Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

An updated ecosystem model of the eastern tropical Pacific Ocean: Analysis of ecological indicators and the potential impacts of FAD fishing on ecosystem dynamics

Shane Griffiths and Leanne Fuller

10th Meeting of the Scientific Advisory Committee San Diego, California USA, 13-17 May 2018 Document: SAC-10-15

Outline

- IATTC's responsibilities and commitment to ecological sustainability
- Previous work on trophic ecology and ecosystem modelling to explore the ecological impacts of tuna fishing in the EPO
- Update of existing ecosystem model of the ETP to develop standardized ecological indicators to monitor ecosystem integrity
- Simulate the potential impacts of FADs in the EPO over the next 10 years
- Model caveats and recommendations for future research

Ecological sustainability

- IATTC committed to ensuring ecologically sustainability of its fisheries
 - Antigua Convention, IATTC Resolutions, and improved ecosystem reporting (SAC-10-14)
 - Development of a quantitative ERA model for data-poor species (EASI-Fish)

Beyond single species

- Single species monitoring, reporting and assessment is valuable
- But these data do not tell us if fishing is impacting the structure and internal dynamics (e.g. strength of trophic flows) of complex ecosystems

Beyond single species

- IATTC staff have undertaken studies to quantify trophic flows
- Stomach and stable sampling conducted in early 1990s and 2000s
- Allowed development of ETP ecosystem model (Olson & Watters, 2003)

ETP ecosystem model

- ETP model existed in outdated software (EwE v5.1) since 2003 and never used for ecosystem reporting
- Previously, IATTC has reported only trophic level of the catch (TL_c)
- But complex marine ecosystems require several indicators to describe multidimensional changes to their structure and function
- EwE software (v6.5) now significantly more sophisticated
- Addition of several standardized ecological indicators
- In 2017, staff updated the ETP model with new data 1970-2014
- Staff annually update the model with new catch and effort data and report on ecological indicators in the *"Ecosystem Considerations"* report

Ecological indicators

- Fishing-based indicators
 - TL_c >0.1 TL per decade is considered a significant change (e.g. "fishing down the food web")
 - Marine Trophic Index (MTI) TL_c of TL > 4.0
 - Fishing in Balance Index (FIB) is the MTI changing as expected given available productivity? Also
 indicate whether a fishery is expanding

- Community-based indicators
 - Shannon's index "evenness" measure, relative biomass of functional groups in the ecosystem
 - Community biomass of low (TL 2.0-3.25), intermediate (TL 3.25-4.0), and high (TL > 4.0) trophic levels can provide indicators of trophic cascades.

Historic changes in the structure of the ETP ecosystem for the period 1970-2018

Fishing-based indicators

- Nominal fishing effort scaled from 1993
 - Start of the artificial FAD fishery
- TL_c and MTI declined by 0.05 for 1991-2017
 - Change in TL_c of ≥ 0.1 per decade is significant
- FIB below zero since 2007
 - Catch lower than expected given available productivity 1992-96
 - Increasing FIB > 0 from 1993 indicates expansion of fishery

Community-based indicators

- Declining "evenness"
 - Changing relative biomass
- Alternating biomass trends by TL
 - Decline of predators (>4.0)
 - Increase of prey (3.25-4.0)
- Minor trophic cascade
- Continued trend from 2014, certainly requires monitoring

Assessing the potential impacts of FAD fishing on the dynamics of the ETP ecosystem

Potential ecological impacts of FADs

- OBJ sets have continued to increase by nearly 50% every 5 years
- Increase catch of SKJ, BET, YFT
- Increasing catch of bycatch species
 - Sharks (e.g. silky, hammerheads)
- Increasing retention of 'byproduct'
 - Wahoo
 - Dorado
 - Rainbow runner
 - Billfishes
- EwE can explore 'what if' scenarios

1. Continue current rate of increase in FAD effort: 100% over 10 yrs

2. Halve the current rate of increase in FAD effort: 50% over 10 yrs

3. Hold OBJ and NOA effort fixed at the average no. of sets in 2016-2018

4. Limit OBJ and NOA sets to 15,837; OBJ increase by 1% per yr, NOA decline

1) Increase FAD effort by 100% over 10 yrs

• Biomass of BET, SKJ, marlins and sharks decrease significantly

1) Increase FAD effort by 100% over 10 yrs

• Significant decline in TLc, MTI, Shannon's, TL>4.0; increase FIB & TL 3.25

2) Decrease rate of FAD effort by 50% over 10 yrs

• Biomass of BET, SKJ, marlins & sharks decrease slightly less than Scenario 1

2) Decrease rate of FAD effort by 50% over 10 yrs

Marginal improvement relative to Scenario 1

3) Combined OBJ & NOA sets fixed at 3-yr average

• Biomass of Lg BET, marlins & sharks decrease less than Scenarios 1 & 2

3) Combined OBJ & NOA sets fixed at 3-yr average

• Slight decline in TLc, MTI, but maintenance of other indicators

4) Combined OBJ & NOA sets fixed at 15,837

• Biomass of Lg BET, marlins & sharks decrease slightly more than Scenario 3

4) Combined OBJ & NOA sets fixed at 15,837

• Nearly identical results as Scenario 3, but slightly more pessimistic

Summary

- The structure of the ecosystem has undergone substantial change over the history of the EPO tuna fishery.
- Changes most significant since the early 1990s coinciding with the dramatic increase in FAD sets, increasing by ~50% every 5 years.
- Increase in FAD effort at the current rate (even 50%) is unsustainable from an ecological viewpoint.
- Limiting FAD effort to recent levels (2016-19) is a significant improvement, but likely too high to allow the ETP to recover.

Important considerations

- Since our focus was on the FAD fishery, a strong assumption was effort by all other fisheries remained unchanged since 2017
- But, longline effort increasing since 2008, nearing historic high in 2017
- May explain the biomass decreases for Lg BET, marlins and sharks when FAD effort was reduced (Scenarios 3 & 4).

Important considerations

- Basis of the ecosystem model is outdated diet data from early 1990s
 - Since then FAD impacts may have altered predator-prey dynamics
 - EPO has experienced some of the strongest El Nino events on record
- A trophic ecology sampling program required to update diet matrix and other key model parameters (e.g. consumption rates Q/B)

Questions?

