

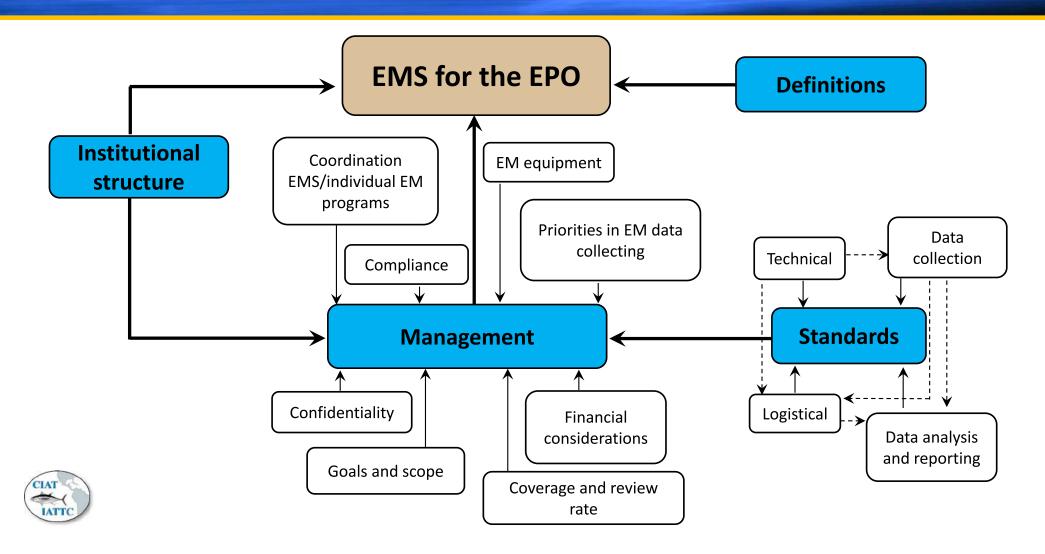
AN ELECTRONIC MONITORING SYSTEM FOR TUNA FISHERIES IN THE EPO: STRUCTURE, IATTC WORKPLAN, AND PILOT EM STUDIES

AD HOC WORKING GROUP ON THE DEVELOPMENT OF ELECTRONIC MONITORING PROGRAMME STANDARDS (WGEMS)

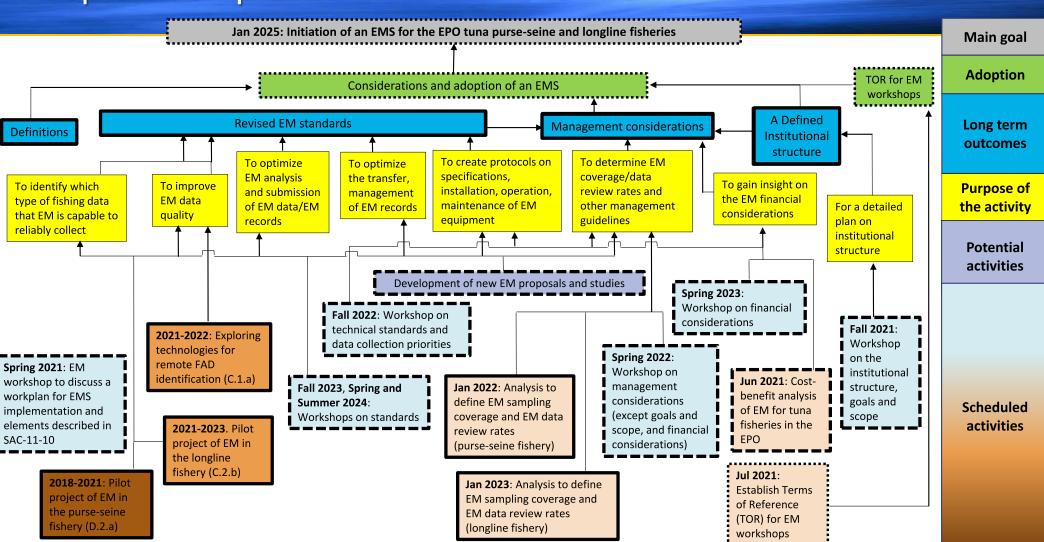
Indian Ocean Tuna Commission - IOTC 15-17 November 2021 (videoconference)

