Species	Scientific name	Abbreviation	Type of catch
Curerelfich	Viehies sladius		Targat
Swordtish	Xipnias gladius	SWU	Target
Albacore tuna	Thunnus alalunga	ALB	larget
Bigeye tuna	Thunnus obesus	BET	Target
Bluefin tuna	Thunnus thynnus	BFT	Target
Yellowfin tuna	Thunnus albacares	YFT	Target
Blue marlin	Makaira nigricans	BUM	Bycatch
Sailfish	Istiophorus	SFA	Bycatch
	platypterus		
White marlin	Kajikia albida	WHM	Bycatch
Blue shark	Prionace glauca	BSH	Bycatch
Bigeye thresher	Alopias superciliosus	BTH	Bycatch
Silky shark	Carcharhinus	FAL	Bycatch
	falciformis		
Longfin mako	lsurus paucus	LMA	Bycatch
Oceanic whitetip	Carcharhinus	OCS	Bycatch
	longimanus		
Porbeagle	Lamna nasus	POR	Bycatch
Shortfin mako	Isurus oxyrinchus	SMA	Bycatch
Scalloped hammerhead	Sphyrna lewini	SPL	Bycatch
Smooth hammerhead	Sphyrna zygaena	SPZ	Bycatch
Tiger shark	Galeocerdo cuvier	TIG	Bycatch
Pelagic stingray	Pteroplatytrygon	PLS	Bycatch
	violacea		
Loggerhead sea turtle	(Caretta caretta; TTL),	TTL	Bycatch
Leatherback sea turtle	Dermochelys coriacea	DKK	Bycatch
Olive ridley sea turtle	Lepidochelys olivacea	LKV	Bycatch
Green sea turtle	Chelonia mydas	TUG	Bycatch
Hawksbill sea turtle	Eretmochelys	TTH	Bycatch
	imbricata		

Table 1. List of species considered for the analysis.

Ref.	Exp.	Bibliographic reference
1	1-5	Bolten, A.B. & Bjorndal, K.A. (2005). Experiment to Evaluate Gear Modification on Rates of Sea Turtle Bycatch in the Swordfish Longline Fishery in the Azores-Phase 4. Final project report NOAA Award Number NA03NFM4540204. 21p.
2	6	Largacha, E., Parrales, M., Rendon, L., Velasquez, V., Orozco, M. & Hall, M (2005). Working with the Ecuadorian fishing community to reduce the mortality of sea turtles in longlines: The First Year, March 2004-March 2005. Project Report. 66p.
3	7	Kim, SS., Moon, DY., Boggs, C.H., Koh, JR. & Hae An, D. (2006). Comparison of circle hook and J-hook catch rate for target and bycatch species taken in the Korean tuna longline fishery. <i>Journal of Korean Society and Fisheries Technology</i> , 42:210-216.
4	8 - 9	Yokota, K., Kiyota, M. & Minami, H. (2006). Shark catch in a pelagic longline fishery: Comparison of circle and tuna hooks. <i>Fisheries Research</i> , 81:337-341.
5	10 - 14	Boggs, C. H. & Swimmer, Y. (2007). Developments (2006-2007) in scientific research on the use of modified fishing gear to reduce longline bycatch of sea turtles. WCPFC document WCPFC-SC3-EB-SWG_WP-7. 9p.
6	15	Gilman, E., Kobayashi, D., Swenarton, T., Brothers, N, Dalzell, P. & Kinan-Kelly, I. (2007). Reducing sea turtle interactions in the Hawaii-based longline swordfish fishery. <i>Biological</i> <i>Conservation</i> , 139:19-28.
7	16	Kim, S-S., An, DH., Moon, DY. & Hwang, SJ. (2007). Comparison of circle hook and J hook catch rate for target and bycatch species taken in the Korean tuna longline fishery during 2005- 2006. WCPFC document WCPFC-SC3-EB SWG/WP-11. 10p.
8	17	Mejuto, J., Garcia-Cortes, B. & Ramos-Cartelle, A. (2008). Trials using different hook and bait types in the configuration of the surface longline gear used by the Spanish Swordfish (<i>Xiphias gladius</i>) fishery in the Atlantic Ocean. <i>Collective Volume Scientific Papers of ICCAT</i> , 62:1793-1830.
9	18	Promjinda, S., Siriraksophon, S. & Darumas, N. (2008). Efficiency of the Circle Hook in Comparison with J-Hook in Longline Fishery. The ecosystem-based fishery management in the Bay of Bengal. SEAFDEC Organization. 15p.
10	19	Ward, P., Epe, S., Kreutz, D., Lawrence, E., Robins, C. & Sands, A. (2009). The effects of circle hooks on bycatch and target catches in Australia's pelagic longline fishery. <i>Fisheries Research</i> , 97:253-262.
11	20	Sales, G., Giffoni, B.B., Fiedler, F.N., Azevedo, V.G., Kotas, J.E., Swimmer, Y. & Bugoni, L. (2010). Circle hook effectiveness for the mitigation of sea turtle bycatch and capture of target species in a Brazilian pelagic longline fishery. <i>Aquatic Conservation: Marine and Freshwater Ecosystems</i> , 20:428-436.
12	21	Afonso, A.S., Hazin, F.H.V., Carvalho, F., Pacheco, J.C., Hazin, H., Kerstetter, D.W., Murie, D. & Burgess, G.H. (2011). Fishing gear modifications to reduce elasmobranch mortality in pelagic and bottom longline fisheries off Northeast Brazil. <i>Fisheries Research</i> , 108:336-343.
13	22 - 23	Curran, D. & Bigelow, K. (2011). Effects of circle hooks on pelagic catches in the Hawaii- based tuna longline fishery. <i>Fisheries Research</i> , 109:265-275.
14	24	NMFS (2011). Southeast Fisheries Science Center Pelagic Observer Program Data. Miami, FL: Southeast Fisheries Science Center. Unpublished raw data.
15	25	Pacheco, J. C., Kerstetter, D. W., Hazin, F. H., Hazin, H., Segundo, R. S., Graves, J. E. & Travassos, P. E. (2011). A comparison of circle hook and J hook performance in a western equatorial Atlantic Ocean pelagic longline fishery. <i>Fisheries Research</i> , 107:39-45.
16	26	Cambiè, G., Muiño, R., Freire, J. & Mingozzi, T. (2012). Effects of small (13/0) circle hooks on loggerhead sea turtle bycatch in a small-scale, Italian pelagic longline fishery. <i>Bulletin of Marine Science</i> , 88:719-730.
17	27 - 28	Domingo, A., Pons, M., Jiménez, S., Miller, P., Barceló, C. & Swimmer, Y. (2012). Circle hook performance in the Uruguayan pelagic longline fishery. <i>Bulletin of Marine Science</i> , 88:499–511.

Table 2. List of references used for the meta-analysis. Each specific reference (Ref.) can correspond to several experiments (Exp.).

18	29	Epperly, S. P., Watson, J. W., Foster, D. G. & Shah, A. K. (2012). Anatomical hooking location and condition of animals captured with pelagic longlines: The Grand Banks experiments 2002–2003. <i>Bulletin of Marine Science</i> , 88:513–527.
19	30	Foster, D. G., Epperly, S. P., Shah, A. K. & Watson, J. W. (2012). Evaluation of hook and bait type on the catch rates in the western North Atlantic Ocean pelagic longline fishery. <i>Bulletin of Marine Science</i> , 88:529–545.
20	31 - 33	Piovano, S., Basciano, G., Swimmer, Y. & Giacoma, C. (2012). Evaluation of a bycatch reduction technology by fishermen: A case study from Sicily. <i>Marine Policy</i> . 36:272–277.
21	34 - 40	Andraka, S., Mug, M., Hall, M., Pons, M., Pacheco, L., Parrales, M. & Vogel, N. (2013). Circle hooks: Developing better fishing practices in the artisanal longline fisheries of the Eastern Pacific Ocean. <i>Biological Conservation</i> , 160:214–224.
22	41	Huang, H. W., Swimmer, Y., Bigelow, K., Gutierrez, A. & Foster, D. G. (2016). Influence of hook type on catch of commercial and bycatch species in an Atlantic tuna fishery. <i>Marine Policy</i> , 65:68–75.
23	42	Santos, M. N., Coelho, R., Fernandez-Carvalho, J. & Amorim, S. (2012). Effects of hook and bait on sea turtle catches in an equatorial Atlantic pelagic longline fishery. <i>Bulletin of Marine Science</i> , 88:683-701.
24	43	Yokota, K., Kiyota, M. & Okamura, H. (2009). Effect of bait species and color on sea turtle bycatch and fish catch in a pelagic longline fishery. <i>Fisheries Research</i> , 97:53–58.
25	44-45	Afonso, A.S., Santiago, R., Hazin, H. & Hazin, F.H.V. (2012). Shark bycatch and mortality and hook bite-offs in pelagic longlines: Interactions between hook types and leader materials. <i>Fisheries Research</i> , 131–133:43722.
26	46	Piovano, S., Swimmer, Y. & Giacoma, C. (2009). Are circle hooks effective in reducing incidental captures of loggerhead sea turtles in a Mediterranean longline fishery? <i>Aquatic Conservation: Marine and Freshwater Ecosystems</i> , 19:779–785.
27	47	Ward, P., Lawrence, E., Darbyshire, R. & Hindmarsh, S. (2008). Large-scale experiment shows that nylon leaders reduce shark bycatch and benefit pelagic longline fishers. <i>Fisheries Research</i> , 90:100–108.
28	48	Coelho, R., Santos, M. N., Fernandez-Carvalho, J. & Amorim, S. (2015). Effects of hook and bait in a tropical northeast Atlantic pelagic longline fishery: Part I—Incidental sea turtle bycatch. <i>Fisheries Research</i> , 164:302-311.
29	48	Fernandez-Carvalho, J., Coelho, R., Santos, M. N. & Amorim, S. (2015). Effects of hook and bait in a tropical northeast Atlantic pelagic longline fishery: Part II—Target, bycatch and discard fishes. <i>Fisheries Research</i> , 164:312-321.
30	49	Amorim, S., Santos, M. N., Coelho, R. & Fernandez-Carvalho, J. (2015). Effects of 17/0 circle hooks and bait on fish catches in a Southern Atlantic swordfish longline fishery. <i>Aquatic Conservation: Marine</i> and Freshwater ecosystems, 52:518–533.
31	49	Santos, M. N., Coelho, R., Fernandez-Carvalho, J., & Amorim, S. (2013). Effects of 17/0 circle hooks and bait on sea turtles bycatch in a Southern Atlantic swordfish longline fishery. <i>Aquatic Conservation: Marine and Freshwater ecosystems</i> , 23:732–744.
32	50	Santos, M. N., Lino, P.G., & Coelho, R. (2017). Effects of leader material on catches of shallow pelagic longline fisheries in the southwest Indian Ocean. <i>Fishery Bulletin</i> , 115:219–232.
33	51	Santos, M.N., & Coelho, R. (2016). LL-SHARKS - Mitigação das capturas de tubarões na pescaria de palangre de superfície. Final project report FCT reference 31-03-05-FEP-44 74p.
34	42	Coelho, R., Santos, M. N., & Amorim, S. (2012). Effects of hook and bait on targeted and bycatch fishes in an equatorial and bycatch fishes in an equatorial Atlantic pelagic longline fishery. <i>Bulletin of Marine Science</i> , 88:449-467.
35	52-54	Anon. (2008). Field study to assess some mitigation measures to reduce bycatch of marine turtles in surface longline fisheries.
36	55	Chen, C., & Lin, H. (2020). Comparison of Catch Efficiency between the Use of Circle and Tuna Hooks in Taiwan's Tuna Longline Fishery in the Eastern Pacific Ocean. Preprints, 2020030108.
37	56	Burns, A. G. (2019). A Comparison of Circle and J Hook Performance within the Grenadian Pelagic Longline Fishery. Master's thesis. Nova Southeastern University.

