Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

Longline index of abundance and length frequency for yellowfin tuna in the EPO

2nd External review of the stock assessment of yellowfin tuna in the EPO, La Jolla, California USA, 2-8 December 2019

Data

Index of abundance

Japanese catch and effort data:

- 1°*Lat* * 1°*Lon* * *year_month* * *vessel* (mean number of set = 2.5)
- Commercial vessel only
- Length frequency for the index of abundance Japanese length frequency data:
 - 1°*Lat* * 1°*Lon* * *year_month*
 - Commercial vessel only
 - Length unit: 1 or 2 cm

Data

Index of abundance

Japanese catch and effort data:

- 1°*Lat* * 1°*Lon* * *year_month* * *vessel* (mean number of set = 2.5)
- Commercial vessel only
- Length frequency for the index of abundance Japanese length frequency data:
 - 1°Lat * 1°Lon * year_month
 - Commercial vessel only
 - Length unit: 1 or 2 cm

VAST separately models encounter probability (p) and positive catch rate (λ) for each catch rate observation *i*:

$$logit(p_i) = \beta_1(t_i) + l_{\omega_1}\omega_1(s_i) + l_{\varepsilon_1}\varepsilon_1(s_i, t_i) + l_{\delta_1}\delta_1(v_i) + \sum_{k=1}^{n_k} q_1(k)Q(i,k)$$

$$log(\lambda_i) = \beta_2(t_i) + l_{\omega_2}\omega_2(s_i) + l_{\varepsilon_2}\varepsilon_2(s_i, t_i) + l_{\delta_2}\delta_2(v_i) + \sum_{k=1}^{n_k} q_2(k)Q(i,k)$$

 $\beta(t_i)$: intercept in year t_i $\omega(s_i)$: spatial variation at location s_i ; l_{ω} : scaling factor $\varepsilon(s_i, t_i)$: spatiotemporal variation at location s_i in year t_i ; l_{ε} : scaling factor $\delta(v_i)$: vessel effects on catchability; l_{δ} : scaling factor Q(i, k): catchability covariate (HBF); q(k): associated catchability parameter

Model Structure (Index of abundance)

The probability of catch data *c* for sample *i*:

$$Pr(c_i = c) = \begin{cases} 1 - p_i & \text{if } c = 0 \\ p_i \times \text{Lognormal}(c_i | \log(\lambda_i), \sigma_m^2) & \text{if } c > 0 \end{cases}$$
where $c_i = \frac{catch_i(in number)}{hook_i(in number)} * 1000$ (separately model quarter 1&4 and 2&3)

The standardized index is area-weighted: $I(t) = \sum_{k=1}^{100} (area(k) \times density(k, t))$

Vessel effects are ignored in the standardization process

Temporal pattern of hooks between float

Hooks-between-float

HBF effects is still important for the early period

Should use time-varying CV

Diagnostics

CIAT

IATT

Correlation between the El Nino and LL catch rate

El Nino vs. EPO LL index

SST by quarter

CLAT

Data

• Index of abundance Japanese catch and effort data:

- 1°*Lat* * 1°*Lon* * *year_month* * *vessel* (mean number of set = 2.5)
- Commercial vessel only
- Length frequency for the index of abundance Japanese length frequency data:
 - 1°*Lat* * 1°*Lon* * *year_month*
 - Commercial vessel only
 - Length unit: 1 or 2 cm

VAST separately models encounter probability (p) and positive catch rate (λ) for each catch rate observation i:

 $logit(p_i) = \beta_1(l_i, t_i) + \sigma_{\omega_1}(l_i)\omega_1(l_i, s_i) + \sigma_{\varepsilon_1}(l_i)\varepsilon_1(l_i, s_i, t_i)$ $log(\lambda_i) = \beta_2(l_i, t_i) + \sigma_{\omega_2}(l_i)\omega_2(l_i, s_i) + \sigma_{\varepsilon_2}(l_i)\varepsilon_2(l_i, s_i, t_i)$

 $\beta(l_i, t_i)$: intercept for length l_i in year t_i

 $\omega(l_i, s_i)$: spatial variation for length l_i at location s_i ; $\sigma_{\omega}(l_i)$: scaling factor for length l_i

 $\varepsilon(l_i, s_i, t_i)$: spatiotemporal variation for length l_i at location s_i in year t_i ; $\sigma_{\varepsilon}(l_i)$: scaling factor for length l_i

*** No interaction among length bins (computationally too expensive)

The probability of catch data *c* for sample *i*:

$$\Pr(c_i = c) = \begin{cases} 1 - p_i & \text{if } c = 0\\ p_i \times \operatorname{Lognormal}(c_i | \log(\lambda_i), \sigma_m^2) & \text{if } c > 0 \end{cases}$$

where $c_i = \frac{catch_i(in number)}{hook_i(in number)} * 1000 * lf(l_i) --- CPUE by length (20, 24, 28, ..., 196)$

The length-specific standardized index is area-weighted: $I(l,t) = \sum_{k=1}^{50} (area(k) \times density(l,k,t))$

Standardized length composition:

$$P(l,t) = \frac{I(l,t)}{\sum_{l=1}^{n_l} I(l,t)}$$

-130 -110 -90 -80-150 -130 -110 -90 -80-150 -130 -110 -90 -80

HBF is not used in the length model

Hooks-between-float

Nominal vs. Standardized Length Composition

IATT

Diagnostics

Quarter 2&3

CIAT

IATT

Index of abundance

- Vessel effects are not included (vessel ID is available in 1975-1979)
- HBF is included as a catchability covariate
- 1993-4 are removed (fast transition in gear configurations)
- High CV in recent years due to the contraction of the JPN LL fishery

Length composition

- HBF is not included as a catchability covariate
- 1993-4 are removed (fast transition in gear configurations)
- Time-consuming (~ 1.5 days for two quarters between 1995-2018)
- Reaching the population bin size (2cm) is not possible yet

Why using spatiotemporal model to standardize the index of abundance and the associated length composition?

- Spatial interpolation (filling the empty data holes)
- Area-weighting vs. sample weighting (EPO-wide index and lf)

Questions

