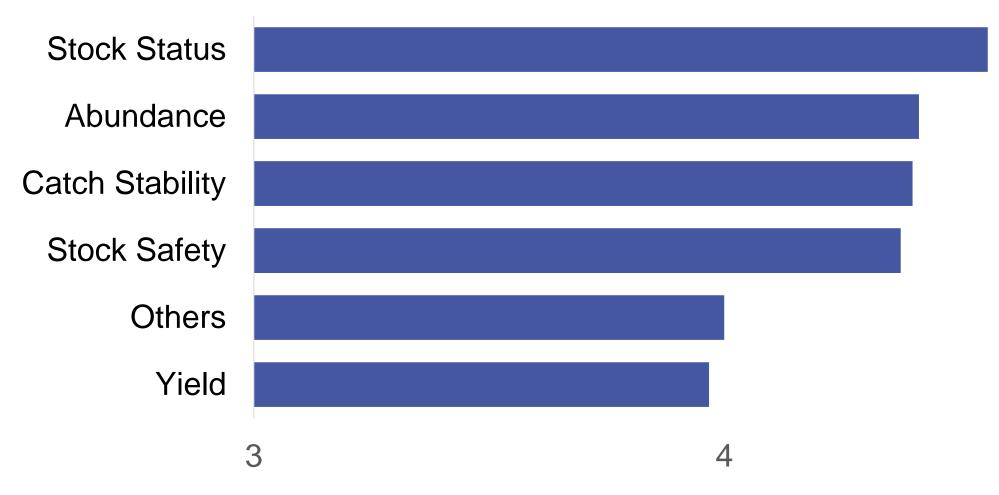


Management strategies

Management objectives

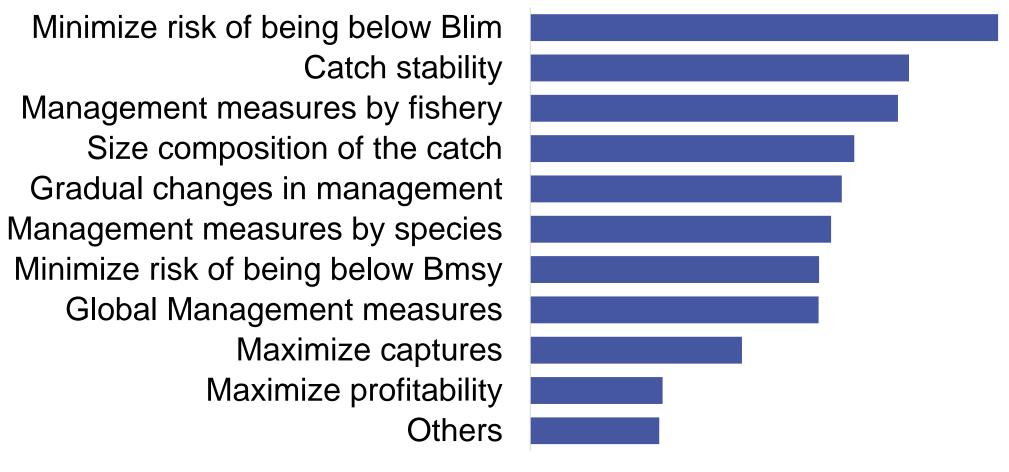
Types of Management Objectives

- **Status:** To maximize the probability of maintaining the stock in the green zone of a fishery's Kobe plot (e.g., not overfished*, no overfishing*).
- Safety: To minimize the probability that the stock will fall below the biomass limit reference point or B_{LIM} .
- Yield: To maximize catch (or effort) across regions and/or fishing gears.
- Abundance: To maximize catch rates to enhance fishery profitability.
- **Stability:** To maximize stability in catches to reduce commercial uncertainty by minimizing variability in catch from year to year.