38	57	Ochi, D., Ueno, S., Okamoto, K. (2021). Assessment of the effect of hook shape on fishing mortality of multi-taxa fish species using experimental longline operation data. Collect. Vol. Sci. Pap. ICCAT, 78(4), 105-117.
39	58	Saidi, B., Echwikhi, K., Enajjar, S., Karaa, S., Jribi, I., & Bradai, M. N. (2020). Are circle hooks effective management measures in the pelagic longline fishery for sharks in the Gulf of Gabès?. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(6), 1172- 1181.
40	59	Tserpes, G., Peristeraki, P., Lazarakis, G., & Skarvelis, K. (2020). Performance of circle hooks in swordfish targeting longline fisheries in the Mediterranean. Collect. Vol. Sci. Pap. ICCAT, 76(3), 180-186.

A)

Figure 1 - Example of hook types (circle, J and tuna) analysed in this study (A). Hook parts (B). Note that circle hooks feature a point that is perpendicular to the shank and typically bent slightly inward. J-hooks feature a point that is parallel to the shank.

Forest plots and Influence analysis

ed Nr 64 57 65 42 2 32 15	46040 58766 8250 2150674	Nr. retained 723 203 60	92080 92080 29383 8250	Relative Risk	0.73	9 [0.63;	0.84	Weight
64 57 65 42 2 32 15	46040 58766 8250 2150674	723 203 60	92080 29383 8250	페	0.73	[0.63;	0.84]	4.7%
57 65 42 2 32 15	58766 8250 2150674	203 60	29383	100	0.00			EM
65 42 2 32 15	8250 2150674	17090	8250	. 192	0.88	[0.74]	1.04]	4.3%
42 2 32 15	2150674	17090	02.00		1.08	10.76	1.54]	2.7%
32 15	000000	11080	1282748	1210	1.16	[1.14]	1.18]	5.4%
15	200626	2172	143473	100	0.97	[0.93.	1.03]	5.3%
	72914	833	72914	10	0.86	[0.78]	0.95]	5.0%
37 5	5044540	49936	3157102		0.57	10.56	0.57	5.4%
01	25085	307	25085	and an and a second	0.98	10.84	1.15]	4.5%
1	2322	1	2320		1.00	[0.06]	15.96	0.0%
48	22571	139	22571	100	1.06	10.85	1.34]	3.7%
48	19911	195	19911	-	0.76	[0.61]	0.94]	3.9%
10	255297	5546	255298		0.67	10.64	0.70]	5.4%
25	369359	2564	93780	8	0.73	10.69	0.76	5.3%
8	4275	36	4275		0.22	(0.10)	0.48]	0.9%
00	9011	113	9012		0.89	10.68	1.16	3.4%
52	108144	1003	54072	828	0.77	(0.72)	0.84]	5.2%
91	95424	684	47712	-	0.72	(0.66)	0.801	5.0%
63	8500	72	8500		0.88	[0.62.	1.23]	2.8%
91	14664	213	14590	**	0.89	10.73	1.08	4.1%
49	84840	672	42420	83	0.71	10.64	0.78	5.0%
61	84840	461	42420	100	0.83	10.74	0.93	4.9%
46	148800	1063	74400	10	0.77	10.72	0.841	5.2%
49	148800	884	74400	101	0.71	10.65	0.77	5.1%
6	7900	9	7900		0.67	10.24	1.871	0.5%
1	5100	2	5100		0.50	(0.05.	5.51]	0.1%
38	7200	42	7200	-	0.90	[0.58	1.40]	2.1%
9	090053		5596916	0	0.81	[0.74;	0.88]	100.0%
2	249 6 1 38 p = 0	p = 0 p = 0 p = 0 p = 148800 p = 14800 p = 148000 p = 148000 p = 1480000 p = 14800000 p = 148000000000000000000000000000	249 148800 884 6 7900 9 1 5100 2 38 7200 42 9090053 p = 0	249 148800 884 74400 6 7900 9 7900 1 5100 2 5100 - 3 7200 42 7200 9090053 5596916 ρ 0 7 1 7 1 1 1 0 2 5100 - 1 1 1 0 2 5100 - 3 3 7200 42 7200 2 5 3 5 5 6 1 1 1 1 1 1 1 1 1 1 2 1 <th1< th=""> <th1< th=""></th1<></th1<>	249 148800 884 74400 6 7900 9 7900 1 5100 2 5100 38 7200 42 7200 9090053 5596916	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure 1 - Forest plot of the random effects meta-analysis performed for the retention rates of swordfish with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 2 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of swordfish with circle vs. J hooks in shallow pelagic longlines.

Figure 3 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of swordfish with circle vs. J hooks in shallow pelagic longlines.

Figure 4 - Forest plot of the random effects meta-analysis performed for the retention rates of swordfish with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 5 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of swordfish with fish vs. squid bait in shallow pelagic longlines.

Figure 6 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates swordfish with fish vs. squid bait in shallow pelagic longlines.

Experiment	Nr. retained	Nire leader Nr. hooks	Ny Nr. retained	vion leader Nr. hooks	Relative Risl	k RR	95%-CI	Weight
45	59	8500	76	8500 -		0.78	(0.55: 1.09)	14 5%
50	504	41328	527	41328		0.96	[0.85; 1.08]	43.5%
51	419	36415	516	35650		0.79	[0.70; 0.90]	42.1%
Overall effect		86243		85478	1	0.86	[0.64: 1.15]	100.0%
Heterogeneity: $t^2 = 5$	7%, $\tau^2 = 0.0091$, $\rho =$	= 0.10					8 - 30 JS	8
					0.75 1	1.5		

Figure 7 - Forest plot of the random effects meta-analysis performed for the retention rates of swordfish with wire vs. nylon leaders in shallow pelagic longlines. (Note: nylon leaders are considered the control and wire leaders the experimental leaders; a relative risk (RR) >1 indicates retention is higher with wire leaders).

Figure 8 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of swordfish with wire vs. nylon leaders in shallow pelagic longlines.

Figure 9 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of swordfish with wire vs. nylon leaders in shallow pelagic longlines.

c	ircle hook		Tuna hook					
Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relat	ive Risk	RR	95%-CI	Weight
212	27226	138	13613	- 12	1	0.77	[0.62; 0.95]	17.6%
127	47575	111	47575			1.14	[0.89, 1.48]	17,1%
223	177942	210	178732		-181-	1.07	[0.88; 1.29]	17.9%
83	65603	181	69040	- 12		0.48	[0.37, 0.63]	17.1%
38	36834	20	38207			- 1.97	[1.15, 3.39]	13.1%
141	102754	108	97834		185	1.24	[0.97; 1.60]	17.2%
	457934		445001	-	-	0.99	[0.61; 1.60]	100.0%
6. τ ² = 0.1763, ρ <	0.01				1 1		8 S	
Mater - 121 - 136 - 136 - 136 - 136 - 136 - 136 - 136 - 136 - 136 - 136 - 136 - 136 - 136 - 136 - 136 - 136 - 1				0.5	1 2			
	C Nr. rotained 212 127 223 83 38 141 •. r ² = 0 1763, p <	Circle hook Nr. retained Nr. hooks 212 27220 127 47575 223 177942 83 65603 38 38834 141 102754 457934 %, 1 ² = 0 1763, p < 0 01	Circle hook Nr. retained Nr. hooks Nr. retained 212 27226 138 127 47575 111 223 177942 210 83 65603 181 38 36834 20 141 102754 108 457934 %. 1 ² = 0 1763, p < 0.01	Circle hook Tuna hook Nr. retained Nr. hooks Nr. retained Nr. hooks 212 27226 138 13613 127 47575 111 47575 223 177942 210 178732 83 65603 181 69040 38 36834 20 38207 141 102754 108 97834 457934 445001 %, $\tau^2 = 0.1763, p < 0.01$ Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan= 2"Colspan="2">Colspan= 2"Colspan="2"Colspa="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Co	Circle hook Tuna hook Relation Nr. retained Nr. hooks Nr. retained Nr. hooks Relation 212 27226 138 13613 Image: constrained Image: constrained	Circle hook Tuna hook Nr. retained Nr. hooks Nr. retained Nr. hooks Relative Risk 212 27226 138 13813 127 47575 111 47575 223 177942 210 178732 83 65603 181 69040 38 36834 20 38207 141 102754 108 97834 457934 445001 0.5 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Figure 10 - Forest plot of the random effects meta-analysis performed for the retention rates of swordfish with circle vs. tuna hooks in shallow pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 11 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of swordfish with circle vs. tuna hooks in shallow pelagic longlines.

Figure 12 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of swordfish with circle vs. tuna hooks in shallow pelagic longlines.

Experiment	C Nr. retained	ircle hook Nr. hooks	Nr. retained	Tuna hook Nr. hooks	Relat	ive Risk	RR	95%-CI	Weight
7	12	29400	- 11	14700			0.55	0 24 1 241	14 7%
16	52	46848	15	15616		100	1.16	0 65 2 051	18.9%
23	120	1176471	231	1172589	-10-		0.52	0.42: 0.651	24.6%
41	341	203839	220	203839	·	100	1.55	1.31: 1.841	25.1%
55	14	24574	18	37795		10	1,20	[0.60; 2.40]	18.7%
Overall effect	10.1 <u>1</u> 0.1 10.1 10.1	1481132		1444539	-	-	0.92	[0.49; 1.74]	100.0%
Heterogeneity: $I^2 = B$	4%, τ ² = 0.2282, ρ ·	¢ 0.01							
					0.5	1 2			

Figure 13 - Forest plot of the random effects meta-analysis performed for the retention rates of swordfish with circle vs. tuna hooks in deep-setting pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 14 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of swordfish with circle vs. tuna hooks in deep-setting pelagic longlines.

Figure 15 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of swordfish with circle vs. tuna hooks in deep-setting pelagic longlines.

		Circle hook		J-hook					
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR		95%-Cl	Weight
20	336	72914	181	72914	10	1.86	[1.55;	2.22]	10.7%
24	5075	5044540	4109	3157102	10	0.77	[0.74;	0.81]	11.1%
25	41	25085	33	25085	122	1.24	[0.79;	1.96]	8.6%
27	66	22571	28	22571	101	2.36	[1.52,	3.67]	8.8%
28	549	19911	251	19911	121	2.19	[1.89;	2.54]	10.8%
30	304	255297	216	255298		1.41	[1.18;	1.68]	10.7%
30.1	31	369359	8	93780	+	0.98	[0.45;	2.14]	6.0%
42	34	108144	2	54072		8.50	[2.04;	35.38]	2.9%
42.1	3	95424	3	47712		0.50	[0.10;	2.48]	2.4%
45	6	8500	7	8500	-	0.86	[0.29;	2.55]	4.2%
46	0	14664	1	14590		0.09	(0.00;	58.59]	0.2%
48	2	84840	4	42420		0.25	10.05;	1.36]	2.2%
48.1	2	84840	0	42420		- 10.50	[0.02; 59	973.99]	0.2%
49	252	148800	71	74400	21	1.77	[1.36;	2.31]	10.2%
49.1	167	148800	33	74400	101	2.53	[1.74;	3.68]	9.3%
56	1	7900	3	7900		0.33	[0.03:	3.201	1.4%
59	0	7200	2	7200		0.05	[0.00;	27.09]	0.2%
Overall effect		6518789		4020275	•	1.47	[1.05;	2.06]	100.0%
Heterogeneity: I* = 98	3%, τ ⁴ = 0.1861, p ·	< 0.01			0.001 0.1 1 10 1000				

Figure 16 - Forest plot of the random effects meta-analysis performed for the retention rates of albacore tuna with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 17 – Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of albacore tuna with circle vs. J hooks in shallow pelagic longlines.