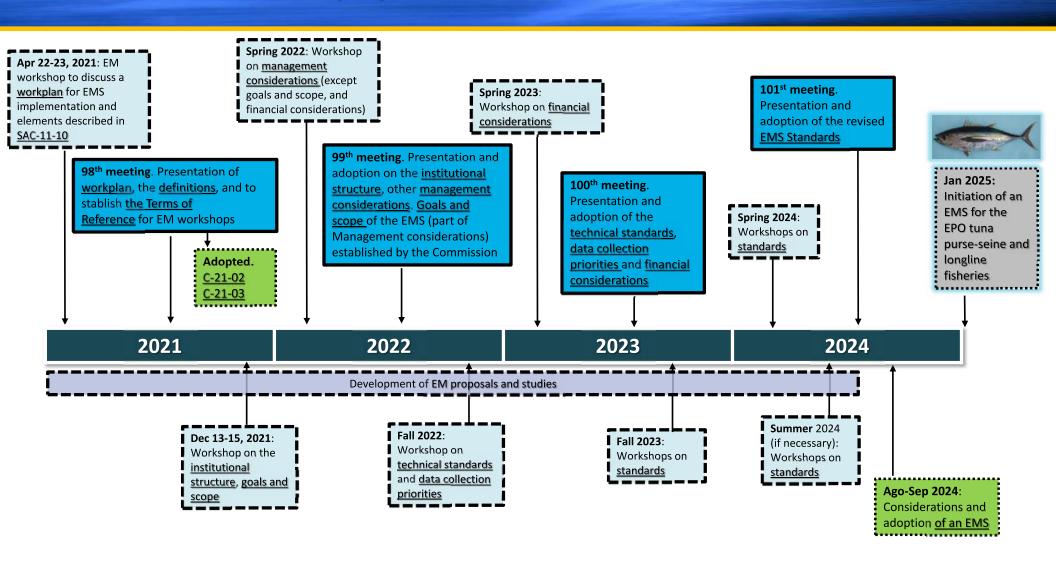
Outline

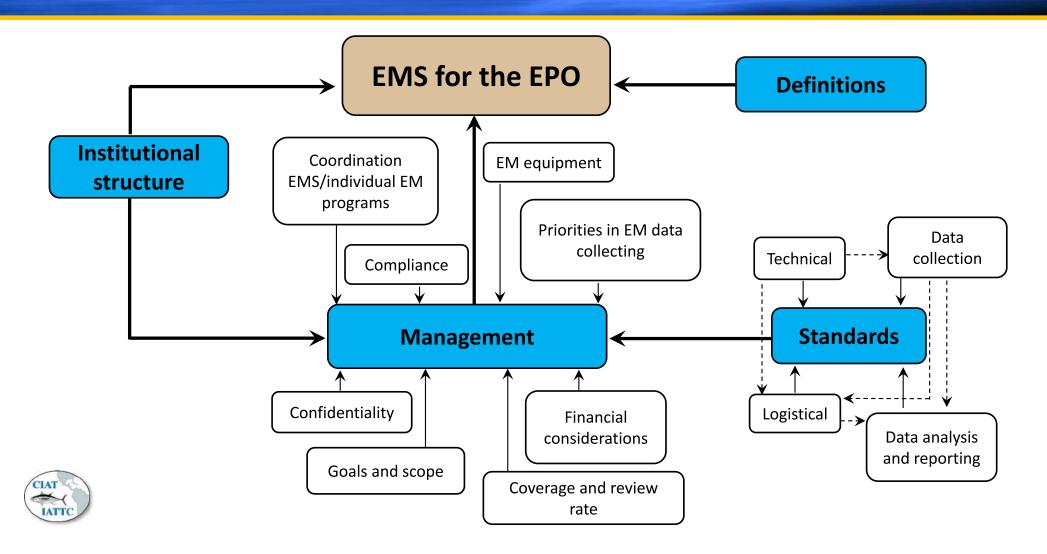
- Steps taken for the implementation of an EMS for the tuna fisheries in the EPO.
 - Proposed structure of the EMS.
 - Proposed workplan activities.
- EM standards on data collection.
 - Tuna purse-seine vessels in the EPO (Emphasis in small vessels).
 - Tuna longline vessels in the EPO.



