Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

History of the yellowfin assessment and issues identified Carolina Minte-Vera, Mark N. Maunder, Alexandre Aires-da-Silva, and Haikun Xu

2nd External review of the stock assessment of yellowfin tuna in the EPO, La Jolla, California USA, 2-8 December 2019

Outline

- History of the stock assessment
- Issues identified
- Explorations
- Recommendations from YFT-01

Stock assessment history

Previously: Cohort analysis, production models Based solely on purse-seine and baitboat data

- The management quantities are sensitive to the inclusion of the 2018 data for the longline index of abundance.
- Inconsistencies between Japanese longline index and the dolphinassociated purse-seine index
- Changes in the length composition for the longline fishery

Background

- Data from Japan
- Standardization
- Main index of abundance
- Issues highlighted with the 2018 BET assessment
- YFT assessment was thought robust
- Five indices of abundance and length composition data
- In 2019 assessment results driven by the longline-derived index of abundance
- Longline workshop many lessons learnt

MSY and related quantities

	SAC 9 Base case	SAC 10 Base case	SAC 10 Base case
YFT	Caso base	Caso base	except update LL_S
MSY-RMS	264,283	254,975	254,872
B _{MSY} - B _{RMS}	376,696	371,787	372,247
S _{MSY} - S _{RMS}	3,634	3,638	3,642
$B_{\rm MSY}/B_0$ - $B_{\rm RMS}/B_0$	0.31	0.31	0.31
$S_{\rm MSY}/S_0$ - $S_{\rm RMS}/S_0$	0.27	0.27	0.27
C _{recent} /MSY- C _{reciente} /RMS	0.85	1.00	1.00
$B_{\rm recent}/B_{\rm MSY}$ - $B_{\rm reciente}/B_{\rm RMS}$	1.35	0.84	1.03
$S_{\rm recent}/S_{\rm MSY}$ - $S_{\rm reciente}/S_{\rm RMS}$	1.08	0.76	0.99
F multiplier-Multiplicador de			
F	0.99	0.89	1.00

- Results driven by the update in the longline-based index of abundance
- The rest of the new (or updated) data:
 - \checkmark Do not show indication of increase in fishing mortality
 - ✓ Decline in biomass not so strong

YFT fishery definitions and indices (SAC 10)

Inconsistencies among indices

Inconsistencies among indices

Change in longline length composition

Issues with the longline index: potential change in target

Issues with the longline index : Decrease of effort over time

[AT]

Issues with the longline index : CV of the index is increasing

The area of operation of the Japanese fleet is contracting

⁵ million - 15 millions

Issues with the longline index : temporal changes in catchability

Japan Unpublished results WSLL-01 for bigeye tuna

Hypotheses for index inconsistencies

- Change in fishing behavior (e.g. targeting) by the longline fishery
- Mis-specified growth
- Inadequate consideration of spatiotemporal correlations in the indices of abundance
- Spatial structure in the population

Model runs to investigate the hypotheses

- Change in fishing behavior (e.g. targeting) by the longline fishery Estimate change in selectivity and catchability in 2010
- Mis-specified growth
- Inadequate consideration of spatiotemporal correlations in the indices of abundance
- Spatial structure in the population

Change in fishing behavior

Model: Time-block in selectivity and catchability in 2010

Block 2

. 2018

2015

Change in fishing behavior

Model: Time-block in selectivity and catchability in 2010

Model runs to investigate the hypotheses

- Change in fishing behavior (e.g. targeting) by the longline fishery Estimate change in selectivity and catchability in 2010
- Mis-specified growth

Estimate growth parameters

- Inadequate consideration of spatiotemporal correlations in the indices of abundance
- Spatial structure in the population

Mis-specified growth

Model runs to investigate the hypotheses

- Change in fishing behavior (e.g. targeting) by the longline fishery Estimate change in selectivity and catchability in 2010
- Mis-specified growth

Estimate growth parameters

• Inadequate consideration of spatiotemporal correlations in the indices of abundance

Use spatiotemporal model for dolphin associated indices

• Spatial structure in the population

Inadequate consideration of spatial structure in the indices of abundance

Standartization: Spatiotemporal model (Xu et al, 2019) "VAST"

Inadequate consideration of spatial structure in the indices of abundance

Conclusions: Hypotheses for index inconsistencies

• Change in fishing behavior (e.g. targeting) by the longline fishery

Does not resolve inconsistencies

• Mis-specified growth

Does not resolve inconsistencies

- Inadequate consideration of spatial structure in the indices of abundance Does not fully resolve inconsistencies
- Spatial structure in the population

Not evaluated using that assessment model

Conclusions

- Management quantities are sensitive to the inclusion of the 2018 longline index data, as for bigeye tuna in 2018.
- Inconsistencies between longline index and the dolphin-associated purse-seine indices
- Several issues were identified with the longline-derived index of abundance over the years
- This lead to the collaborative work with longline CPCs
- Length composition changes in longline fishery:
 - used for representing catches and index
 - Contains information on mortality rates and absolute biomass (catch-curve process)
 - Should be correctly modeled (*e.g.* selectivity, growth, recruitment, and time changes)
- Four hypotheses to explain inconsistencies
- None of the evaluated hypotheses solved the inconsistencies
- The assessment was rejected by the staff to be used as scientific basis for management advice
- Research done to improve the assessments

Recommendation YFT-01 (October 2012)

- Stock Structure
- Fisheries Structure
- Uncertainty in Growth
- Stock-recruitment relationship
- CPUE standardization and data weighting
- Selectivity curves
- Natural mortality
- Uncertainty
- Shorten the time series

Questions