Figure 18 – Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of albacore tuna with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks	Re	lative Risk	R	R 95%-CI	Weight
30	33	463139	520	510595		ň. ľ	0.0	7 [0.05; 0.10]	25.7%
42	6	143136	36	162216			0.1	9 [0.08; 0.45]	21.6%
43	1	18240	2	18240	-	1	0.5	0 [0.05; 5.51]	9.5%
48	2	127260	6	127260		100	0.3	3 [0.07; 1.65]	14.8%
49	200	223200	323	223200		103	0.6	2 [0.52; 0.74]	26.5%
51	0	35721	1	36344			0.0	9 [0.00; 59.91]	1.9%
Overall effect Heterogeneity: 1 ² = 96 ⁴	%, τ ² = 0.8254, ρ ·	1010696 0.01		1077855	, i	-	0.2	4 [0.09; 0.63]	100.0%
1.52	· · · · ·				0.001 0.	1 1 10	1000		

Figure 19 - Forest plot of the random effects meta-analysis performed for the retention rates of albacore tuna with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 20 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of albacore tuna with fish vs. squid bait in shallow pelagic longlines.

Figure 21 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of albacore tuna with fish vs. squid bait in shallow pelagic longlines.

	v	Vire leader	N	ylon	leader									
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr.	hooks		Rela	tive	Risk		RR	5	5%-CI	Weight
45	3	8500	10		8500		-0	8			0.30	[0.08;	1.09]	51.3%
50	3	41328	7		41328		-	- 10			0.43	[0.11;	1.66]	46.7%
51	1	36415	0		35650		-		*	2	10.77	10.02; 69	75.75]	2.0%
Overall effect Heterogeneity: $l^2 = 0\% t^2$	= 0 n = 0.55	86243			85478	1	V	+	T	-1	0.38	[0.08;	1.82]	100.0%
station generally a state	0.00					0.001	0.1	1	10	1000				

Figure 22 - Forest plot of the random effects meta-analysis performed for the retention rates of albacore tuna with wire vs. nylon leaders in shallow pelagic longlines. (Note: nylon leaders are considered the control and wire leaders the experimental leaders; a relative risk (RR) >1 indicates retention is higher with wire leaders).

Figure 23 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of albacore tuna with wire vs. nylon leaders in shallow pelagic longlines.

Figure 24 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of albacore tuna with wire vs. nylon leaders in shallow pelagic longlines.

	Ci	rcle hook		luna hook					
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Re	alative Risk	R	R 95%-C	Weight
7	7	29400	1	14700			3.5	0 [0.43; 28.44]	9.5%
16	72	46848	15	15616			1.6	0 [0.92; 2.79]	22.3%
23	144	1170732	207	1169492		101	0.6	9 [0.56; 0.86]	24.5%
41	67	203839	103	203839		100	0.6	5 [0.48; 0.88]	24.0%
55	6	24574	55	37795		-	0.1	7 [0.07; 0.39]	19.7%
Overall effect Heterogeneity: / ² = 8;	2%, τ ² = 0.7043, p <	1475393 0.01		1441442			0.7	3 [0.21; 2.51]	100.0%
					0.1	0.5 1 2	10		

Figure 25 - Forest plot of the random effects meta-analysis performed for the retention rates of albacore tuna with circle vs. tuna hooks in deep setting pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 26 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of albacore tuna with circle vs. tuna hooks in deep-setting pelagic longlines.

Figure 27 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of albacore tuna with circle vs. tuna hooks in deep-setting pelagic longlines.

	c	ircle hook		J-hook				
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR	95%-CI	Weight
20	46	72914	23	72914	[] 	2.00	[1.21; 3.30]	6.3%
24	7663	5044540	9625	3157102		0.50	[0.48; 0.51]	9.4%
25	526	25085	390	25085	123	1.35	[1.18; 1.54]	9.1%
27	5	22571	1	22571		5.00	[0.58; 42.79]	0.0%
28	36	19911	27	19911	- 100-	1.33	[0.81: 2.20]	6.3%
30	817	255297	643	255298		1.27	[1.15; 1.41]	9.2%
30.1	129	369359	24	93780	-	1.36	[0.88; 2.11]	6.8%
42	732	108144	256	54072	101	1.43	[1.24; 1.65]	9.1%
42.1	144	95424	51	47712	100	1.41	[1.03; 1.94]	7.8%
45	50	8500	54	8500		0.93	[0.63; 1.36]	7.3%
48	89	84840	42	42420		1.06	0.73: 1.531	7.4%
48.1	124	84840	52	42420	Ada .	1.19	[0.86: 1.65]	7.8%
49	105	148800	36	74400	-	1.46	(1.00: 2.13)	7.3%
49.1	49	148800	7	74400		3.50	[1.59: 7.73]	4.2%
56	4	7900	3	7900		1.33	[0.30; 5.96]	1.7%
Overall effect		6496925		3998485	\$	1.25	[0.99; 1.58]	100.0%
Heterogeneity: /2 = 98	3%, τ ^z = 0.1306, ρ <	= 0.01						
					0.1 0.5 1 2 10			

Figure 28 - Forest plot of the random effects meta-analysis performed for the retention rates of bigeye tuna with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 29 – Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of bigeye tuna with circle vs. J hooks in shallow pelagic longlines.

Figure 30- Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of bigeye tuna with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks	Relat	ive Risk		RR	95%-CI	Weight
30	153	463139	1460	510595 -	# I	T.		0.12	[0.10; 0.14]	17.0%
42	195	143136	988	162216				0.22	[0.19; 0.26]	17.0%
43	7	18240	11	18240		-		0.64	[0.25; 1.64]	15.3%
48	176	127260	131	127260		1000		1.34	[1.07; 1.68]	17.0%
49	56	223200	141	223200	-14	1121		0.40	[0.29; 0.54]	16.9%
51	191	35721	33	36344				5.89	[4.07; 8.52]	16.8%
Overall effect Heterogeneity: 1 ² = 9	9%, τ ² = 1.9502, <i>p</i> <	1010696 < 0.01		1077855 Г				0.61	[0.14; 2.65]	100.0%
		3490703a)		0.1	1 0.5	1 2	310	0		

Figure 31 - Forest plot of the random effects meta-analysis performed for the retention rates of bigeye tuna with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 32 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of bigeye tuna with fish vs. squid bait in shallow pelagic longlines.

Figure 33 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of bigeye tuna with fish vs. squid bait in shallow pelagic longlines.

Experiment	Nr. retained	Vire leader Nr. hooks	Nr. retained	ylon leader Nr. hooks		Relat	ive	Risk		RR	95%-CI	Weight
45 50 51	38 15 70	8500 41328 36415	66 7 154	8500 41328 35650		*	-	-11		0.58 2.14 0.44	[0.39; 0.86] [0.87; 5.26] [0.34; 0.59]	35.7% 27.2% 37.1%
Overall effect Heterogeneity: I ² = 82	%, τ ² = 0.5016, ρ ·	86243 • 0.01		85478	0.2	0.5	1	1 2	5	0.75	[0.10; 5.46]	100.0%

Figure 34 - Forest plot of the random effects meta-analysis performed for the retention rates of bigeye tuna with wire vs. nylon leaders in shallow pelagic longlines. (Note: nylon leaders are considered the control and wire leaders the experimental leaders; a relative risk (RR) >1 indicates retention is higher with wire leaders).

Figure 35 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of bigeye tuna with wire vs. nylon leaders in shallow pelagic longlines.

Figure 36 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of bigeye tuna with wire vs. nylon leaders in shallow pelagic longlines.

Figure 37 - Forest plot of the random effects meta-analysis performed for the retention rates of bigeye tuna with circle vs. tuna hooks in shallow pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 38 – Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of bigeye with circle vs. tuna hooks in shallow pelagic longlines.

Figure 39 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of bigeye tuna with circle vs. tuna hooks in shallow pelagic longlines.

Figure 40 - Forest plot of the random effects meta-analysis performed for the retention rates of bigeye tuna with circle vs. tuna hooks in deep-setting pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 41 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of bigeye tuna with circle vs. tuna hooks in deep-setting pelagic longlines.

Figure 42 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of bigeye tuna with circle vs. tuna hooks in deep-setting pelagic longlines.

Experiment	C Nr. retained	ircle hook Nr. hooks	Nr. retained	J-hook Nr. hooks		Relative Risk	8	RR	9	5%-CI	Weight
24	2245	5044540	1194	3157102		835		1.18	[1.10;	1.261	60.3%
26	17	2320	13	2322		+		1.31	10.64;	2.691	5.1%
30	92	255297	57	255298		122		1.61	[1.16;	2.25]	18.8%
30.1	135	369359	25	93780		+		1.37	[0.89;	2.10]	12.7%
46	1	14664	0	14590				10.94	[0.02; 70	89.31]	0.0%
59	8	7200	10	7200		+		0.80	[0.32;	2.03]	3.1%
Overall effect	ne 3-00110	5693380		3530292	- -			1.26	[1.03;	1.55]	100.0%
Helefogeneity, 7 – 1.	236, T - 0.0110, p -	-0.34			0.001	0.1 1 10	1000				

Figure 43 - Forest plot of the random effects meta-analysis performed for the retention rates of bluefin tuna with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 44 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of bluefin tuna with circle vs. J hooks in shallow pelagic longlines.

Figure 45 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of bluefin tuna with circle vs. J hooks in shallow pelagic longlines.

	C	ircle hook		J-hook				
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR	95%-CI	Weight
20	116	72914	84	72914	—	1.38	[1.04; 1.83]	9.2%
24	31696	5044540	26915	3157102	13	0.74	[0.73; 0.75]	11.1%
25	128	25085	105	25085		1.22	[0.94; 1.58]	9.4%
27	2	22571	1	22571	1	2.00	[0.18; 22.05]	0.0%
28	196	19911	146	19911		1.34	[1.08: 1.66]	9.9%
42	317	108144	108	54072	-	1.47	[1.18; 1.83]	9.9%
42.1	90	95424	63	47712	-101	0.71	0.52; 0.99]	8.7%
45	13	8500	19	8500		0.68	[0.34; 1.38]	4.7%
48	93	84840	54	42420	+	0.86	[0.62; 1.20]	8.5%
48.1	44	84840	23	42420		0.96	[0.58: 1.58]	6.6%
49	114	148800	34	74400		1.68	[1.14: 2.46]	8.0%
49.1	24	148800	23	74400		0.52	0.29; 0.92]	5.9%
56	71	7900	49	7900		1.45	[1.01; 2.08]	8.2%
Overall effect		5872269		3649407	\$	1.05	[0.84; 1.33]	100.0%
Heterogeneity: 12 = 92	2%, τ ² = 0.0951, ρ <	0.01			r <u>r r r r</u> 1		120 NGA - 65	
					0.1 0.5 1 2 10			

Figure 46 - Forest plot of the random effects meta-analysis performed for the retention rates of yellowfin tuna with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 47 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of yellowfin tuna with circle vs. J hooks in shallow pelagic longlines.