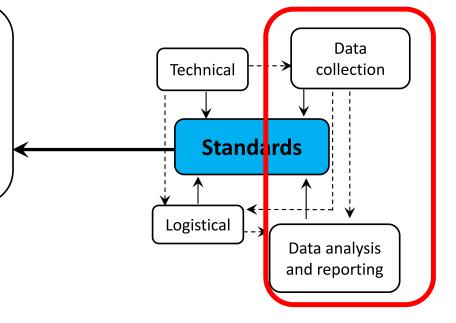
EMS for the tuna fisheries in the EPO. Background


- During SAC-10, and pursuant to C-19-08, the IATTC staff was requested to draft minimum standards and data collection and reporting requirements for EMS for the EPO tuna fishery.
- Document SAC-11-10 was presented by VC in the SAC-11.
- 11th Scientific Advisory Committee proposed the staff to organize an EM workshop in 2021 to further discuss SAC-11-10, as well as a workplan for EMS implementation in the EPO. The proposal was endorsed in the IATTC 96th meeting.
- 1st EM workshop on Implementation of an Electronic Monitoring System (EMS). (22-23 Apr 2021):
 - An overall structure of the proposed EMS framework was presented (SAC-11-10 and EMS-01-01).
 - Immediate actions recommended for adoption by the Commission (document EMS-01-01):
 - Adopt the definitions of EMS-01-01. Adopted during 98th IATTC Meeting (Res. C-21-03).
 - Adopt the proposed workplan of document EMS-01-02. Adopted during 98th IATTC Meeting.
 - Establish Terms of Reference for the EM workshops. Adopted during 98th IATTC Meeting (Res. C-21-02).


Proposed structure of the EMS for the tuna fisheries in the EPO


Adopted workplan for an EMS in the EPO

Timeline of workshops plan and milestones


Proposed structure of the EMS for the tuna fisheries in the EPO

Pilot EM projects on Data collection and Data analysis and reporting standards

- 1) Pilot EM Project on small and large purse-seine vessels.
- 2) Pilot EM Project on Longline vessels.
- Exploration of technologies for remote identification of FAD buoys.

Small tuna purse-seine fleet (Class 1-5 vessels)

- High-quality data from fisheries e.g., catch composition and CPUE required for sciencebased fisheries management.
- Current sources of detailed data: Observers, vessel logbooks, port sampling
 - Vessel logbooks (Class 1-5 vessels): limited information on non-target species, and none on discards of target species. Information present is not debriefed.
 - Port sampling: Species and size composition data for target species only.
 - Observers (mostly Class-6 vessels): Rarely on Classes 1-5 vessels.
- EM may tackle these challenges. Evaluate if EM can be used to collect reliable information on set type, FAD deployments, catches, and bycatches.
- Collecting and comparing human observer and EM required to get a preliminary evaluation of EM performance.

Small tuna purse-seine fleet (Class 1-5 vessels)

Survey on infrastructure and fishing operations of Class 1-5 vessels

- Group small vessels into clusters of vessels with similar operational characteristics that may be important with respect to EM.
- Provide data with which to select vessels for the pilot study.

Survey questions

Well loading and catch handling

- How are the wells loaded from the main deck?
- How are the marketable fish sorted on the main deck?
- How are billfish, mantas and large sharks removed from the sack?
- Can people work on the wet deck when the wells are being loaded?
- What is the brail capacity?

Set type and no. of speed boats

- For what percentage of floating-objects sets does the object remain in the net after encirclement?
- What is the number of speed boats used in a typical floating-object set?
- What is the number of speed boats used in a typical unassociated set?
- How many operable speed boats are onboard?