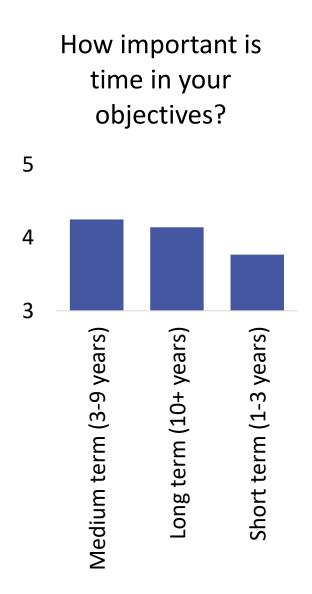


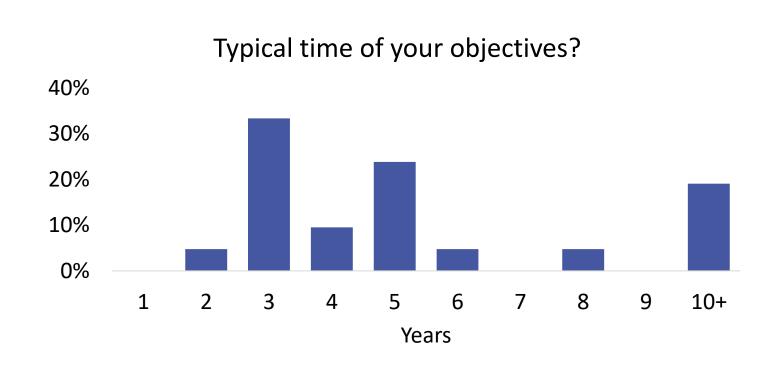
^{* &}quot;overfished", "overfishing" not used in IATTC stock status determination, because the Commission has not defined their threshold probabilities

1st IATTC MSE Workshop, Dec 2019


What types of objectives are important to you?

1st IATTC MSE Workshop, Dec 2019


Objectives and their importance



3 4 !

1st IATTC MSE Workshop, Dec 2019

1st IATTC MSE Workshop, Dec 2019

Proposed Objectives (preliminary, to be refined in next workshops)

- Maintain stocks at healthy levels in the green sector of the Kobe plot (with a high probability)
- Maintain stocks at healthy levels in the green sector of the Kobe plot (50%)
- Minimize annual probability of falling below trigger/limit reference points (spawning biomass)
- Maintain catches by different fisheries above historical ranges
- Increase the maximum sustainable yield (MSY)
- Maximizing economic yield (MEY) in the long term
- Minimizing the bycatches of juvenile stages of non-target species
- Establish rebuilding plans by stock status and life-history of species
- Maintain viable fisheries in the long term (CPUE, all fisheries)
- Maintain low variability of catch or effort (e.g. 10%, consider asymmetry of change)
- Define emergency rules when faced with substantial changes
- Consider climate change

Proposed Objectives by Category (preliminary, to be refined)

- Maintain stocks at healthy levels in the green sector of the Kobe plot (with a high probability)
- Maintain stocks at healthy levels in the green sector of the Kobe plot (50%)
- Minimize annual probability of falling below trigger/limit reference points (spawning biomass)
- Maintain catches by different fisheries above historical ranges
- Increase the maximum sustainable yield (MSY)
- Maximizing economic yield (MEY) in the long term
- Minimizing the bycatches of juvenile stages of non-target species
- Establish rebuilding plans by stock status and life-history of species
- Maintain viable fisheries in the long term (CPUE, all fisheries)
- Maintain low variability of catch or effort (e.g. 10%, consider asymmetry of change)
- Define emergency rules when faced with substantial changes
- Consider climate change

Objectives on Status and Safety of the Stocks (preliminary)

- Maintain stocks at healthy levels in the green sector of the Kobe plot (with a high probability)
- Maintain stocks at healthy levels in the green sector of the Kobe plot (50%)
- Minimize annual probability of falling below trigger/limit reference points (spawning biomass)
- Maintain catches by different fisheries above historical ranges
- Increase the maximum sustainable yield (MSY)
- Maximizing economic yield (MEY) in the long term
- Minimizing the bycatches of juvenile stages of non-target species
- Establish rebuilding plans by stock status and life-history of species
- Maintain viable fisheries in the long term (CPUE, all fisheries)
- Maintain low variability of catch or effort (e.g. 10%, consider asymmetry of change)
- Define emergency rules when faced with substantial changes
- Consider climate change

Proposed objectives on Yield and Abundance (preliminary)

- Maintain stocks at healthy levels in the green sector of the Kobe plot (with a high probability)
- Maintain stocks at healthy levels in the green sector of the Kobe plot (50%)
- Minimize annual probability of falling below trigger/limit reference points (spawning biomass)
- Maintain catches by different fisheries above historical ranges
- Increase the maximum sustainable yield (MSY)
- Maximizing economic yield (MEY) in the long term
- Minimizing the bycatches of juvenile stages of non-target species
- Establish rebuilding plans by stock status and life-history of species
- Maintain viable fisheries in the long term (CPUE, all fisheries)
- Maintain low variability of catch or effort (e.g. 10%, consider asymmetry of change)
- Define emergency rules when faced with substantial changes
- Consider climate change