Figure 48 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of yellowfin tuna with circle vs. J hooks in shallow pelagic longlines.

Experiment Nr.	retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks	Relative	Risk	RR	95%-CI	Weight
42	153	143136	425	162216	-#		0.41	[0.34; 0.49]	53.9%
48	67	127260	147	127260			0.46	[0.34; 0.61]	22.0%
49	47	223200	148	223200			0.32	[0.23; 0.44]	17.1%
51	21	35721	50	36344			0.43	[0.26; 0.71]	7.1%
Overall effect Heterogeneity: $t^2 = 0\%$, $\tau^2 = 0$,	p = 0.43	529317		549020	0.5 1	2	0.40	[0.33; 0.50]	100.0%

Figure 49 - Forest plot of the random effects meta-analysis performed for the retention rates of yellowfin tuna with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 50 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of yellowfin tuna with fish vs. squid bait in shallow pelagic longlines.

Figure 51 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of yellowfin tuna with fish vs. squid bait in shallow pelagic longlines.

Experiment	Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks	Relativ	e Risk	RR	95%-CI	Weight
45	12	8500	20	8500		_	0.60	[0.29; 1.23]	22.1%
50	8	41328	11	41328			0.73	[0.29; 1.81]	13.6%
51	33	36415	65	35650			0.50	[0.33; 0.76]	64.3%
Overall effect Heterogeneity: /2 = 0%	$6, \tau^2 = 0, \rho = 0.73$	86243		85478	-		0.55	[0.36; 0.83]	100.0%
					0.5 1	2			

Figure 52 - Forest plot of the random effects meta-analysis performed for the retention rates of yellowfin tuna with wire vs. nylon leaders in shallow pelagic longlines. (Note: nylon leaders are considered the control and wire leaders the experimental leaders; a relative risk (RR) >1 indicates retention is higher with wire leaders).

Figure 53 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of yellowfin tuna with wire vs. nylon leaders in shallow pelagic longlines.

Figure 54 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of yellowfin tuna with wire vs. nylon leaders in shallow pelagic longlines.

Experiment	Cir Nr. retained N	cle hook Ir. hooks Nr.	T retained f	una hook Ir. hooks	Relativ	e Risk	RR	95%-CI	Weight
19	47	47575	41	47575		181	1.15	(0.75; 1.74]	18.0%
34	298	177942	162	178732		- 180 -	1.85	[1.53; 2.24]	23.2%
37	275	34619	248	40890		-181	1.31	[1.10; 1.55]	23.5%
38	105	65803	149	69040			0.74	[0.58; 0.95]	22.0%
39	25	36834	16	38207	-		- 1.62	[0.87; 3.04]	13.3%
Overall effect		362573		374444	-		1.26	0.80: 1.98]	100.0%
Heterogeneity: $l^2 = 88$	8%, τ ² = 0.1155, ρ < 0	.01			1		110030030		
C111552 - 52 - 53	ante el sante s				0.5 1	2			

Figure 55 - Forest plot of the random effects meta-analysis performed for the retention rates of yellowfin tuna with circle vs. tuna hooks in shallow pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 56 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of yellowfin tuna with circle vs. tuna hooks in shallow pelagic longlines.

Figure 57 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of yellowfin tuna with circle vs. tuna hooks in shallow pelagic longlines.

	c	ircle hook		J-hook							
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks		Relative	Risk		RR	95%-CI	Weight
6	3	13714	6	6857		= 1 1			0.25	[0.06; 1.00]	24.3%
18	2	3138	1	3138	- 9				- 2.00	[0.18; 22.05]	10.7%
22	232	214815	263	214694		10)			0.88	[0.74; 1.05]	65.1%
Overall effect		231667		224689					0.71	[0.10; 4.96]	100.0%
Heterogeneity: $l^2 = 44$	\$%, τ ² = 0.2845, p =	0.17			E	1.1	4				
	RELATION SCIENCES				0,1	0.5 1	2	10			

Figure 58 - Forest plot of the random effects meta-analysis performed for the retention rates of yellowfin tuna with circle vs. J hooks in deep-setting pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 59 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of yellowfin tuna with circle vs. J hooks in deep-setting pelagic longlines.

Figure 60 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of yellowfin tuna with circle vs. J hooks in deep-setting pelagic longlines.

	C	ircle hook		Tuna hook					
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relati	ve Risk	RR	95%-CI	Weight
7	69	29400	38	14700		<u> </u>	0.91	[0.61; 1.35]	18.8%
16	63	46848	15	15616	1	- 18	- 1.40	[0.80; 2.46]	14.5%
23	960	1172161	1097	1172009		1	0.88	[0.80; 0.95]	26.1%
41	65	203839	41	203839			- 1.59	[1.07; 2.34]	18.9%
55	62	24574	149	37795			0.64	[0.48; 0.86]	21.6%
Overall effect		1476822		1443959			0.99	[0.63; 1.55]	100.0%
Heterogeneity: $l^2 = 7$	5%, τ ² = 0.0976, <i>p</i> <	0.01			1	<u>)</u> 8			
THE REPORT AND A DECIMAL OF THE PARTY OF THE P					0.5	1 2			

Figure 61 - Forest plot of the random effects meta-analysis performed for the retention rates of yellowfin tuna with circle vs. tuna hooks in deep-setting pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 62 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of yellowfin tuna with circle vs. tuna hooks in deep-setting pelagic longlines.

Figure 63 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of yellowfin tuna with circle vs. tuna hooks in deep-setting pelagic longlines.

	c	ircle hook		J-hook				
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR	95%-CI	Weight
24	1563	5044540	1568	3157102	10	0.62	(0.58; 0.67)	27.9%
25	9	25085	4	25085		- 2.25	[0.69; 7.31]	2.1%
42	69	108144	41	54072		0.84	[0.57; 1.24]	12.2%
42.1	54	95424	43	47712		0.63	[0.42; 0.94]	11.7%
45	4	8500	6	8500		0.67	[0.19; 2.36]	1.8%
48	10	84840	9	42420		0.56	[0.23; 1.37]	3.4%
48.1	31	84840	15	42420		1.03	[0.56; 1.91]	6.4%
49	138	148800	74	74400	+100-	0.93	[0.70; 1.24]	16.7%
49.1	105	148800	91	74400	- 181 -	0.58	[0.44; 0.76]	16.8%
56	2	7900	3	7900 -	-	0.67	[0.11; 3.99]	0.9%
Overall effect		5756873		3534011	\$	0.72	(0.59: 0.88)	100.0%
Heterogeneity: $t^2 = 4$	46%, τ ² = 0.0278, ρ =	= 0.06			02 05 1 2	1	89999999999999999999999999999999999999	

Figure 64 - Forest plot of the random effects meta-analysis performed for the retention rates of blue marlin with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 65 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of blue marlin with circle vs. J hooks in shallow pelagic longlines.

Figure 66 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of blue marlin with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks	Re	lative Ri	sk	RR	95%-CI	Weight
42	97	143136	110	162216		-181-		1.00	[0.76; 1.31]	26.2%
48	46	127260	19	127260		Τ.	- 101	- 2.42	[1.42; 4.13]	23.4%
49	196	223200	212	223200				0.92	[0.76; 1.12]	26.8%
51	20	35721	51	36344 -				0.40	[0.24; 0.67]	23.6%
Overall effect		529317		549020			_	0.97	[0.31; 3.02]	100.0%
Heterogeneity: /* = 87	°%, τ° = 0.4395, p <	= 0.01								
					0.5	<u>_</u> 1	2			

Figure 67 - Forest plot of the random effects meta-analysis performed for the retention rates of blue marlin with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 68 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of blue marlin with fish vs. squid bait in shallow pelagic longlines.

Figure 69 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of blue marlin with fish vs. squid bait in shallow pelagic longlines.

Figure 70 - Forest plot of the random effects meta-analysis performed for the retention rates of Atlantic sailfish with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 71 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of Atlantic sailfish with circle vs. J hooks in shallow pelagic longlines.

Figure 72 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of Atlantic sailfish with circle vs. J hooks in shallow pelagic longlines.

Experiment N	r. retained	Fish Nr. hooks	Nr. retained	Squid Nr. hooks		Relative	Risk		RR	95%-CI	Weight
42 48 49 51	27 2 0 19	143136 127260 223200 35721	81 8 1 46	162216 127260 223200 36344		+			0.38 0.25 0.09 0.42	[0.24; 0.58] [0.05; 1.18] [0.00; 58.89] [0.25; 0.72]	57.2% 4.5% 0.3% 38.0%
Overall effect Heterogeneity: $J^2 = 0\%$, $\tau^2 = 0\%$	0, <i>p</i> = 0,90	529317		549020	0.001	0.1 1	10	1000	0.38	[0.30; 0.49]	100.0%

Figure 73 - Forest plot of the random effects meta-analysis performed for the retention rates of Atlantic sailfish with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 74 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of Atlantic sailfish with fish vs. squid bait in shallow pelagic longlines.

Figure 75 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of Atlantic sailfish with fish vs. squid bait in shallow pelagic longlines.

Experiment	C Nr. retained	ircle hook Nr. hooks	Nr. retained	Tuna hook Nr. hooks	Rela	tive Risk	RR	95%-CI	Weight
34	62	177942	55	178732		100	1.13	10.79: 1.631	37.0%
38	65	65603	39	69040			- 1.75	[1.18: 2.61]	33.0%
39	45	36834	40	38207	-	- 100	1.17	[0.76; 1.79]	30.0%
Overall effect		280379		285979		+	- 1.32	[0.72; 2.42]	100.0%
Heterogeneity: /* = 3	3%, t° = 0.0201, p =	= 0.23			0.5	1 2			

Figure 76 - Forest plot of the random effects meta-analysis performed for the retention rates of Atlantic sailfish with circle vs. tuna hooks in shallow pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 77 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of Atlantic sailfish with circle vs. tuna hooks in shallow pelagic longlines.

Figure 78 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of Atlantic sailfish with circle vs. tuna hooks in shallow pelagic longlines.

	(Circle hook		J-hook					
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR		95%-CI	Weight
24	1331	5044540	2657	3157102	101	0.33	[0.30;	0.35]	21.7%
25	16	25085	18	25085	*	0.89	[0.45;	1.74]	14.6%
42	36	108144	13	54072	*	1.38	[0.73;	2.61]	15.2%
42.1	5	95424	0	47712		25.50	[0.05; 13	320.90]	0.0%
49	163	148800	101	74400	100 H	0.81	[0.63;	1 03]	20.4%
49.1	118	148800	71	74400	100	0.83	[0.62]	1.12]	19.9%
56	5	7900	5	7900	+	1.00	[0.29;	3.45]	8.2%
Overall effect		5578693		3440671		0.75	[0.43;	1.28]	100.0%
Heterogeneity: /* = 9	5%, τ ⁻ = 0.2409, p ·	< 0.01							
					0.001 0.1 1 10 1000				

Figure 79 - Forest plot of the random effects meta-analysis performed for the retention rates of white marlin with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 80 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of white marlin with circle vs. J hooks in shallow pelagic longlines.