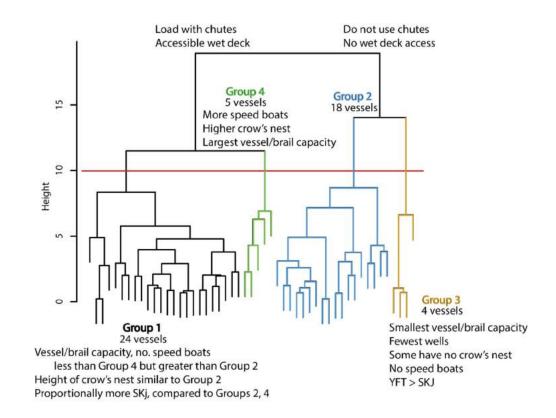
FAD deployment

- By what method are FADs deployed from the vessel?
- From where on the vessel are FADs deployed?

Vessel infrastructure

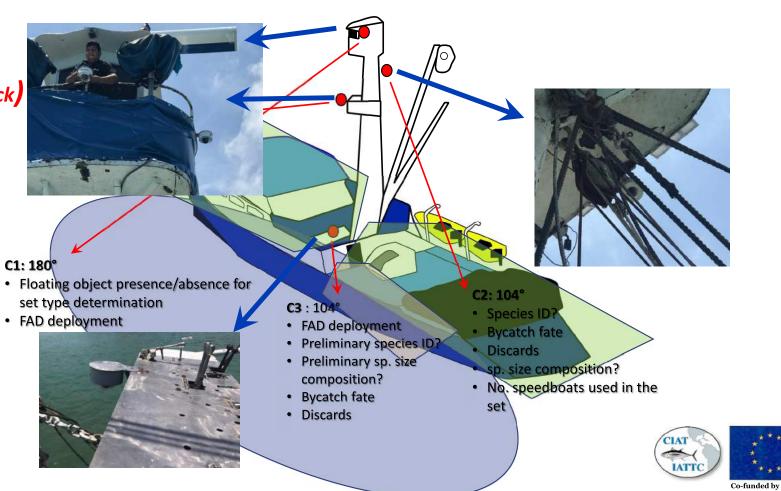
- Is the wet deck accessible to people?
- What is the height of the crow's nest?
- What is the total number of wells in the vessel?

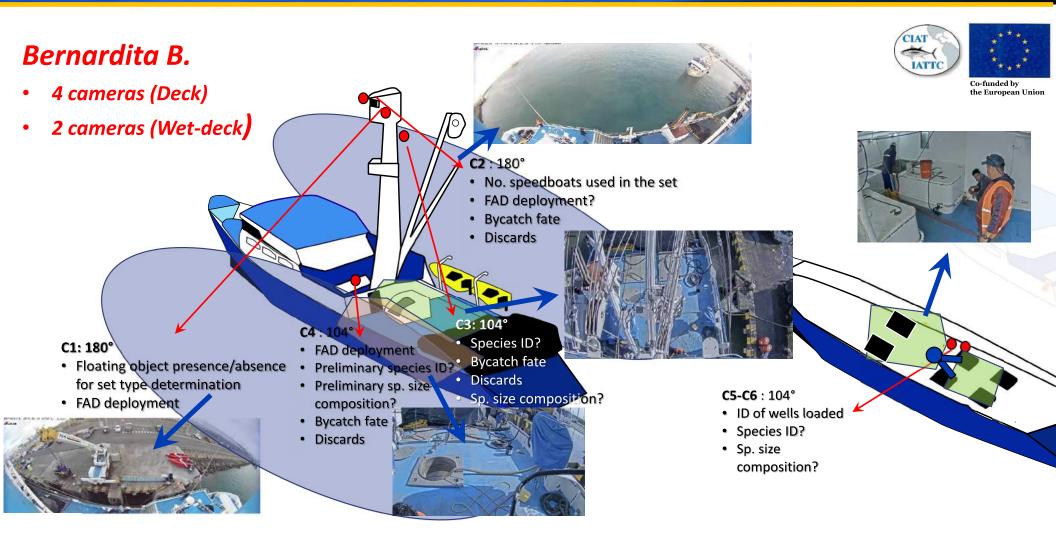
Responses received by flag: (58 out of 69 active vessels were surveyed)


