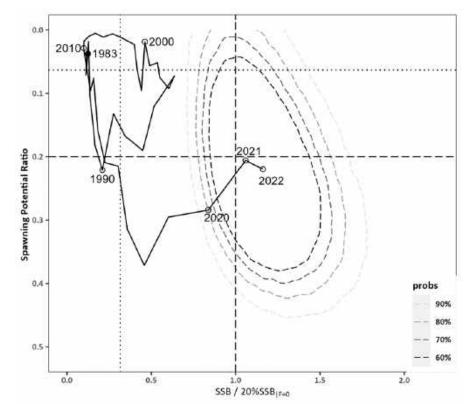
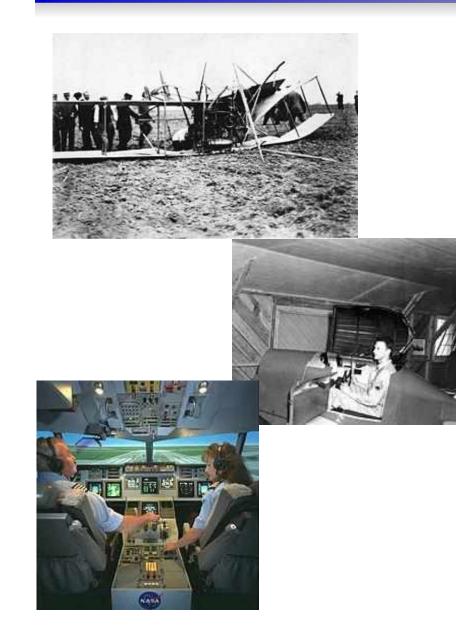

IATTC-SAC15 Agenda 7b Updates from ISC PBFWG: MSE and Harvest Strategies

ISC Pacific Bluefin tuna Working Group

Acknowledgements


- All works to develop and improve the PBF MSE were done by the following members of the ISC PBFWG as a team effort;
 - M. Maunder, J. Valero (MSE Analyst) (IATTC)
 - S.K. Chang (Chinese Taipei and WG vice chair)
 - M. Dreyfus-Leon, M. Betancourt (Mexico)
 - J. Lee, Y. Kwon (Korea)
 - H.H. Lee, D. Tommasi (MSE analyst), S. Teo (U.S.A.)
 - H. Fukuda, N. Takahashi (MSE analyst),
 Y. Tsukahara, K. Nishikawa (Japan)
 - S. Nakatsuka (WG chair)


Why do a Management Strategy Evaluation for PBF?

- International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean
- Currently, the PBF stock is subject to a recovery plan. This includes implementation of strict catch limits for PBF fisheries by the IATTC and WCPFC, with some revisions in accordance with the stock assessment results.
- The need for a long-term management measure for the fishery after achieving the second rebuilding target has been discussed at the JWG of the WCPFC NC and the IATTC.
- The JWG agreed to work on an MSE to evaluate the
 expected performance of alternative long-term
 management strategies for PBF fisheries once the 2nd PBF
 rebuilding target is reached.
- $\circ~$ The JWG requested to the ISC to complete the technical analyses for the MSE in 2025.
- $\circ~$ According to the latest ISC stock assessment, the 2nd PBF rebuilding target was reached in 2021.

What is Management Strategy Evaluation?

- MSE is a process to evaluate the trade offs and performance of candidate management strategies under a range of scenarios and uncertainties using computer simulations
- Flight simulator for fisheries management but with a lot more uncertainty
- If a management strategy does not perform adequately in a computer simulation, we should not expect it to work in the real world
- Difference between forward projections and MSE is that MSE uses a feedback loop

Brief History of PBF MSE Process

1st ISC PBF MSE Workshop (May 2018) <u>Yokohama, JAPAN</u>

✓ ~70 participants

✓ Purpose: review the requirements to implement an MSE, define stakeholder roles, review recent progress made by tuna RFMOs towards implementing the MSE process

7th Meeting of the IATTC_WCPFC NC JWG on PBF (July 2022) Virtual

- ✓ Workplan for development of long-term harvest strategy (including MSE) adopted
- ✓ Candidate operational management
 objectives and harvest control rules
 (HCRs) for MSE discussed
- ✓ To be revisited at JWG08 meeting