Figure 81 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of white marlin with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks		Relative Risk		RR	95%-CI	Weight
42 48 49 51	5 29 189 39	143136 127260 223200 35721	49 8 264 55	162216 127260 223200 36344	181	-	-	0.12 3.63 0.72 0.72	[0.05; 0.29] [1.66; 7.93] [0.59; 0.86] [0.48; 1.09]	23.5% 24.3% 26.4% 25.9%
Overall effect Heterogeneity: / ² = 9	0%, t ² = 1.7005, p ·	529317 0.01		549020	0.1	0.5 1 2		0.69	[0.08; 6.18]	100.0%

Figure 82 - Forest plot of the random effects meta-analysis performed for the retention rates of white marlin with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 83 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of white marlin with fish vs. squid bait in shallow pelagic longlines.

Figure 84 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of white marlin with fish vs. squid bait in shallow pelagic longlines.

	C	ircle hook		J-hook					
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR		95%-CI	Weigh
1	796	46040	1333	92080	101	1.19	[1.09;	1.30]	6.19
2	3095	58766	896	29383	101	1.73	[1.61;	1.86]	6.29
17	7107	286826	3371	143473	-	1.05	[1.01;	1.10]	6.39
20	1744	72914	1489	72914	<u>tr</u>	1.17	[1.09;	1.25]	6.29
21	22	3900	10	3900	-	2.20	[1.04;	4.64]	1.69
24	25956	5044540	24365	3157102	10	0.67	[0.66;	0.68]	6.39
25	34	25085	35	25085	+	0.97	[0.61;	1.56]	2.99
26	2	2322	0	2320	· · · · · · · · · · · · · · · · · · ·	- 20.98	0.04, 11	934.69]	0.09
27	446	22571	339	22571	<u>\$20</u>	1.32	(1.14;	1.51]	5.79
28	933	19911	860	19911		1.08	10.99;	1.19]	6.19
30	7932	255297	7548	255298	-	1.05	[1.02;	1.08]	6.39
30.1	7197	369359	1884	93780		0.97	[0.92;	1.02]	6.39
42	1897	108144	952	54072	10	1.00	10.92;	1.08]	6.19
42.1	2460	95424	1006	47712	-	1.22	11.14;	1.311	6.29
45	19	8500	38	8500	*	0.50	0.29	0.871	2.49
46	0	14664	2	14590 -		0.05	10.00;	26.96]	0.09
48	3388	84840	1704	42420	101	0.99	[0.94;	1.05]	6.29
48.1	4426	84840	2161	42420	in a second	1.02	10.97;	1.08)	6.39
49	2497	148800	905	74400	- En	1.38	(1.28;	1.49]	6.29
49.1	4525	148800	1846	74400	6	1.23	(1.16;	1.29]	6.24
56	1	7900	1	7900		1.00	10.08	15.98]	0.19
59	2	7200	2	7200		1.00	[0.14]	7.10]	0.39
Overall effect		6916643		4291431		1.10	[0.98;	1.24]	100.09

Figure 85 - Forest plot of the random effects meta-analysis performed for the retention rates of blue shark with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 86 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of blue shark with circle vs. J hooks in shallow pelagic longlines.

Figure 87 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of blue shark with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks	Relative	Risk	RR	95%-CI	Weight
30	9081	463139	15480	510595			0.65	[0.63; 0.66]	16.8%
42	3466	143136	2849	162216		-	1.38	[1.31; 1.45]	16.7%
43	742	18240	938	18240			0.79	[0.72; 0.87]	16.5%
48	6587	127260	5092	127260		122	1.29	[1.25; 1.34]	16.7%
49	6371	223200	3402	223200			1.87	[1.80; 1.95]	16.7%
51	864	35721	1023	36344			0.86	[0.79; 0.94]	16.6%
Overall effect Heterogeneity: $l^2 = 10$	00%, τ ² = 0,1609, ρ	1010696 = 0		1077855			1.07	[0.70; 1.63]	100.0%

Figure 88 - Forest plot of the random effects meta-analysis performed for the retention rates of blue shark with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 89 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of blue shark with fish vs. squid bait in shallow pelagic longlines.

Figure 90 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of blue shark with fish vs. squid bait in shallow pelagic longlines.

Experiment	V Nr. retained	Vire leader Nr. hooks	Nr. retained	ylon leader Nr. hooks	Re	lative Risk	RR	95%-CI	Weight
45	48	8500	29	8500			- 1.66	[1.04: 2.62]	7.2%
50	435	41328	332	41328			1.31	1.14; 1.51	39.0%
51	1150	36415	737	35650		***	1.53	[1.39; 1.67]	53.7%
Overall effect Heterogeneity: $l^2 = 4$	2%, τ ² = 0.0060, ρ =	86243 - 0.18		85478	-		1.45	[1.13; 1.86]	100.0%
					0.5	1 2			

Figure 91 - Forest plot of the random effects meta-analysis performed for the retention rates of blue shark with wire vs. nylon leaders in shallow pelagic longlines. (Note: nylon leaders are considered the control and wire leaders the experimental leaders; a relative risk (RR) >1 indicates retention is higher with wire leaders).

Figure 92 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of blue shark with wire vs. nylon leaders in shallow pelagic longlines.

Figure 93 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of blue shark with wire vs. nylon leaders in shallow pelagic longlines.

	C	ircle hook	1	runa hook				
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR	95%-Cl	Weight
4	976	27226	350	13613		1.39	[1.24; 1.57]	14.7%
8	1815	19200	783	9600		1.16	[1.07; 1.26]	15.2%
9	488	13200	267	6600	- 1921-	0.91	[0.79; 1.06]	14.4%
19	43	47575	25	47575		- 1.72	[1.05; 2.82]	7.8%
34	396	177942	287	178732	- 100	1.39	[1.19; 1.61]	14.3%
38	25	65603	41	69040		0.64	[0.39, 1.06]	7.7%
39	81	36834	53	38207	10	1.59	[1.12; 2.24]	10.4%
57	4277	102754	4626	97834	100	0.88	[0.85; 0.92]	15.5%
Overall effect		490334		461201		1.15	[0.90; 1.48]	100.0%
Heterogeneity: $l^2 = 9$	4%, τ ² = 0.0622, μ <	0.01			1 1			
36978688792837 - 1 A	2400.02 - 2003.12.939				0.5 1 2			

Figure 94 - Forest plot of the random effects meta-analysis performed for the retention rates of blue shark with circle vs. tuna hooks in shallow pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 95 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of blue shark with circle vs. tuna hooks in shallow pelagic longlines.

Figure 96 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of blue shark with circle vs. tuna hooks in shallow pelagic longlines.

		ircle hook		Tuna hook			-		
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. nooks		Relative Risk	RR	95%-CI	weight
7	15	29400	10	14700			0.75	[0.34; 1.67]	6.3%
16	21	46848	4	15616			1.75	[0.60; 5.10]	3.8%
23	3435	1171955	4044	1171834			0.85	[0.81; 0.89]	46.2%
41	611	203839	564	203839		100	1.08	[0.97; 1.21]	41.7%
55	2	24574	14	37795	-		0.22	[0.05; 0.97]	2.0%
Overall effect Heterogeneity: 1 ² = 8(0% τ ² = 0.0258. ρ •	1476616		1443784	-	_	0.93	[0.64; 1.36]	100.0%
Crasses Barrantes	and the second second second	5 9 19 1 9			0.1	0.5 1 2 1	0.		

Figure 97 - Forest plot of the random effects meta-analysis performed for the retention rates of blue shark with circle vs. tuna hooks in deep-setting pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 98 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of blue shark with circle vs. tuna hooks in deep-setting pelagic longlines.

Figure 99 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of blue shark with circle vs. tuna hooks in deep-setting pelagic longlines.

	c	ircle hook		J-hook					
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR		95%-CI	Weight
17	870	286826	494	143473	10	0.88	[0.79;	0.98]	10.1%
20	127	72914	89	72914	100	1.43	[1.09;	1.87]	8.0%
21	5	3900	1	3900		5.00	[0.58;	42.78]	0.5%
24	3081	5044540	2042	3157102	201	0.94	10.89;	1.00]	10.5%
25	4	25085	2	25085		2.00	[0.37;	10.92]	0.8%
27	9	22571	7	22571	+	1.29	[0.48;	3.45]	Z.0%
28	39	19911	20	19911	-	1.95	[1.14;	3.34]	4.7%
30	89	255297	99	255298	10	0.90	[0.68;	1.20]	7.8%
30.1	393	369359	105	93780		0.95	[0.77;	1.18]	8.8%
42	58	108144	32	54072	<u>11</u>	0.91	10.59;	1.40]	5.8%
42.1	120	95424	35	47712		1.71	[1.18;	2.50]	6.5%
48	162	84840	76	42420	12	1.07	[0.81;	1.40)	8.0%
48.1	138	84840	77	42420	63	0.90	[0.68;	1.18]	7.9%
49	231	148800	68	74400	10	1.70	[1.30]	2.23]	8.0%
49.1	341	148800	120	74400	(m)	1.42	[1.15;	1.75]	8.9%
58	11	5100	4	5100		2.75	[0.88;	8.63]	1.6%
59	6	7200	0	7200		- 61.00	[0.12; 31	550.20]	0.1%
Overall effect	2	6783551		4141758		1.18	[0.99;	1.40]	100.0%
Heterogeneily: /* = /	5%, T = 0.0566, Ø	0.01			0.001 0.1 1 10 1000				

Figure 100 - Forest plot of the random effects meta-analysis performed for the retention rates of shortfin mako with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 101 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of shortfin mako with circle vs. J hooks in shallow pelagic longlines.

Figure 102 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of shortfin mako with circle vs. J hooks in shallow pelagic longlines.

Figure 103 - Forest plot of the random effects meta-analysis performed for the retention rates of shortfin mako with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 104 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of shortfin mako with fish vs. squid bait in shallow pelagic longlines.

Figure 105 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of shortfin mako with fish vs. squid bait in shallow pelagic longlines.

Figure 106 - Forest plot of the random effects meta-analysis performed for the retention rates of shortfin mako with circle vs. tuna hooks in shallow pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 107 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of shortfin mako with circle vs. tuna hooks in shallow pelagic longlines.

Figure 108 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of shortfin mako with circle vs. tuna hooks in shallow pelagic longlines.

Figure 109 - Forest plot of the random effects meta-analysis performed for the retention rates of bigeye thresher with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 110 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of bigeye thresher with circle vs. J hooks in shallow pelagic longlines.

Figure 111 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of bigeye thresher with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks		Relative Risk		R	95%-4	CI Weight
42	90	143136	104	162216		m(2	0.	98 [0	.74; 1.3	0] 28.8%
43	2	18240	0	18240		- - 10 10	21.	0.01 00	1: 11947.6	9] 0.2%
48	406	127260	420	127260		13	0.	97 [0	.84; 1.1	1] 40.2%
49	79	223200	50	223200		100	1.	58 [1	.11; 2.2	5 23.7%
51	10	35721	11	36344		+	0.	92 (O	.39; 2.1	8] 7,1%
Overall effect		547557		567260	-	\$	1.	0] 00	.78; 1.5	2] 100.0%
Heterogeneity: 12 = 46	5%, τ ² = 0.0354, p =	= 0.11				9 1 1				
					0.001	0.1 1 10	1000			

Figure 112 - Forest plot of the random effects meta-analysis performed for the retention rates of bigeye thresher with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 113 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of bigeye thresher with fish vs. squid bait in shallow pelagic longlines.

Figure 114 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of bigeye thresher with fish vs. squid bait in shallow pelagic longlines.