	COL	ECU	MEX	PAN	PER	USA
Total number of active vessels	2	46	6	1	5	9
Number of vessels surveyed	2	38	6	1	3	8
Percentage surveyed	100	82.6	100	100	60	88.9
Percentage among those surveyed	3.5	65.5	10.3	1.7	5.2	13.8

Cluster analysis of Class 1-5 survey data

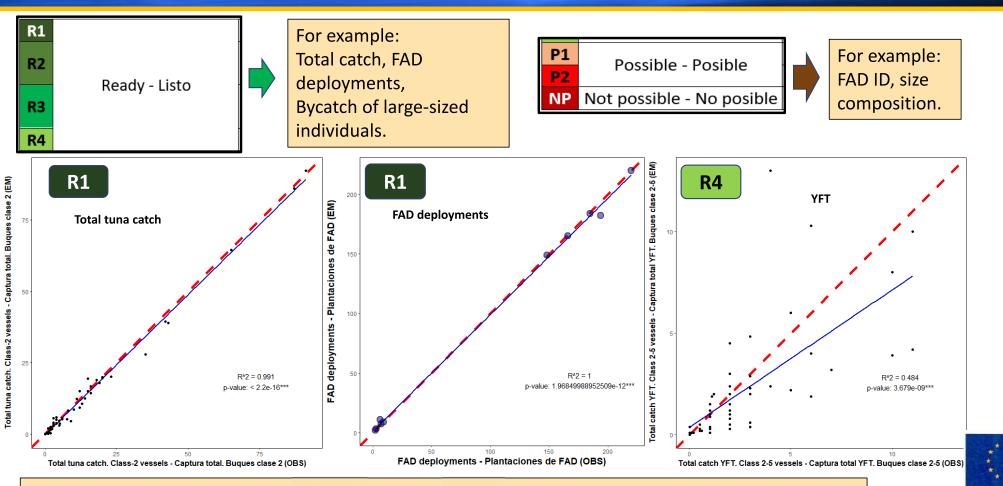
- Four large groups of vessels identified
- Primary split based on:
 - Use of chutes, accessibility of wet deck
- Smaller splits based on other variables
- For example:
 - Group 4 contains vessels with:
 - Largest vessels/brail capacity
 - Higher crow's nests
 - More speed boats
 - But catch composition similar to Groups 1-2
- Group 3 contains vessels with:
 - Smallest vessels/brail capacity
 - Some have no crow's nest
 - No speed boats
 - YFT > SKJ



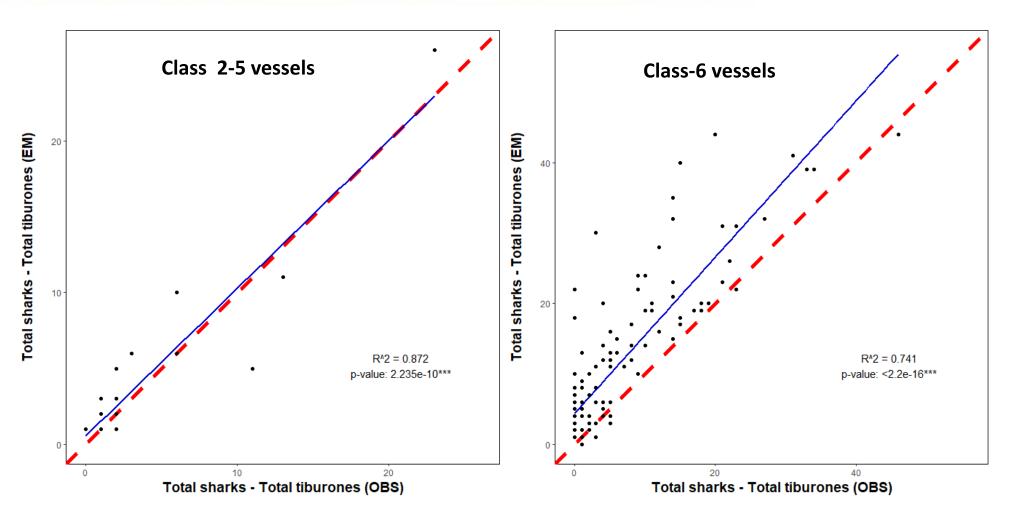

Participating vessel – Class-2

Small vessel

4 cameras (Main deck)

