Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

Stock and spatial structure of yellowfin tuna in the Pacific Ocean Carolina Minte-Vera,V., Xu,H., Lennert-Cody, C., Maunder, M.N., Schaefer, K. M., Fuller, D.

2nd Stock assessment Review Workshop, La Jolla, California USA, 2-6 December 2019

- Key uncertainties
- Background on general aspects of yellowfin tuna distribution and ocean biogeography
- Evidence for spatial structure
- Conclusions

Stock structure of main commercially important tuna species in the Pacific Ocean (Moore et al submitted), key uncertainties:

- the location of spawning areas;
- the degree of spawning area fidelity;
- provenance of individuals:
 - the proportional contributions of each self-replenishing population to fishery catches
 - degree of mixing of post-juvenile fish;
- linkages with stocks in adjacent oceans;
- the effects of climate change on stock structure and proportional contributions of self-replenishing population to fisheries;
- the assessment and management implications of changes in current stock assessment model assumptions that might arise from an improved knowledge of tuna stock structure.

Background

- Self-replenishing populations **should be** the basic unit of fisheries management
- In practice, stock structure: groups of fish that **have limited interaction** such that fishing on one group has a limited impact on the dynamics of the other group
- Distribution of YFT is dependent on (review on Pecoraro et al 2018b):
 - Temperature:
 - endothermic but the temperature of the heart (located on the "water" side of the vascular counter-current heat Exchange) affects YFT movements
 - Endothermic capability acquired during juvenile stage
 - Larvae: yolk-sac and first feeding: 21 to 33 °C
 - Spend most of their time within the surface mixed layer or at the top of the thermocline (18-31°C) where epipelagic preys are concentrated
 - rapid deep dives (increases capability with larger sizes)
 - Prey concentration: High degree of residency where prey densities are high (northern EPO and WCPO Hawaii and around islands and seamounts)
 - Oxygen concentration

Vertical habitat of YFT

Distribution of catches Mean annual distribution of catches 1950-2013

(a) 8. Atlantic Ocean Eastern Pacific Ocean Indian Ocean Western-Central Pacific Ocean fish 40 N of 0.04 Relativ 50 100 150 Fork length (cm) (b) 5 Atlantic Ocean Eastern Pacific Ocean Indian Ocean 90 Western-Central Pacific Ocean ish o ber o ive nu 0.03 Relati 02 20 S 50 100 150 Fork length (cm) (c) ⁵ Atlantic Ocean Eastern Pacific Ocean Indian Ocean N Western-Central Pacific Ocean 0.1 0 fish 0.10 40 S to 0.08 15 17 ve nu 0.06 Pel Pel Baitboat Other gears Purse seine Longline 80 2 10.000 tons 50 100 150 Fork length (cm)

Longline

Purse-seine

Currents Pacific Ocean

Talley et al. 2011

Dynamic biogeochemical provinces

average period January 1998 to December 2007.

Longhurst

Biogeography of the global ocean

Data Set	Data
Environmental data set	Sea surface temperature
	Sea surface salinity Chlorophyll <i>a</i> concentration
	Bathymetry
Biogeochemicalprovince	Boundary

PNEC: North Pacific equatorial counter current

NPTG: North Pacific Tropical gyre

WARM: V Western Pacific warm pool SPSG: South Pacific gyre

Dynamic biogeochemical provinces in the global ocean Longhurts Provinces

El Nino (Septembre 1997 - April 1998)

ATT

Dynamic biogeochemical provinces

Seasonal overlap between biogeochemical provinces

Province composition, belonging:

High values: more stable in time.

Low values: variable regions

Reygondeau et al 2013

Mesopelagic regions of the world

https://doi.org/10.1016/j.dsr.2017.05.006 https://www.sciencedirect.com/science/article/pii/S0967063717301437#f0020

Sutton et al 2017

Trophic position

 Received:
 11 September
 2017
 Revised:
 29 March
 2018
 Accepted:
 9 April
 2018

 DOI:
 10.1111/geb.12763

RESEARCH PAPERS

WILEY Global Ecology and Biogeography

A global meta-analysis of marine predator nitrogen stable isotopes: Relationships between trophic structure and environmental conditions

Duffy *et al.* 2017

Diet composition

Olson et al. 2014

Yellowfin tuna: average weight

size ~ *yrqtr* + *lat.long* + *flag.fleet.origin*

Reproductive biology: spatial variation in the EPO

Spawning habitat variation

Seasonal variation Distribution of waters of 24°C and higher

Climatology, Group for High Resolution SST, https://www.ghrsst.org

Annual variation SST isotherms 1998 to 2012 in the Pacific Ocean

Biological data: larval distribution

Suzuki et al 1978

Quarter 4

Biological data: larval distribution

Quarter 4 – Oct - Dec

Larval dist: Suzuki et al 1978

Quarter 1 – Jan - Mar

Quarter 3 Jul-Sept

Quarter 2 – Apr - Jun

Molecular data

Larval dist:

Suzuki et al 1978

Quarter 4

- There may be several stocks of yellowfin tuna across the Pacific Ocean
- Maybe 2 different stock in the EPO
- Data from the EPO needs to be processed

Genetically different: G G: Grewe et al 2015 W W: Ward et al 1997 P p: Pecoraro et al 2018

Natal origin: R R r R r - Rooker

Evidence of differences in morphology and meristics

YFT from Ecuador have a deeper body than YFT from Mexico

YFT from Ecuador have 1 more gill-raker on average than YFT from Mexico

Tagging data: EPO

Old tagging data

New tagging data

Tagging data: EPO archival tags

Conclusions

- The yellowfin tuna population in the EPO inhabits several biogeographical provinces and current systems.
- The largest purse-seine catches are in the PNEC (North Pacific equatorial counter current province)
- The largest longline catches are in PEQD (Pacific equatorial divergence)
- The spawning habitat is seasonally available north of 20N and south of the equator
- The larvae distribution is seasonal and concentrated around the coast of central America quarters 1,3 and towards the center of the EPO in quarter 4
- Larger yellowfin in tuna (caught with longliners) are found in the EPO, the largest around Hawaii and Galapagos islands, and.
- in the EPO, the smaller yellowfin tuna (caught with longliners) are found closer to the coast
- Molecular data supports heterogeneity in the population, the eastern and western part are molecularly different
- Tagging data supports limited movement
- Although evidence exist for spatial heterogeneity, the data review does not point towards specific limits.
- The first new population model attempted followed the simplified assumption of one stock. The fisheries data, however, is more consistent with a heterogeneous structure than with a homogeneous well-mixed stock.