Experiment	C Nr. retained	ircle hook Nr. hooks	Nr. retained	Tuna hook Nr. hooks	Rela	itive Risk	RR	95%-Cl	Weight
7	19	29400	16	14700		++-	0.59	[0.31: 1.15]	25.8%
16	67	46848	15	15616			1.49	[0.85; 2.61]	30.0%
23	117	1176471	156	1172589	- 18		0.75	[0.59; 0.95]	44.2%
Overall effect Heterogeneity: /2 = 6	6%, τ ² = 0.1249, <i>p</i> =	1252719 0.05		1202905 -			0.87	[0.28; 2.64]	100.0%
11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	CAN AND STREET STREET ST				0.5	1 2			

Figure 115 - Forest plot of the random effects meta-analysis performed for the retention rates of bigeye thresher with circle vs. tuna hooks in deep-setting pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 116 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of bigeye thresher with circle vs. tuna hooks in deep-setting pelagic longlines.

Figure 117 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of bigeye thresher with circle vs. tuna hooks in deep-setting pelagic longlines.

Figure 118 - Forest plot of the random effects meta-analysis performed for the retention rates of silky shark with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 119 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of silky shark with circle vs. J hooks in shallow pelagic longlines.

Figure 120 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of silky shark with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks		Rela	tive	Risk		RR	95%-CI	Weight
42	207	143136	112	162216			Ê	-111-		2.09	[1.66: 2.64]	36.9%
48	16	127260	20	127260				-		0.80	10.41: 1.541	28.9%
49	4	223200	4	223200	10 i -		-		_	1.00	10.25; 4.001	15.6%
51	.4	35721	9	36344	-	- 10	1	-		0.45	[0.14; 1.47]	18.7%
Overall effect		529317		549020	_		-	-		1.06	[0.37; 3.05]	100.0%
Heterogeneity: /* = 78%	, τ* = 0.3430, ρ <	< 0.01			0.2	0.5	4		5			

Figure 121 - Forest plot of the random effects meta-analysis performed for the retention rates of silky shark with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 122 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of silky shark with fish vs. squid bait in shallow pelagic longlines.

Figure 123 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of silky shark with fish vs. squid bait in shallow pelagic longlines.

Experiment	C Nr. retained	ircle hook Nr. hooks	Nr. retained	Tuna hook Nr. hooks		Relative Risk		RR	8	95%-CI	Weight
	0.000.0000000000		10001-20200201	0.000		100000000000000		21013			01.000000
9	2	13200	0	6600			1	0.50	[0.02; 5	973.68]	0.0%
19	4	47575	2	47575				2.00	[0.37;	10.92]	1.7%
34	171	177942	117	178732		12		1,47	[1.16;	1.86]	28.6%
38	196	65603	185	69040		10		1.11	[0.91;	1.36]	31.3%
39	934	36834	594	38207				1.63	[1.47;	1.81]	38.5%
Overall effect Heterogeneity: $l^2 = 73$	3%, τ ² = 0.0309, ρ =	341154 0.01		340154				1.41	[1.04;	1.92]	100.0%
	or the control of the second				0.001	01 1 10	1000				

Figure 124 - Forest plot of the random effects meta-analysis performed for the retention rates of silky shark with circle vs. tuna hooks in shallow pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 125 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of silky shark with circle vs. tuna hooks in shallow pelagic longlines.

Figure 126 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of silky shark with circle vs. tuna hooks in shallow pelagic longlines.

	c	ircle hook		J-hook								
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks		Relativ	ve Risk		RR		95%-CI	Weight
42	34	108144	10	54072			territe and the second		1.70	[0.84]	3.44]	21.0%
42.1	11	95424	6	47712			*		0.92	[0.34;	2.48]	16.8%
48	8	84840	6	42420		-1	-		0.67	[0.23;	1.92]	16.0%
48.1	25	84840	19	42420		17			0.66	[0.36;	1,19]	22.6%
49	4	148800	0	74400		-			- 20.50	[0.04; 10	867.14]	1.0%
49.1	17	148800	32	74400					0.27	[0.15;	0.48]	22.7%
Overall effect	2 . 0 0000	670848		335424	r	<	<u>}</u>	-1	0.72	[0.32;	1.63]	100.0%
meterogeneity: 1 = 12	%, c = 0.3666, p <	-0.01			0.001	0.1	1 10	1000				

Figure 127 - Forest plot of the random effects meta-analysis performed for the retention rates of longfin mako with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 128 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of longfin mako with circle vs. J hooks in shallow pelagic longlines.

Figure 129 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of longfin mako with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks	3	Relative R	lisk	RR	95%-CI	Weight
42 48 49	17 44 49	143136 127260 223200	125 19 4	162216 127260 223200		-	+	0.15 2.32 12.25	[0.09; 0.26] [1.35; 3.97] [4.42; 33.94]	26.3% 26.2% 24.8%
51	8	35721	2	36344			00	4.07	[0.86; 19.16]	22.6%
Overall effect Heterogeneity: / ² = 9	7%, z ² = 3.4024, p +	529317 0.01		549020	0.1	0.5 1 2	2 10	1.95	[0.10; 39.12]	100.0%

Figure 130 - Forest plot of the random effects meta-analysis performed for the retention rates of longfin mako with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 131 – Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of longfin mako with fish vs. squid bait in shallow pelagic longlines.

Figure 132 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of longfin mako with fish vs. squid bait in shallow pelagic longlines.

Figure 133 – Forest plot of the random effects meta-analysis performed for the retention rates of oceanic whitetip with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 134 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of oceanic whitetip with circle vs. J hooks in shallow pelagic longlines.

Figure 135 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of oceanic whitetip with circle vs. J hooks in shallow pelagic longlines.

Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks	Relative Risk	RR	95%-CI	Weight
74	143136	78	162216	<u>bu</u>	1.08	[0.78; 1.48]	34.6%
65	127260	93	127260		0.70	[0.51: 0.96]	34.6%
6	223200	5	223200		- 1.20	(0.37; 3.93)	8.6%
30	35721	18	36344		1.70	[0.95; 3.04]	22.2%
ο, τ ² = 0.0857, ρ =	529317 = 0.04		549020		1.03	[0.56; 1.90]	100.0%
	Nr. retained 74 65 6 30 5, τ ² = 0.0857, p =	Fish bait Nr. retained Nr. hooks 74 143136 65 127260 6 223200 30 35721 529317 5, $\tau^2 = 0.0857, p = 0.04$	Fish bait Nr. retained Nr. hooks Nr. retained 74 143136 78 65 127260 93 6 223200 55 30 35721 18 529317 5, $\tau^2 = 0.0857$, $p = 0.04$	Fish bait Squid bait Nr. retained Nr. hooks Nr. retained Nr. hooks 74 143136 78 162216 65 127260 93 127260 6 223200 5 223200 30 35721 18 36344 529317 549020 5, $\chi^2 = 0.0857, p = 0.04$ 5	Fish bait Squid bait Nr. retained Nr. hooks Relative Risk 74 143136 78 162216 65 127260 93 127260 6 223200 5 223200 30 35721 18 36344 529317 549020 6, $\chi^2 = 0.0857, p = 0.04$	Fish bait Squid bait Nr. retained Nr. hooks Relative Risk RR 74 143136 78 162216 1.08 0.70 65 127260 93 127260 0.70 1.20 30 35721 18 36344 1.03 50, $r^2 = 0.0857$, $p = 0.04$ 549020 1.03	Fish bait Nr. retained Nr. hooks Squid bait Nr. retained Nr. hooks Relative Risk RR 95%-CI 74 143136 78 162216 1.08 [0.78; 1.48] 65 127260 93 127260 0.70 [0.51; 0.96] 6 223200 5 223200 1.20 [0.37; 3.93] 30 35721 18 36344 1.70 [0.95; 3.04] 529317 549020 1.03 [0.56; 1.90]

Figure 136 - Forest plot of the random effects meta-analysis performed for the retention rates of oceanic whitetip with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 137 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of oceanic whitetip with fish vs. squid bait in shallow pelagic longlines.

Figure 138 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of oceanic whitetip with fish vs. squid bait in shallow pelagic longlines.

Figure 139 - Forest plot of the random effects meta-analysis performed for the retention rates of oceanic whitetip with circle vs. tuna hooks in deep-setting pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 140 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of oceanic whitetip with circle vs. tuna hooks in deep-setting pelagic longlines.

Figure 141 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of oceanic whitetip with circle vs. tuna hooks in deep-setting pelagic longlines.

Figure 142 - Forest plot of the random effects meta-analysis performed for the retention rates of porbeagle with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 143 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of porbeagle with circle vs. J hooks in shallow pelagic longlines.

Figure 144 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of porbeagle with circle vs. J hooks in shallow pelagic longlines.

Figure 145 - Forest plot of the random effects meta-analysis performed for the retention rates of crocodile shark with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 146 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of crocodile shark with circle vs. J hooks in shallow pelagic longlines.

Figure 147 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of crocodile shark with circle vs. J hooks in shallow pelagic longlines.

Figure 148 - Forest plot of the random effects meta-analysis performed for the retention rates of crocodile shark with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 149 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of crocodile shark with fish vs. squid bait in shallow pelagic longlines.

Figure 150 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of crocodile shark with fish vs. squid bait in shallow pelagic longlines.

Figure 151 - Forest plot of the random effects meta-analysis performed for the retention rates of crocodile shark with wire vs. nylon leaders in shallow pelagic longlines. (Note: nylon leaders are considered the control and wire leaders the experimental leaders; a relative risk (RR) >1 indicates retention is higher with wire leaders).

Figure 152 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of crocodile shark with wire vs. nylon leaders in shallow pelagic longlines.

Figure 153 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of crocodile shark with wire vs. nylon leaders in shallow pelagic longlines.

Figure 154 - Forest plot of the random effects meta-analysis performed for the retention rates of scalloped hammerhead with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 155 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of scalloped hammerhead with circle vs. J hooks in shallow pelagic longlines.

Figure 156 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of scalloped hammerhead with circle vs. J hooks in shallow pelagic longlines.

	C	Circle hook		J-hook						
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks		Relative Risk	RI	2 S	95%-CI	Weight
42	52	108144	26	54072		and the second s	1.0	0 [0.62;	1.60]	20.6%
42.1	107	95424	40	47712		100	1.3	4 [0.93]	1.92]	25.3%
48	76	84840	41	42420		100	0.9	3 [0.63;	1.35]	24.6%
48.1	49	84840	40	42420		100	0.6	1 [0.40;	0.93]	22.8%
49	1	148800	0	74400			5.5	0 [0.01; 35	562.76]	0.0%
49.1	15	148800	4	74400			1.8	3 [0.62;	5.65]	6.7%
Overall effect	-	670848		335424	- 		0.9	0.63;	1.54]	100.0%
Heterogeneity: /2 = 5	6%, τ ^c = 0.0666, ρ =	= 0.06			dian.	and the second	aller			
					0.001	0.1 1 10	1000			

Figure 157 - Forest plot of the random effects meta-analysis performed for the retention rates of smooth hammerhead with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 158 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of smooth hammerhead with circle vs. J hooks in shallow pelagic longlines.

Figure 159 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of smooth hammerhead with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks		Rel	lative F	lisk		RR	9	95%-CI	Weight
42	147	143136	78	162216			10	E		2.14	[1.62;	2.81]	32.1%
48	89	127260	117	127260			100			0.76	[0.58;	1.00]	32.1%
49	19	223200	1	223200				- 18		19.00	12.54; 1	41.93]	15.2%
51	5	35721	3	36344			- 16			1.70	[0.41;	7.10]	20.6%
Overall effect Heterogeneity: /2 = 9	1%. r ² = 0 9053. p <	529317 0.01		549020	r		+			2.04	[0.30;	13.69]	100.0%
Contraction of the second		(1977))		0	0.01	0.1	1	10	100				

Figure 160 - Forest plot of the random effects meta-analysis performed for the retention rates of smooth hammerhead with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 161 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of smooth hammerhead with fish vs. squid bait in shallow pelagic longlines.