2025 - ISC presents **final results** from the **MSE** to JWG10

JWG recommends a final HS to WCPFC and IATTC for adoption

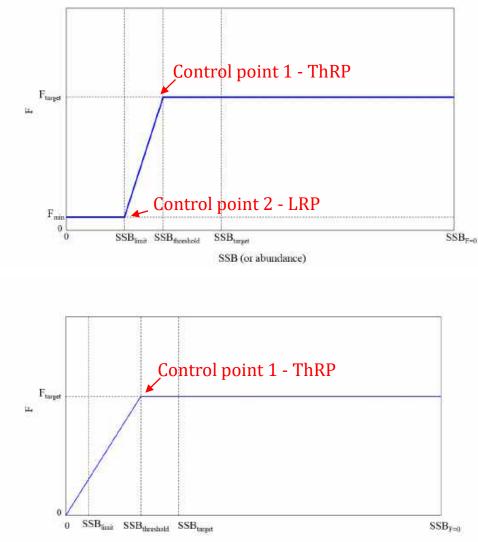
2nd ISC PBF MSE Workshop (May 2019) San Diego, USA

/ ~70 participants

 Purpose: promote understanding of MSE among stakeholders and continue discussion on required elements for PBF MSE

8th Meeting of the IATTC_WCPFC NC JWG on PBF (July 2023) Fukuoka, JAPAN

- ✓ Candidate operational management
 objectives and harvest control rules for
 MSE finalized
- ✓ Reviewed and adopted by WCPFC NC at NC19


Candidate Operational Management Objectives for PBF

Category	Operational Management Objective	Performance Indicator				
Safety	There should be a less than 20% probability of the stock falling below the limit reference point (LRP)	 Probability that SSB<lrp any="" evaluation="" given="" in="" li="" of="" period<="" the="" year=""> </lrp>				
Status	To maintain fishing mortality at or below F_{target} with at least 50% probability	 Probability that F≤ in any given year of the evaluation period F_{target} Probability that SSB is below the equivalent biomass depletion levels associated with the candidate for F_{target} 				
Stability	To limit changes in overall catch limits between management periods to no more than 25% unless the ISC has assessed the stock is below the LRP	 Percent change upwards in catches between management periods excluding periods when SSB<lrp< li=""> Percent change downwards in catches between management periods excluding periods when SSB<lrp< li=""> </lrp<></lrp<>				
Yield	Maintain an equitable balance in proportional fishery impact between the WCPO and EPO	 Median fishery impact (in %) on SSB in the terminal year of the evaluation period by fishery and by WCPO fisheries and EPO fisheries 				
	To maximize yield over medium (5-10 years) and long (10-30 years) terms, as well as average annual yield from the fishery	 Expected annual yield over years 5-10 of the evaluation period, by fishery Expected annual yield over years 10-30 of the evaluation period, by fishery Expected annual yield in any given year of the evaluation period, by fishery 				
	To increase average annual catch in all fisheries across WCPO and EPO					

Candidate HCRs and Reference Points for PBF MSE

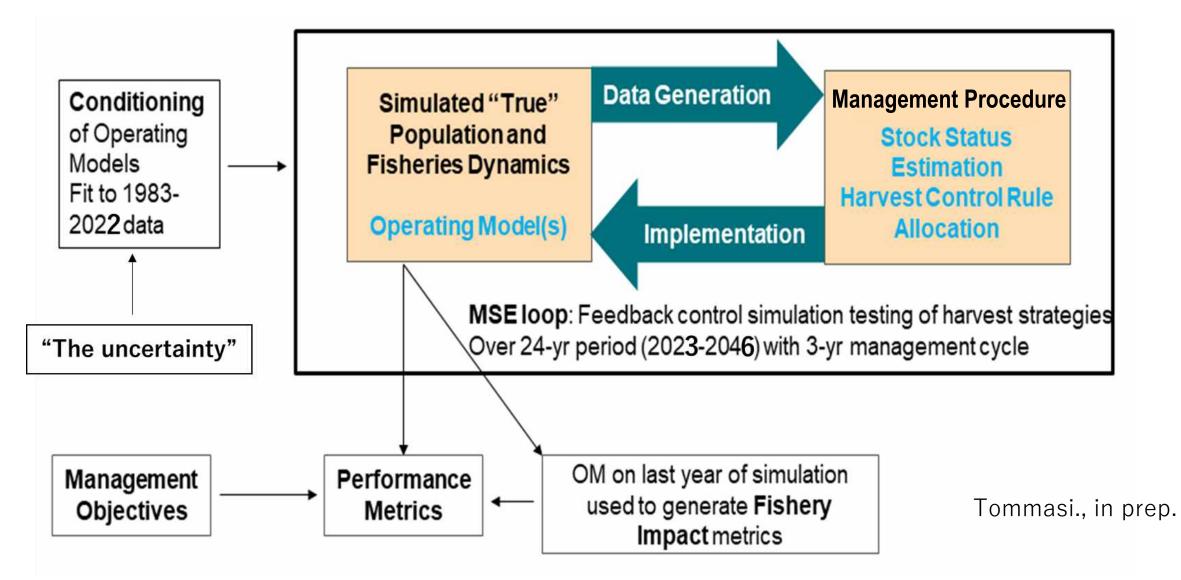
SSB (or abundance)

