Sea Turtles in U.S. Fisheries

Photo Credit (L to R): Jeffrey Seminoff (NOAA), Damien Bailey (NOAA), Mark Dodd (Georgia DNR).

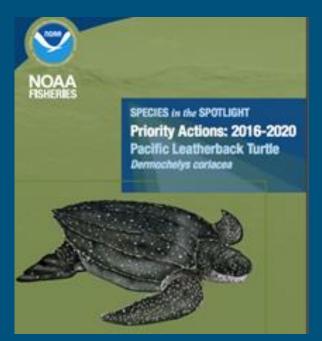
U.S. Sea Turtle Protections

Common Name

Endangered Species Act

Olive ridley turtle Loggerhead turtle Green turtle Hawksbill turtle Leatherback turtle

Threatened/Endangered* Endangered** Threatened*** Endangered Endangered


*The Mexican breeding population of olive ridleys is Endangered, the rest are Threatened **North Pacific and South Pacific Loggerhead Distinct Population Segments (DPS) *** East Pacific Green DPS

Species in the Spotlight -Pacific Leatherbacks

97% decline since 1980s (eastern) NOAA Fisheries initiative to *increase* actions to prevent extinction **Top 5 Priority Actions include Reduce fisheries interactions** Improve nesting beach protection and reproductive output International cooperation Monitoring and research Public engagement

Photo credit: Scott Benson, SWC

Domestic Laws and Measures for Sea Turtles

Shallow-Set Longline Fishery

Target: swordfish

Large circle hooks required (size 18/0 or larger) maximum of 10 degrees offset mackerel-type fish bait

A 'hard cap' on sea turtle interactions

100% observer coverage

Annual protected species workshops

Domestic Laws and Measures for Sea Turtles

<u>California Drift Gillnet Fishery</u>

Target: swordfish and thresher shark
Time/area closure during forecast or occurring El Niño years to protect North Pacific loggerheads
Time/area closure (permanent) in central California/southern Oregon to protect Pacific leatherbacks (August 15-November 15)
Fishery observed since 1990, with ~20% observer coverage
Annual protected species workshop

Sea Turtle Conservation Areas for CA drift gillnet fishery

Sea Turtle Interactions (2015-2016)

Deep-set Longline (~20%)

Shallow-set Longline (100%)

Species	Year	Observed	Estimate
Loggarbood	2016	0	0
Loggerhead	2015	1	3
Leatherback	2016	0	0
Leatherback	2015	015 0	0
Olive Didley	2016	1	5
Olive Ridley	2015	1	3
Creen	2016 0	0	
Green	2015	0	0

Species	Year	Observed
Loggerhead	2016	14
	2015	11
Leatherback	2016	2
	2015	2
Olive Ridley	2016	0
	2015	0
Green	2016	0
	2015	0

Sea Turtle Interactions

Purse Seine (2014-2015)

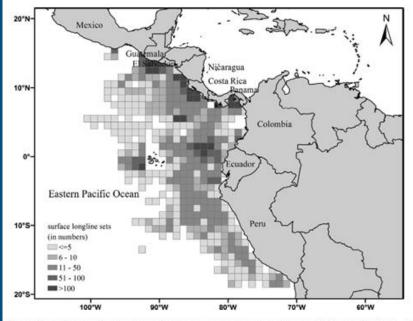
Species	Year	Mortality	Released Unharmed	Entangled Alive in Flotsam
Loggerhead	2015	0	1	0
	2014	0	0	0
Leatherback	2015	0	0	0
	2014	0	0	0
Olive Ridley	2015	0	1	0
	2014	0	0	0
Green	2015	0	1	0
	2014	0	0	0
Unidentified	2015	1	0	1
	2014	0	0	0

U.S. Sea Turtle Bycatch Mitigation Research Longline fisheries (shallow and deep-set) Location/Sea surface temperature important predictor of risk large circle hooks, minimal offset whole finfish for bait Set deeper hooks 065

Fishing methods to reduce sea turtle mortality associated with pelagic longlines

John W. Watson, Sheryan P. Epperly, Arvind K. Shah, and Daniel G. Foster

Abstract: Changes in book dosign and hait type were investigated as measures to reduce the bycatch of sea tartles on pelagic lengtines in the western North Atlantic Ocean. Specifically, the effectiveness of 1807 circle hooks and mackerel Genetice neordorar) bait was ovaluated with respect to reducing nea tartle interactions and maintaining awordfish (Gebiar glodiar) and tarus (Theorar 1972) catch rates. Individually, circle hooks and mackered bait significantly reduced



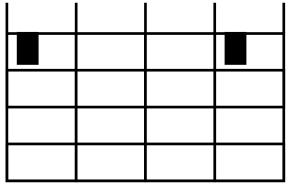
U.S. Collaborative Bycatch Reduction Research with IATTC CPCs

Cross?

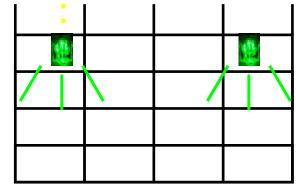
Taiwan, Costa Rica, Ecuador, Mexico, Peru, Cook Islands, Guatemala, and Panama

Distribution of fishing effort (number of sets) observed by the program between 2004 and 2010 in $1^{\circ} \times 1^{\circ}$

Circle hooks: Developing better fishing practices in the artisanal longline fisheries of the Eastern Pacific Ocean


Sandra Andraka^{a,*}, Moisés Mug^a, Martin Hall^b, Maite Pons^c, Lucas Pacheco^d, Manuel Parrales^e, Liliana Rendón^e, María L. Parga^f, Takahisa Mituhasi^g, Álvaro Segura^h, David Ortegaⁱ, Erick Villagrán^j, Sara Pérez^j, Celina de Paz^k, Salvador Siu^k, Velkiss Gadea¹, Julián Caicedo^m, Luis A. Zapata^m, Jimmy Martínez^e, Pablo Guerreroⁿ, Michael Valqui^o, Nick Vogel^b

Net illumination to reduce Sea Turtle Bycatch


(Wang, Swimmer, Fisler, ProDelphinus, etc)

Experiment: Illuminate nets with lightsticks

VS

Control Net Inactive LEDs

Activated LEDs



Net Illumination to Reduce Sea Turtle Bycatch

Location Species	Visual Cue/Illumination	Turtle Catch Rates	Target Catch Rate	Citation
Mexico C.m <i>ydas</i>	Chemi-lights/LEDs	40% - 59% decrease	NO change	Wang et al, 2010
Mexico C.m <i>ydas</i>	UV/Orange LEDs	40% - 50% decrease	NO change	Wang et al, 2013
Peru C.mydas, C. Caretta	Green LEDs	65% decrease	NO change	Ortiz et al, 2016

Net illumination to Reduce Multi-Taxa

Bycatch	Visual Cue/Illuminatio n	Change in bycatch	Target Catch Rate
Sea birds	Green LED	85% reduction	NO EFFECT
Sea lions (O. flavescens)	UV LED	90% reduction	NO EFFECT
Porpoises & Dolphins	Green LED	60% reduction	NO EFFECT

Reducing green turtle bycatch in small-scale fisheries using illuminated gillnets: the cost of saving a sea turtle

Natalia Ortiz¹, Jeffrey C. Mangel^{1,2,*}, John Wang³, Joanna Alfaro-Shigueto^{1,2,4}, Sergio Pingo¹, Astrid Jimenez¹, Tania Suarez¹, Yonat Swimmer³, Felipe Carvalho^{3,5}, Brendan J. Godley²