Figure 162 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of smooth hammerhead with fish vs. squid bait in shallow pelagic longlines.

Figure 163 - Forest plot of the random effects meta-analysis performed for the retention rates of tiger shark with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 16419 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of tiger shark with circle vs. J hooks in shallow pelagic longlines.

Figure 165 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of tiger shark with circle vs. J hooks in shallow pelagic longlines.

Figure 166 - Forest plot of the random effects meta-analysis performed for the retention rates of tiger shark with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 167 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of tiger shark with fish vs. squid bait in shallow pelagic longlines.

Figure 168 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of tiger shark with fish vs. squid bait in shallow pelagic longlines.

	c	ircle hook		J-hook			
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR 95%	-CI Weight
25	20	25085	155	25085	E	0.13 [0.08:0	21] 10.4%
26	1	2320	4	2322		0.25 [0.03; 2	.24] 3.0%
27	4	22571	44	22571		0.09 [0.03; 0	25] 7.2%
28	6	19911	11	19911	<u>100</u>	0.55 [0.20; 1	47 7.3%
42	40	108144	90	54072	10	0.22 [0.15; 0	.32] 10.9%
42.1	23	95424	35	47712	- 8221	0.33 [0.19, 0	.56] 10.1%
45	15	8500	25	8500	and a	0.60 [0.32: 1	.14] 9.4%
46	13	14664	62	14590	100	0.21 (0.11:0	.38] 9.7%
48	0	84840	10	42420 -		0.00 [0.00, 2	.51] 0.5%
48.1	0	84840	9	42420 -		0.01 [0.00; 2	.80] 0.5%
49	11	148800	41	74400	123	0.13 [0.07; 0	26] 9.3%
49.1	39	148800	31	74400	100	0.63 (0.39; 1	.01] 10.4%
56	1	7900	3	7900		0.33 [0.03; 3	20] 2.8%
58	1	5100	2	5100		0.50 [0.05; 5	51] 2.6%
59	6	7200	4	7200	-	1.50 [0.42; 5	.31] 5.9%
Overall effect		784099		448603	\$	0.28 [0.18; 0	.46] 100.0%
Heterogeneity: $l^2 = 7$	$3\%, \tau^2 = 0.4146, \rho$	< 0.01			r + + + + +	1999-1997-1997-1997-1997-1997-1997-1997	101 3 04050505070
승규는 책임에 대한 것이 없다.	2012 - C.M.				0.001 0.1 1 10 1000	D	

Figure 169 - Forest plot of the random effects meta-analysis performed for the retention rates of pelagic stingray with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 170 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of pelagic stingray with circle vs. J hooks in shallow pelagic longlines.

Figure 171 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of pelagic stingray with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. retained	Fish bait Nr. hooks	Nr. retained	Squid bait Nr. hooks	Relat	ive Risk	RR	95%-CI	Weight
42 43 48 49 51	58 9 9 70 59	143136 18240 127260 223200 35721	130 7 10 52 31	162216 18240 127260 223200 36344	<u> </u>	+	0.51 	[0.37; 0.69] [0.48; 3.45] [0.37; 2.21] [0.94; 1.93] [1.25; 2.99]	24.6% 13.8% 15.0% 23.9% 22.7%
Overall effect Heterogeneity: 1 ² = 8	7%, τ ² = 0.2661, <i>p</i> <	547557 0.01		567260	0.5	1 2	1.07	[0.54; 2.12]	100.0%

Figure 172 - Forest plot of the random effects meta-analysis performed for the retention rates of pelagic stingray with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 173 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of pelagic stingray with fish vs. squid bait in shallow pelagic longlines.

Figure 174 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of pelagic stingray with fish vs. squid bait in shallow pelagic longlines.

Experiment	V Nr. retained	Vire leader Nr. hooks	Nr. retained	ylon leader Nr. hooks	R	elative Risk	RR	95%-CI	Weight
45 50	16 13	8500 41328	24 12	8500 41328			0.67	[0.35; 1.25] [0.49; 2.37]	34.0% 33.1%
51	6	36415	84	35650	-#-	T	0.07	[0.03; 0.16]	32.8%
Overall effect Heterogeneity: 1 ² = 92	?%, τ ² = 1.9505, <i>p</i> ·	86243 0.01		85478	0.1	0.51 2 10	0.37	[0.01; 13.87]	100.0%

Figure 175 - Forest plot of the random effects meta-analysis performed for the retention rates of pelagic stingray with wire vs. nylon leaders in shallow pelagic longlines. (Note: nylon leaders are considered the control and wire leaders the experimental leaders; a relative risk (RR) >1 indicates retention is higher with wire leaders).

Figure 176 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of pelagic stingray with wire vs. nylon leaders in shallow pelagic longlines.

Figure 177 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of pelagic stingray with wire vs. nylon leaders in shallow pelagic longlines.

Experiment	C Nr. retained	ircle hook Nr. hooks	Nr. retained	Tuna hook Nr. hooks	R	elative Risk	ł	RR	95%-CI	Weight
7	5	29400	2	14700		i la		1 25	10 24 6 441	18.7%
16	16	46848	7	15616		- 18		0.76	[0.31: 1.85]	25.5%
23	76	1169231	241	1169903		÷		0.32	[0.24: 0.41]	29.7%
55	6	24574	121	37795	- 18	T		0.08	[0.03; 0.17]	26.1%
Overall effect		1270053		1238014				0.35	[0.05; 2.35]	100.0%
Heterogeneity: $t^2 = 83$	3%, τ ² = 1.1409, ρ ·	< 0.01				111			••	
0022240020556002260					0.1	0.5 1 2	10			

Figure 178 - Forest plot of the random effects meta-analysis performed for the retention rates of pelagic stingray with circle vs. tuna hooks in deep-setting pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 179 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of pelagic stingray with circle vs. tuna hooks in deep-setting pelagic longlines.

Figure 180 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of pelagic stingray with circle vs. tuna hooks in deep-setting pelagic longlines.

		ircle hook		J-hook				
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR	95%-CI	Weigh
1	85	46040	147	92080	1	1,16	[0.89; 1.51]	0.0%
2	30	58766	14	29383	*	1.07	[0.57: 2.02]	4.2%
10	3	10000	14	10000		0.21	[0.06: 0.75]	1.49
12	11	37968	18	37968	-	0.61	[0.29; 1.29]	3.29
15	27	2150674	182	1282748		0.09	[0.06: 0.13]	0.09
17	58	138440	70	69173	10	0.41	[0.29; 0.59]	8.59
17.1	28	147386	17	74300	*	0.83	[0.45: 1.52]	4.5%
20	53	72914	117	72914	4	0.45	[0.33: 0.63]	9.0%
24	329	5044540	504	3157102	10	0.41	10.36: 0.471	13.6%
26	9	2320	14	2322	-	0.64	[0.28; 1.48]	2.7%
27	11	22571	20	22571	-	0.55	[0.26: 1.15]	3.39
28	36	19911	48	19911	1	0.75	(0.49: 1.15)	6.9%
30	26	82345	117	255298	10	0.69	[0.45: 1.05]	7.0%
30.1	15	243500	9	93780	+	0.64	[0.28: 1.47]	2.89
31	2	13286	9	13287		0.22	10.05: 1.03	0.99
36	ō	11174		11195		0.09	10.00 59.001	0.09
42	3	108144	7	54072		0.21	10.06 0.831	1.29
46	6	14664	20	14590	-	0.30	[0.12: 0.74]	2.49
48	7	84840	7	42420	-	0.50	10.18: 1.431	1.99
46.1	3	84840	5	42420		0.30	(0.07: 1.26)	1.19
49	96	148800	110	74400	12	0.44	10.33: 0.571	10.39
49.1	26	148800	28	74400	+	0.46	10.27: 0.791	5.39
52	9	14905	18	7465		0.25	(0.11: 0.56)	2.99
52.1	7	14940	2	7395	+	1.73	10.36: 8.341	0.99
53	0	20100		9900		0.04	10.00:29.001	0.0%
53.1	Ő	20100	1	9900		0.04	10.00 29.001	0.09
54	38	23840	29	11920	- 글	0.66	10.40: 1.061	6.0%
54.1	6	11780	4	23560		3.00	[0.85; 10.63]	0.0%
Overall effect		8797588		5616474	0	0.51	[0.43; 0.60]	100.05

Figure 181 - Forest plot of the random effects meta-analysis performed for the retention rates of loggerhead sea turtle with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 182 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of loggerhead sea turtle with circle vs. J hooks in shallow pelagic longlines.

Figure 183 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of loggerhead sea turtle with circle vs. J hooks in shallow pelagic longlines.

		Fish bait		Squid bait				
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR	95%-CI	Weight
14	11	12150	27	12150	*	0.41	[0.20; 0.82]	9.1%
15	27	2150674	182	1282748	1	0.09	[0.06; 0.13]	0.0%
17	45	221686	128	208613	曲	0.33	[0.24; 0.46]	20.3%
30	24	463139	143	510595	10	0.19	[0.12; 0.29]	16.5%
42	0	143136	10	162216 -		0.01	(0.00; 5.69)	0.2%
43	4	18240	18	18240		0.22	[0.08; 0.66]	4.5%
48	8	127260	14	127260	-	0.57	10.24; 1.361	6.6%
49	54	223200	206	223200	<u></u>	0.26	10.19: 0.351	22.2%
51	2	35721	3	36344		0.68	[0.11: 4.06]	1.8%
52	9	22335	27	22370	*	0.33	[0.16: 0.71]	8.2%
53	1	30000	1	30000		1.00	10.06: 15.991	0.8%
54	10	35340	67	35760	*	0.15	[0.08; 0.29]	9.8%
Overall effect	25	3482881		2669496	0	0.28	[0.21; 0.37]	100.0%
Heterogeneity: $l^2 = 3$	2%, τ ² = 0.0493, p =	0.14			1 1 1 1 1			
					0.001 0.1 1 10 1000			

Figure 184 - Forest plot of the random effects meta-analysis performed for the retention rates of loggerhead sea turtle with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 185 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of loggerhead sea turtle with fish vs. squid bait in shallow pelagic longlines.

Figure 186 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of loggerhead sea turtle with fish vs. squid bait in shallow pelagic longlines.