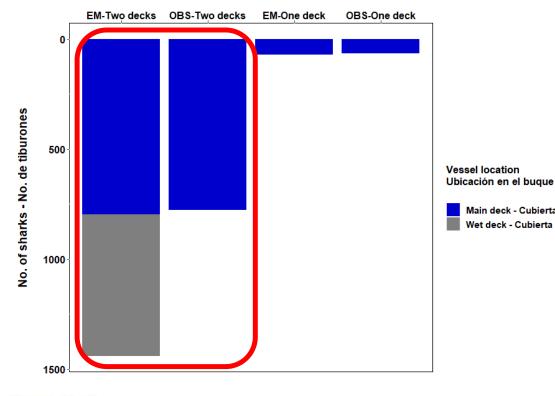

Participating vessel – Class-5

EM data collection current capabilities: Purse-seine


Co-funded by the European Union

■ EM seems to be ready to collect 83.4% of the data. 16.4% would require extra work or is not possible.

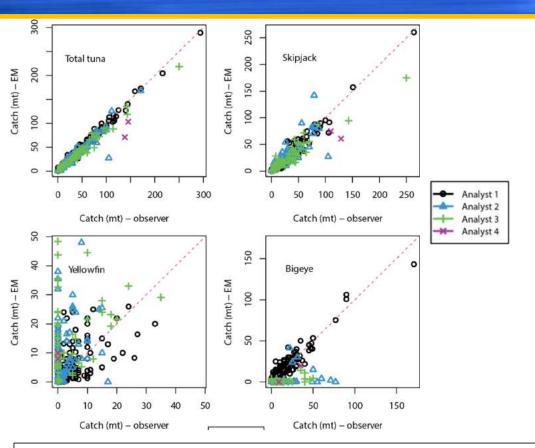
Preliminary results - Shark comparison



Preliminary results - Shark sightings by vessel location

Main deck - Cubierta principal Wet deck - Cubierta de bodegas

Observer type - Decks accessibility - Tipo observador - acceso a cubiertas



EM analyst comparison

- 1. Observer and EM data similar for total tuna catch, and for catch of SKJ.
- 2. Relationship degrades for YFT. Although slope for Analyst 1 is close to 1.0, SE is large.
- 3. Poor relationship for BET, except for one EM analyst, despite the fact that the model fit to the data is acceptable.

```
tmp.gamobj<-gam(em_BETTotalCT~(-1)+reviewer.fac+obs_BETTotalCT:reviewer.fac,data=frm)
Results (first 3 rows are intercepts; next 3 are slopes)

Total tuna

Estimate Std. Error t value Pr(>|t|)
reviewer.2 0.31284 0.67636 0.463 0.64393
reviewer.3 0.37896 1.06334 0.356 0.72173
reviewer.1 1.35884 0.48039 2.829 0.00489 **
```

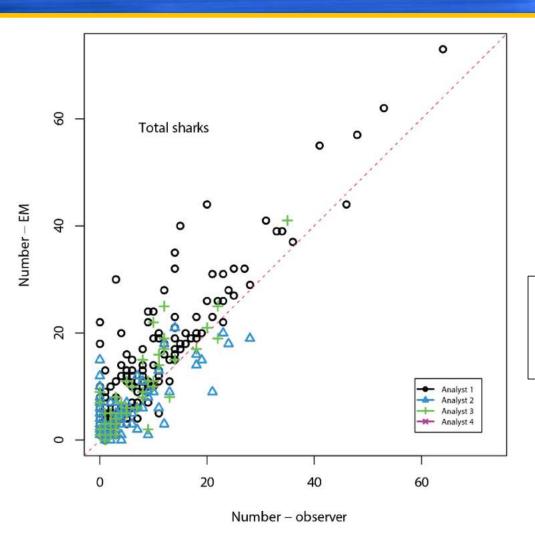
reviewer.2:obsTotcatch 0.89778 0.01637 54.838 < 2e-16 *** reviewer.3:obsTotcatch 0.87024 0.01723 50.504 < 2e-16 *** reviewer.1:obsTotcatch 0.97371 0.00931 104.583 < 2e-16 *** R-sq.(adj) = 0.975 Deviance explained = 98.7%

