

SAC-08-06a A REVIEW OF FISHERY DATA AVAILABLE FOR SMALL PURSE-SEINE VESSELS

8^a Reunión del Comité Científico Asesor 8th Meeting of the Scientific Advisory Committee

BACKGROUND

- The number of floating-object sets of both small (class 1-5) and large (class-6) purse-seine vessels has increased since 2005
- A decreasing trend in purse-seine catch-per- floating object set, for YFT, BET & SKJ
- Changes in the dynamics of the fishery on floating objects have prompted the need for a review of the data available for small (class 1-5) purse-seine vessels

CATCH AND EFFORT OF SMALL AND LARGE VESSELS

- Small and large vessels NOA fishing areas overlap
- Some areas/years with equal or greater effort made by small vessels
- Whale sharks and Mobulid rays are caught in NOA made by large vessels and may also occur in NOA made by small vessels

CATCH AND EFFORT OF SMALL AND LARGE VESSELS

- OBJ effort of small vessels overlaps areas with FOB activity made by large vessels
- Some areas/years with equal or greater effort made by small vessels
- The majority of non-target species are caught in OBJ made by large vessels
- Catches of non-target species may also occur in OBJ made by small purse-seine vessels

BYCATCH AND DYNAMICS ON FLOATING OBJECTS

FAD fishery

- Since 2008 >90% of all floating-object sets made by <u>large vessels</u> are estimated to have been sets on FADs
- FAD information is important for proper management of the floating-object fishery

BYCATCH AND DYNAMICS ON FLOATING OBJECTS

FAD fishery

- FAD information is important for proper management of the floating-object fishery
 - The increase in fishing effort on FADs is hypothesized to be correlated with a decreased density of schools of bigeye in the EPO
 - FAD depth has been found to be associated with increased chances of catching bigeye tuna
- The similarity of characteristics of floating objects involved in sets by small and large purse-seine vessels is unknown
 - Are the FAD interactions similar? The vessels share the same areas...
 - Are the FAD interactions different? Due to differences in operational characteristics between small and large vessels
 - Differences in operational characteristics between small and large vessels may lead to different fishing strategies for small vessels (e.g. deployments, soak time)

DATA SOURCE FOR SMALL VESSELS

- Logbooks and cannery records (when available) continue to be the principal source of data.
- Logbooks info about 85% since 2005

- May not provide full information on species composition of retained catch for non-target species
- Do not provide information on at-sea discards of tuna and nontarget species
- Other than object type, the detailed information collected by observers is not available for small vessel floating object sets recorded on IATTC logbook forms

INTER-AMERICAN TROPICAL TUNA COMMISSION

91st EXTRAORDINARY MEETING

La Jolla, California (USA)

7-10 February 2017

RESOLUTION C-17-01

CONSERVATION OF TUNA IN THE EASTERN PACIFIC OCEAN DURING 2017

The Director shall notify CPCs when the catch of yellowfin and bigeye by capacity class 4, 5, and 6 purse-seine vessels reaches 80% of the total catch limit in sets on floating objects or dolphins, respectively. At 90% of the total catch limit, the Director shall notify CPCs of an estimated closure date for the respective fishery, and at 100% the Director will announce the closure of the respective fishery.

• These deficiencies could be problematic for near real-time monitoring of tuna catch relative to species-specific quotas

PICD OBSERVER PROGRAMS

- Large vessels have nearly 100% Obs. coverage, providing important details about fishing activities and floating-object characteristics
- A lack of detailed information on the fishing activities on floating objects of small vessels may compromise management of the purse-seine fishery
- Small vessels are rarely sampled by observer programs. IATTC and national observer programs have placed observers on some trips by small vessels only under certain circumstances
- In 2016 the sampling observer coverage increased to almost 12%

SMALL VESSELS SAMPLED BY OBSERVER PROGRAMS IN 2016

- Observers from 3 different PICD programs participated in the sampling
- 57.8% were Class-4 vessels that carried an observer due to the fishing closure. 42.2% were vessels that voluntarily carried an observer per initiative of the ISSF

Year

SMALL VESSELS SAMPLED BY OBSERVER PROGRAMS IN 2016

- Observers from 3 different PICD programs participated in the sampling
- 57.8% were Class-4 vessels that carried an observer due to the fishing closure. 42.2% were vessels that voluntarily carried an observer per initiative of the ISSF
- The majority departed during the last five months of the year.

Percentage of observed trips made by class 1-5 vessels that departed during 2016

MONITORING OPTIONS ON SMALL VESSELS

- Place an observer
 - Space constrains (e.g. class <=4)
 - Costs
 - Appropriate sampling design?
- Port sampling
 - Does not provide at-sea discard information
- Electronic Monitoring (EM)
 - It can provide bycatch information when data from onboard observers are not available (Restrepo et al. 2014)
 - EM on large purse-seines with high resolution video have proven efficient for estimating bycatch of large-bodied species (Ruiz et al. 2014; Krug et al. 2016), and release efforts recordings
 - Although promising for large-sized species, medium or small-sized species, would be problematic to identify (Ruiz *et al.* 2014)
 - FADs, which are large objects, would not be difficult to monitor by EM. Also, FAD interactions, such as deployments and removals, could be easily recorded
- EM logbook combination
 - Estimations on tuna discards: Total catch (EM) retained catch (logbooks)

Questions