HCR Number	F _{target}	SSB Control Point 1 (ThRP)	SSB Control Point 2 (LRP)	Number of SSB control points	F _{min}
1	FSPR30%	20%SSB _{F=0}	15%SSB _{F=0}	2	10%F _{target}
2	FSPR30%	25%SSB _{F=0}	15%SSB _{F=0}	2	10%F _{target}
3	FSPR40%	20%SSB _{F=0}	15%SSB _{F=0}	2	10%F _{target}
4	FSPR40%	25%SSB _{F=0}	15%SSB _{F=0}	2	10%F _{target}
5	FSPR40%	25%SSB _{F=0}	20%SSB _{F=0}	2	10%F _{target}
6	FSPR30%	20%SSB _{F=0}	10%SSB _{F=0}	2	FSPR70%
7	FSPR25%	20%SSB _{F=0}	10%SSB _{F=0}	2	FSPR50%
8	FSPR30%	20%SSB _{F=0}	Median SSB 1952- 2014	2	CMM limits
9	FSPR20%	20%SSB _{F=0}	NA	1	NA
10	FSPR25%	15%SSB _{F=0}	NA	1	NA
11	FSPR30%	15%SSB _{F=0}	7.7%SSB _{F=0}	2	5%F _{target}
12	FSPR30%	20%SSB _{F=0}	7.7%SSB _{F=0}	2	5%F _{target}

Changes in TAC between consecutive management periods constrained to be no more than 25%

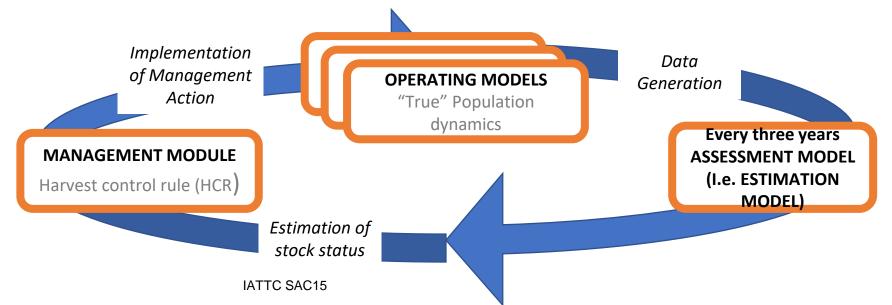
Tuned to reach WCPO:EPO impact ratio of 70:30 and 80:20

Plan for the stock assessment and MSE/MP TAC update

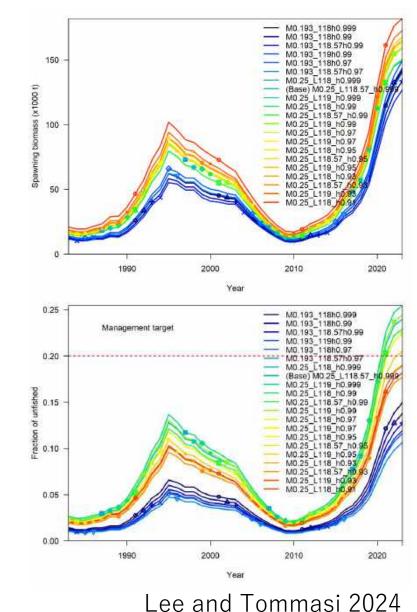

- ✤ The ISC is requested to provide the results from PBF MSE in 2025.
 - The PBFWG plans to finalize the MSE package in 2024 and evaluate MPs in early 2025.
 - ✓ There is some available time to have a science-management dialogue in Jan.-Feb. 2025.
 - The results from the MSE will be provided to the IATTC-WCPFC JWG in 2025 (June-Sept.?).
 - 3-year management cycle is currently considered.
 - ✓ SA (2024) -> 1st MSE with multiple MPs (2025) -> Research (2026) -> SA (2027) -> MP TAC update
 - ✓ The MP selected in 2025 will be updated every 3 years to calculate the TAC for the next 3 years.
 - \checkmark SA focused on detailing what is going on the stock, and whether anything unexpected happens.