R-sq.(adj) = 0.975 Deviance explained = 98.7% GCV = 31.261 Scale est. = 30.833 n = 438

SKJ

reviewer.1 -0.40231 0.67150 -0.599 0.5494 reviewer.2:obs_SKJTotalCT 0.84421 0.03519 23.993 <2e-16 *** reviewer.3:obs_SKJTotalCT 0.71302 0.02861 24.919 <2e-16 *** reviewer.1:obs_SKJTotalCT 0.94291 0.01917 49.193 <2e-16 *** R-sq.(adj) = 0.893 Deviance explained = 93.5%

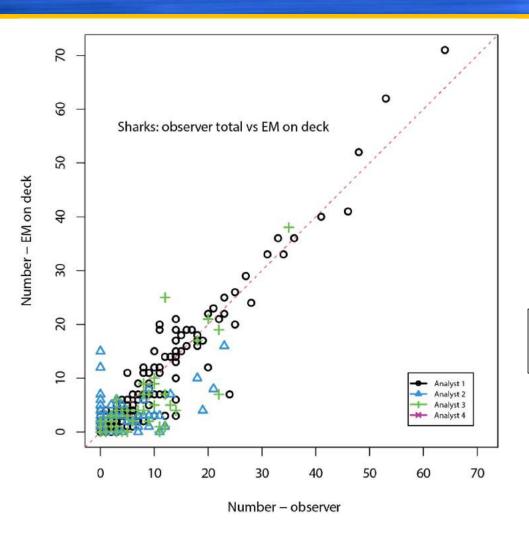
GCV = 71.106 Scale est. = 70.132 n = 438


YFT

reviewer.2 5.14955 0.75505 6.820 3.08e-11 ***
reviewer.3 10.96698 1.07803 10.173 < 2e-16 ***
reviewer.1 2.25204 0.53335 4.222 2.95e-05 ***
reviewer.2:obs_YFTTotalCT 0.64035 0.09422 6.796 3.58e-11 ***
reviewer.1:cobs_YFTTotalCT 0.64035 0.09422 6.796 3.58e-11 ***
Resq.(adj) = 0.274 Deviance explained = 51.9%
GCV = 55.723 Scale est. = 54.96 n = 438

BET

reviewer.2


EM analyst comparison

- 1. Significant positive relationship between the observer counts of sharks between Observer and EM.
- 2. Relationship varies among EM analysts.
- 3. Spike at 0 (observed count) for all reviewers and a high proportion of the data are above the 1-to-1 line (EM total counts are often greater than observer counts).

