality (M)
- Higher L₂ (but it may be lower from tagging data)
- Up-weighting the size composition data (LL in particular)


- Results are more **optimistic** with:
 - Higher rates of adult natural mortality (M)
 - Lower L₂ (likely under the tag-recapture data)

What is robust

- Relative trend
- Lower biomass compared to historic levels


Future work

- Investigate sources of model misspecification
 - Average length of oldest bigeye (L_2)
 - Natural mortality (*M*)
 - Formulation of more flexible growth curve
 - Weighting of different data sets
 - Fishery definitions
 - Stock structure (collaboration with SPC staff on PW assessment)

1.