	2024	2025	2026	2027	2028	2029
Stock assessment	0			0		
CMM@ interim HCR						
MSE/MP		1 st formal MSE			MP TAC update	
CMM@ MSE						

Work Progress on MSE development


Framework of the PBF MSE

Framework of the PBF MSE



- The ISC PBFWG decided to apply the MSE framework developed for the NP ALB stock for PBF MSE.
- This allows for simulation testing of the performance of a management procedure (MP, including a HCR) in a feedback manner with the operating model developed for PBF.
- Framework is coded in R, with Operating Models (OMs) and Estimation Models (EMs) developed in Stock Synthesis 3.3.

Operating Model(s) – Reference set

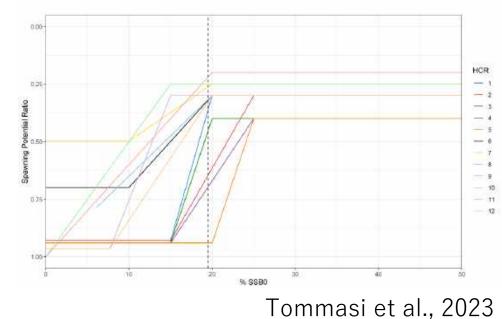
- The OM reference set captures the most likely plausible range of stock and fishery dynamics
- ✤ Base case OM is ISC PBF 2024 assessment
- ISC PBFWG developed methodology to select final reference OM set based on model diagnostics (Lee and Tommasi 2024)
- Use of reference set allows for consideration of *parameter uncertainty* in PBF steepness, natural mortality, and growth
- PBF MSE framework also considers
 - Process uncertainty in recruitment by using multiple iterations with different random recruitment deviations
 - Observation uncertainty by generating data with error to be input into the EM
 - *Estimation uncertainty* by simulating an assessment model (EM)
 - Implementation uncertainty due to discards

Operating Model(s) – Robustness Set

- Robustness OMs are still plausible but unlikely
- The robustness set allows for a check that the management procedure still behave as intended even in an unlikely, but still plausible, scenario
- ✤ ISC PBFWG considers the following scenarios as high priority for inclusion in the robustness set:
 - ✤ No adult longline index
 - Catchability change in the Taiwanese longline index
 - Recruitment drop (10-yr long drop as in the 1980's)
 - Implementation error reflecting higher discards than the currently considered 5% (WPO catch) and 6% (EPO release)

Tommasi and Lee 2024, ISC PBF WG meeting report, spring 2024

Estimation model (EM) in MP


*****EM is a module to estimate the stock status for the harvest control rule.

- For the last decade (in the real world), the management measure has been decided based on the stock assessment using the fully integrated model (SS3 model).
- $\circ\,$ The base-case SS3 model of the 2024 assessment could be used as the default EM in the MSE.
- Due to the high computational burden to run the full SS3 model in each MP, simpler assessment models (e.g. ASPM-R) are currently under consideration to optimize the tradeoff between calculation time and actualism.
- Preliminary evaluation showed that use of ASPM-R reduced computation time to ¼ and produced future TAC and SSB trajectories similar to those of a full SS3 EM (Takahashi et al. 2024).

Management Module

- All the candidate harvest control rules proposed by the JWG08 have been implemented in the MSE (Tommasi et al. 2023), with the 25% limit on TAC changes between management periods (Tommasi and Lee 2024a).
- Work is underway to apply the method to tune the impact ratio (Tommasi and Lee 2024b) to obtain the requested EPO:WCPO impact ratios of 70:30 or 80:20 (Tommasi and Lee 2024) using the new OM based on the 2024 assessment. Note this is dependent on the assumed selectivity.

Summary for the PBF MSE

The ISC PBFWG has been developing the PBF MSE package, with final report and results to be available in 2025 (JWG 10).

- $\circ\,$ The ISC PBFWG obtained all required inputs from the IATTC-WCPFC JWG;
- $\circ~$ The technical work is proceeding according to the timeline
 - ✓ General PBF MSE simulation framework developed and candidate harvest control rules implemented
 - \checkmark OM based on 2024 stock assessment developed and reference and robustness sets identified
 - ✓ Preliminary comparison of alternative EM formats carried out
 - ✓ Fishery Impact performance metric implemented
 - \checkmark Method to tune relative F to obtain desired impact developed, needs to be tested with updated OM
- The JWG could consider holding an intersessional meeting in early 2025 to review progress of MSE and preliminary results
- This information will be presented at JWG 9 in July 2024.

