Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

Mark N. Maunder, Carolina Minte-Vera, Cleridy E. Lennert-Cody, Juan L. Valero, Alexandre Aires-da-Silva, Haikun Xu

Document SAC-11-INF-J

11TH MEETING SCIENTIFIC ADVISORY COMMITTEE San Diego, California (USA) 11-15 May 2020 Postponed until a later date to be determined

IATTC

CIAT

Issues and sources of uncertainty in former assessment of yellowfin tuna

- Oversensitive to new data (logline index of abundance)
- Longline index based on Japanese CPUE –contraction of the spatial distribution and effort reduction
- Inconsistency between longline and purse-seine indices not resolve despite extensive research
- In recent years, changes of the size composition towards larger sizes in longline fisheries but also some purse-seine fisheries
- Possibility of stock and spatial structure not captured in the model

2018-2020: Workplan to improve the stock assessments of tropical tuna

- Included <u>external reviews</u> of the YFT and BET assessments
- Both external reviews suggested a <u>variety of alternative models</u> rather than a replacement for base case
- Change from "best assessment" to a <u>risk analysis approach</u> which considers multiple models and explicitly deals with uncertainty

The staff's pragmatic risk analysis approach

Described in Maunder et al. 2020 (SAC-11- INF-F):

- **1. Identify alternative hypotheses** (*'states of nature'*) about the population dynamics of the stock that address the main issues in the assessments
 - YFT: SAC-11-J; BET: SAC-11 INF-F
- 2. Implement stock assessment models representing alternative hypotheses
 - YFT: SAC-11-07; BET: SAC-11-06
- 3. Assign relative weights to each hypothesis (model)
 - YFT: SAC-11 INF-J; BET: SAC-11 INF-F
- 4. Compute combined probability distributions for management quantities using model relative weights
 - SAC-11-08

Alternative states of nature

Broad hypotheses (Level 1)

Formulation of hypotheses: yellowfin tuna

How much does the population mix?

Formulation of hypotheses: yellowfin tuna

Formulation of hypotheses: yellowfin tuna

Pragmatic approach

• Assessment centered where the core of the catches are taken

what indices to use?

High mixing

Both indices — observation error hypothesis

Longline index – hypothesis of purse-seine index

not representative

Purse-seine index – hypothesis of longline index

not representative

Data for the longline abundance index

Contraction of the Japanese longline fishery

Indices of abundance for yellowfin tuna

Spatial domain for the purse-seine index

Distribution of the Japanese longline fishery

What index to use?

what indices to use?

High mixing 4

Both indices — observation error hypothesis

Longline index – hypothesis of purse-seine index

not representative

Purse-seine index – hypothesis of longline

index not representative

Formulation of hypotheses: YFT

Hypotheses flow chart for yellowfin

Level 2A hypotheses: relationship between index and abundance

Level 2A hypotheses: changes in length

DDQ: density-dependient catchability

TBM: time-block in the middle

(and selectivity change 2003-2007)

TBE: time block in the end

Catchability changes in 2015 (and selectivity change of fishery F19-DEL_P)

Hypotheses flow chart for yellowfin

F19-DEL-P fisheries

F19-DEL-P fisheries

Level 2B hypotheses

Assumptions:

Hypothesis name	Model acronym	Growth	Selectivity F19-DEL_P
Fixed	BASE	Fixed	Asymptotic
Growth	GRO	Estimated	Asymptotic
Selectivity	DS	Fixed	Dome shape

Hypotheses flow chart for yellowfin

Steepness of the stock-recruitment curve

How much the recruitment is reduced when

the reproductive population is reduced

Level 3 hypotheses

Steepness (h) of the stock recruitment curve

h = 0.7 h = 0.8 h = 0.9 h = 1

Hypotheses flow chart for yellowfin

Hypotheses flow chart for yellowfin

Described in Maunder et al. 2020 (SAC-11- INF-F):

- **1.** Identify alternative hypotheses ('states of nature') about the population dynamics of the stock that address the main issues in the assessments
 - YFT: SAC-11-J; BET: SAC-11 INF-F
- 2. Implement stock assessment models representing alternative hypotheses
 - YFT: SAC-11-07; BET: SAC-11-06
- 3. Assign relative weights to each hypothesis (model)
 - YFT: SAC-11 INF-J; BET: SAC-11 INF-F
- 4. Compute combined probability distributions for management quantities using model relative weights
 - SAC-11-08