Proposed objectives on **Stability** (preliminary)

- Maintain stocks at healthy levels in the green sector of the Kobe plot (with a high probability)
- Maintain stocks at healthy levels in the green sector of the Kobe plot (50%)
- Minimize annual probability of falling below trigger/limit reference points (spawning biomass)
- Maintain catches by different fisheries above historical ranges
- Increase the maximum sustainable yield (MSY)
- Maximizing economic yield (MEY) in the long term
- Minimizing the bycatches of juvenile stages of non-target species
- Establish rebuilding plans by stock status and life-history of species
- Maintain viable fisheries in the long term (CPUE, all fisheries)
- Maintain low variability of catch or effort (e.g. 10%, consider asymmetry of change)
- Define emergency rules when faced with substantial changes
- Consider climate change

Proposed Other (preliminary)

- Maintain stocks at healthy levels in the green sector of the Kobe plot (with a high probability)
- Maintain stocks at healthy levels in the green sector of the Kobe plot (50%)
- Minimize annual probability of falling below trigger/limit reference points (spawning biomass)
- Maintain catches by different fisheries above historical ranges
- Increase the maximum sustainable yield (MSY)
- Maximizing economic yield (MEY) in the long term
- Minimizing the bycatches of juvenile stages of non-target species
- Establish rebuilding plans by stock status and life-history of species
- Maintain viable fisheries in the long term (CPUE, all fisheries)
- Maintain low variability of catch or effort (e.g. 10%, consider asymmetry of change)
- Define emergency rules when faced with substantial changes
- Consider climate change

Objectives on Status and Safety of the Stocks (preliminary)

- Maintain stocks at healthy levels in the green sector of the Kobe plot (with a high probability)
- Maintain stocks at healthy levels in the green sector of the Kobe plot (50%)
- Minimize annual probability of falling below trigger/limit reference points (spawning biomass)

Objectives on Status and Safety of the Stocks (preliminary)

- Maintain stocks at healthy levels in the green sector of the Kobe plot (MSY)
 - With a probability greater than 75% over 20 years
 - With a probability of 50%
- Minimize annual probability of falling below trigger/limit reference points (spawning biomass)
 - What trigger reference points? More to discuss during HCR presentation
 - More proposed by US by e-mail and mentioned during session
 - What limit reference points? Define actions when crossing RPs as part of HCRs
 - Current IATTC's: 7.7% of virgin spawning biomass, less than 10%
 - More precautionary limit level, less than 5%
- Other objectives on Status and Safety of Stocks?
 - ..

Proposed objectives on Yield and Abundance (preliminary)

- Maintain catches by different fisheries above historical ranges (Changes in capacity considerations)
 - What range of years?
 - What fisheries? Caps?
- Increase the maximum sustainable yield (MSY)
 - Species-specific MSY
 - What combination of gears? What reference years?
- Minimizing the bycatches of juvenile stages (sizes-ages) of non-target species (BET-YFT)
 - What combination of gears? What reference years?
- Maintain viable fisheries in the long term (CPUE, all fisheries) (Depend on economics)
 - Use proxies such as CPUE reference levels, reference years? Short-term Long-term
- Other objectives on Yield and Abundance?
 - ...

Proposed objectives on **Stability** (preliminary)

- Maintain low annual variability of allowed catch or effort (include Effort)
 - Changes in catch limit (Effort, Days of closure) between management periods should be less than 20%
 - 10% effort?, 20% capture?
 - Changes in catch limit (Effort, Days of closure) between management periods should be less than 10% (note differences between effort and catch %)
 - Gradual changes in catch limit (Effort, Days of closure)
 - Consider asymmetry of changes (precautionary)
 - How asymmetric?
 - Consider different time span of management periods and associated variability in Catch or Effort

Proposed Other (preliminary)

- Maximizing economic yield (MEY) in the long term
 - Future work? Current MSE framework does not include economics (proxies?)
- Establish rebuilding plans by stock status and life-history of species
 - See specification of alternative HCRs
- Define emergency rules when faced with substantial changes
 - See specification of alternative HCRs
- Consider climate change
 - See specification of MSE Operating models

Questions?