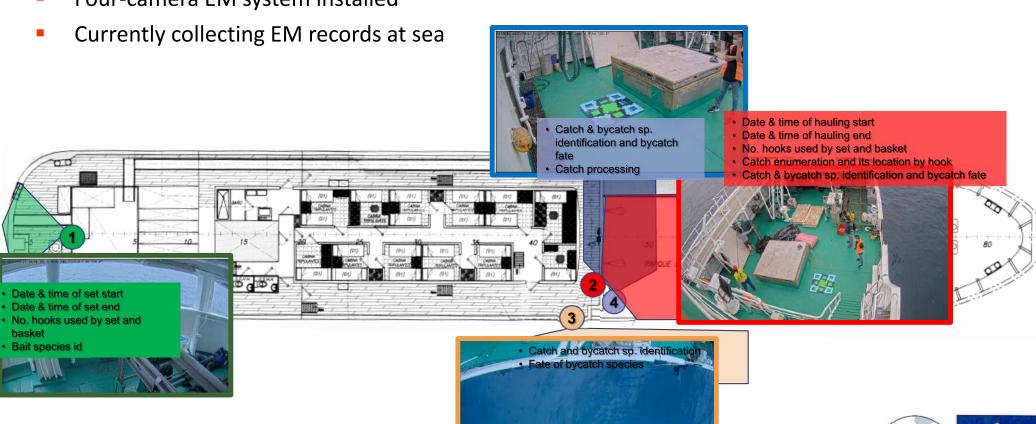
EM analyst comparison

Model: Parametric coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 7.2488 1.1923 6.080 1.2e-09 *** reviewer.2 -1.4376 1.4594 -0.985 0.325 reviewer.1 -0.4017 1.2370 -0.325 0.745 Approximate significance of smooth terms: edf Ref.df Chi.sq p-value s(obs_tsharks):reviewer.2 1.935 1.996 12.42 0.00171 ** s(obs_tsharks):reviewer.3 1.759 1.942 66.44 < 2e-16 *** s(obs_tsharks):reviewer.1 1.764 1.944 360.76 < 2e-16 *** R-sq.(adj) = 0.891 Deviance explained = 75.8%

- 1. EM shark data counted "On Deck" appears to explain the 'above the 1-to-1 line' tendency shown for total sharks.
- 2. Differences between EM analysts (at least for < 20 sharks).

-REML = 654 Scale est. = 1 n = 288

- February 2021 to May 2023
- Three vessels participating (2 flag-countries confirmed)



February 2021 to May 2023

Four-camera EM system installed

Next steps

- Generate EM data.
- EM data will be compared with observer data.
- Results will indicate whether EM could be reliably used in the longline fishery of the EPO.

Some conclusions

- EM can collect key data fields for the tuna purse-seine fishery.
 - Useful for collecting data in different vessel areas occurring at the same time.
- EM analysis costly and time consuming.
 - Optimize the time of analysis (AI).
 - Define priorities for EM data to be collected-analyzed.
- Some data not ready to be collected by EM.
 - Exploring technologies for remote FAD Id.
 - Explore technologies for accurate electronic measuring.
- Data analysis and reporting standards should take into account an adequate experience/training of EM analysts.

Complementary information

Resolution on scientific observers for longline vessels (C-19-08).

https://www.iattc.org/PDFFiles/Resolutions/IATTC/ English/C-19-08-Active Observers%20on%20longliners.pdf

An electronic monitoring system for the tuna fisheries in the eastern Pacific Ocean: objectives and standards (Document SAC-11-10). https://www.iattc.org/Meetings/Meetings2020/SAC-11/Docs/ English/SAC-11
10 Standards%20for%20electronic%20monitoring%20(EM).pdf

Staff recommendations for the implementation of an electronic monitoring system for the tuna fisheries in the eastern Pacific Ocean (Document EMS-01-01). https://www.iattc.org/Meetings/Meetings2021/WSEMS-01/ English/WSEMS-01-01 Staff%20recommendations%20EMS%20standards.pdf

A proposed workplan for the implementation of an electronic monitoring system for the tuna fisheries in the eastern Pacific Ocean (Document EMS-01-02). https://www.iattc.org/Meetings/Meetings2021/WSEMS-01/English/WSEMS-01-02 https://www.iattc.org/Meetings/Meetings2021/WSEMS-01/English/WSEMS-01-02 https://www.iattc.org/Meetings/Meetings2021/WSEMS-01/English/WSEMS-01-02 https://www.iattc.org/Meetings2021/WSEMS-01/English/WSEMS-01-02 https://www.iattc.org/Meetings2021/WSEMS-01/English/WSEMS-01-02 https://www.iattc.org/Meetings2021/WSEMS-01/English/WSEMS-01-02 https://www.iattc.org/Meetings2021/WSEMS-01/English/WSEMS-01-02 https://www.iattc.org/Meetings2021/WSEMS-01/English/WSEMS-01-02 <a href="https://www.iattc.org/meetings2021/WSEMS-01/English/WSEMS-01/Englis

www.IATTC.org

AN ELECTRONIC MONITORING SYSTEM FOR TUNA FISHERIES IN THE EPO: STRUCTURE, IATTC WORKPLAN, AND PILOT EM STUDIES

AD HOC WORKING GROUP ON THE DEVELOPMENT OF ELECTRONIC MONITORING PROGRAMME STANDARDS (WGEMS)

Indian Ocean Tuna Commission - IOTC 15-17 November 2021 (videoconference)