	C	ircle hook		J-hook				
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR	95%-CI	Weight
15	11	2150674	35	1282748		0.19	[0.10; 0.37]	6.3%
17	74	138440	35	69173		1.06	[0.71; 1.58]	0.0%
17.1	84	147386	42	74300		1.01	[0.70; 1.46]	0.0%
20	7	72914	20	72914		0.35	[0.15; 0.83]	4.3%
24	323	5044540	455	3157102	E2	0.44	[0.39; 0.51]	24.5%
25	4	25085	12	25085		0.33	[0.11: 1.03]	2.7%
27	1	22571	1	22571	-4	1.00	(0.06; 15.99)	0.0%
28	2	19911	2	19911		1.00	[0.14; 7.10]	0.0%
30	34	255298	101	255297	-14-	0.34	[0.23; 0.50]	13.2%
30.1	40	369359	12	93780		0.85	[0.44; 1.61]	6.8%
42	14	108144	22	54072		0.32	[0.16: 0.62]	6.5%
42.1	7	95424	15	47712		0.23	[0.10; 0.57]	4.0%
48	47	84840	45	42420		0.52	[0.35: 0.79]	12.5%
48.1	40	84840	51	42420	*	0.39	10.26: 0.591	12.3%
49	8	148800	14	74400		0.29	10.12: 0.681	4.2%
49.1	1	148800	3	74400 -		0,17	[0.02: 1.60]	0.7%
52	3	14905	2	7465	· · · · · · · · · · · · · · · · · · ·	0.75	10.13: 4.50	1.1%
52.1	3	14940	1	7395		1.48	0.15; 14.27]	0.7%
Overall effect	37772 - 47049753	8946871		5423165	•	0.39	[0.32; 0.49]	100.0%
Heterogeneity: 12 = 3	0%, τ ² = 0.0346, ρ ·	0.13			1 1 1 1 1			
					0.1 0.51 2 10			

Figure 187 - Forest plot of the random effects meta-analysis performed for the retention rates of leatherback sea turtle with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 188 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of leatherback sea turtle with circle vs. J hooks in shallow pelagic longlines.

Figure 189 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of leatherback sea turtle with circle vs. J hooks in shallow pelagic longlines.

		Fish bait		Squid bait				
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR	95%-CI	Weight
15	11	2150674	35	1282748	- n - 1	0.19	[0.10; 0.37]	12.2%
17	126	221686	109	208613		1.09	[0.84; 1.41]	15.4%
30	52	463139	135	510595		0.42	[0.31; 0.58]	15.1%
42	22	143136	36	162216		0.69	[0.41; 1.18]	13.5%
48	91	127260	92	127260	- 100	0.99	[0.74; 1.32]	15.3%
49	4	223200	22	223200		0.18	[0.06; 0.53]	9.0%
51	16	35721	19	36344	- 	0.86	[0.44; 1.67]	12.3%
52	4	22335	5	22370		0.80	[0.22; 2.98]	7.3%
Overall effect		3387151		2573346	-	0.57	[0.32; 1.02]	100.0%
Heterogeneity: $I^2 = 8$	5%, τ ² = 0.3682, ρ ·	: 0.01			1 1 1 1 1			
-					0.1 0.5 1 2 1	0		

Figure 190 - Forest plot of the random effects meta-analysis performed for the retention rates of leatherback sea turtle with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 191 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of leatherback with fish vs. squid bait in shallow pelagic longlines.

Figure 192 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of albacore tuna with fish vs. squid bait in shallow pelagic longlines.

	c	ircle hook		J-hook				
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR	95%-Cl	Weight
17	16	138440	7	69173	-1 he	1.14	[0.47; 2.78]	8.6%
17.1	1	147386	3	74300 -		0.17	[0.02: 1.62]	1.8%
25	3	25085	. 1	25085		- 3.00	[0.31; 28.84]	1.8%
35	14	11930	13	12197		1.10	[0.52; 2.34]	10.7%
36	9	11174	13	11195		0.69	[0.30; 1.62]	9.1%
40	112	74474	179	77199	dan	0.65	[0.51; 0.82]	24.7%
42	54	108144	62	54072		0.44	[0.30; 0.63]	20.6%
42.1	18	95424	27	47712		0.33	[0.18; 0.61]	14.0%
48	5	84840	7	42420		0.36	[0.11; 1.13]	5.8%
48.1	2	84840	4	42420		0.25	[0.05; 1.36]	3.0%
Overall effect		781737		455773	\$	0.57	[0.39; 0.84]	100.0%
Heterogeneity: $l^2 = 4$	6%, τ ² = 0.0873, ρ =	0.06					2월 11일 - 2월	
10.499/199701990 (1990) 1997	netta na na Marculation				0.1 0.51 2 10			

Figure 193 - Forest plot of the random effects meta-analysis performed for the retention rates of olive ridley sea turtle with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 194 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of olive ridley with circle vs. J hooks in shallow pelagic longlines.

Figure 195 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of olive ridley sea turtle with circle vs. J hooks in shallow pelagic longlines.

		Fish bait		Squid bait				
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR	95%-CI	Weight
17	4	221686	23	208613		0.16	[0.06; 0.47]	14.7%
42	45	143136	116	162216		0.44	[0.31; 0.62]	41.2%
48	6	127260	12	127260		0.50	[0,19; 1.33]	16.4%
51	12	35721	55	36344		0.22	[0.12; 0.41]	27.7%
Overall effect		527803		534433	-	0.32	[0.15; 0.70]	100.0%
Heterogeneity: /* = 5	1%, t* = 0.1147, p =	= 0.10						
					01 0512	10		

Figure 196 - Forest plot of the random effects meta-analysis performed for the retention rates of olive ridley sea turtle with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates retention is higher with fish bait).

Figure 197 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of olive ridley sea turtle with fish vs. squid bait in shallow pelagic longlines.

Figure 198 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of olive ridley sea turtle with fish vs. squid bait in shallow pelagic longlines.

	0	Circle hook		Tuna hook				
Experiment	Nr. retained	Nr. hooks	Nr. retained	Nr. hooks	Relative Risk	RR	95%-Cl	Weight
34	85	355884	172	357464		0.50	[0.38; 0.64]	30.0%
37	29	34619	72	40890		0.48	[0.31; 0.73]	24.5%
38	73	65603	78	69040	- 12	0.98	[0.72; 1.36]	28.2%
39	12	36834	30	38207 -		0.41	[0.21; 0.81]	17.4%
Overall effect		492940		505601		0.58	[0.31; 1.08]	100.0%
Heterogeneity: /* = 7	8%, τ ² = 0.1184, ρ ·	¢ 0.01						
					0.5 1 2			

Figure 199 - Forest plot of the random effects meta-analysis performed for the retention rates of olive ridley sea turtle with circle vs. tuna hooks in shallow pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 200 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of olive ridley with circle vs. tuna hooks in shallow pelagic longlines.

Figure 201 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of olive ridley sea turtle with circle vs. tuna hooks in shallow pelagic longlines.

	Cir	cle hook		J-hook						
Experiment	Nr. retained N	r. hooks	Nr. retained	Nr. hooks		Relative Risk		RR	95%-	CI Weight
20	3	72914	i (1	72914				1.00	[0.06; 15.9	9] 9.6%
25	4	25085	6	25085		-183-		0.67	[0.19; 2.3	6] 46.0%
35	4	11930	5	12197				0.82	[0.22; 3.0	5] 42.6%
36	0	11174	5	11195		•		0.02	[0.00; 10.2	6] 1.9%
Overall effect		121103		121391	-		-2	0.71	[0.28; 1.8	2] 100.0%
Heterogeneity: /* = 0	$\%, \tau^2 < 0.0001, p = 0.$	a -			0.004		4000			
					0.001	0.1 1 10	1000			

Figure 202 - Forest plot of the random effects meta-analysis performed for the retention rates of green sea turtle with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 203 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of green sea turtle with circle vs. J hooks in shallow pelagic longlines.

Figure 204 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of green sea turtle with circle vs. J hooks in shallow pelagic longlines.

Figure 205 - Forest plot of the random effects meta-analysis performed for the retention rates of green sea turtle with circle vs. tuna hooks in shallow pelagic longlines. (Note: tuna hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 206 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of green sea turtle with circle vs. tuna hooks in shallow pelagic longlines.

Figure 207 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of green sea turtle with circle vs. tuna hooks in shallow pelagic longlines.

Experiment	C Nr. retained	ircle hook Nr. hooks	Nr. retained	J-hook I Nr. hooks		Relative Ris	ik RF	۱ 95%-CI	Weight
35	1	11930	ĕ	12197			0.13	7 [0.02; 1.42]	25.6%
36	5	11174	6	11195			0.83	3 [0.25; 2.73]	41.0%
40	6	74474	2	77199		- 18	3.1	1 [0.63; 15.41]	33.4%
Overall effect		97578		100591			0.86	5 [0.03; 24.95]	100.0%
Heterogeneity: $I^2 = 57$	^{r%} , τ ² = 0.9593, ρ =	0.10				1.1.1			
					0.1	0512	10		

Figure 208 - Forest plot of the random effects meta-analysis performed for the retention rates of hawksbill sea turtle with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates retention is higher with circle hooks).

Figure 209 - Baujat plot of the influence analysis for validating the meta-analysis performed for the retention rates of hawksbill sea turtle with circle vs. J hooks in shallow pelagic longlines.

Figure 210 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the retention rates of hawksbill sea turtle with circle vs. J hooks in shallow pelagic longlines.

		Circle hook		J-hook								
Experiment	Nr. dead at-haulback	Nr. retained	Nr. dead at-haulback	Nr. retained		Rela	tive R	lisk		RR	95%-CI	Weight
24	31095	45237	38902	49936			125			0.88	[0.88; 0.89]	12.3%
25	260	301	275	307			12			0,96	[0.91; 1.02]	9.2%
29	5553	8557	5490	7634			10			0.90	[0.88; 0.92]	11.9%
42	1351	1540	855	999			- 1611			1.03	[0.99; 1.06]	11.3%
42.1	861	991	592	684			121			1.00	[0.97; 1.04]	10.8%
45	58	63	61	72			-			1.09	[0.96; 1.23]	5.0%
48	734	943	535	648			10			0.94	[0.90; 0.99]	10.0%
48.1	602	742	372	443			- the last t			0.97	[0.92; 1.02]	9.6%
49	1102	1553	743	1004			- 印			0.96	[0.91; 1.01]	10.0%
49.1	882	1224	660	849			63			0.93	[0.88; 0.97]	8.9%
56	4	6	3	9		-				2.00	[0.68; 5.91]	0.1%
Overall effect		61157		62585	l.					0.96	[0.92; 1.00]	100.0%
Heterogeneity: /2 = 9	4% , $\tau^2 = 0.0026$, $p < 0.01$. 5		1					
1910 (9 15 - 91)					0.2	0.5	1	2	5			

Figure 211 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of swordfish with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 212 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of swordfish with circle vs. J hooks in shallow pelagic longlines.

Figure 213 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of swordfish with circle vs. J hooks in shallow pelagic longlines.

		Fish bait		Squid bait				
Experiment	Nr. dead at-haulback	Nr. retained N	ir. dead at-haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
42	1453	1675	2206	2539		1.00	[0.97; 1.02]	29.3%
48	974	1185	1269	1591		1.03	[0.99; 1.07]	23.9%
49	1542	2073	1845	2557	- <u>M</u>	1.03	[1.00; 1.07]	24,5%
51	407	456	443	476		0.96	[0.92; 1.00]	22.3%
Overall effect Heterogeneity: I ² = 68	3%, τ ² = 0.0007, ρ = 0.02	5389		7163		1.00	[0.95; 1.06]	100.0%

Figure 214 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of swordfish with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 215 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of swordfish with fish vs. squid bait in shallow pelagic longlines.

Figure 216 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of swordfish with fish vs. squid bait in shallow pelagic longlines.

2020/02/02/02/02/02		Wire leader		Nylon leader		2011 - 2010 - 204	010	-1049	A 2005/2000 0000	ensos ann
Experiment	Nr. dead at-haulback	Nr. retained	Nr. dead at-haulback	Nr. retained	R	elative Ris	*	RR	95%-CI	Weight
45	56	59	63	76		1		1015	[1.02; 1.29]	30.2%
50	317	447	377	460				0.87	[0.80; 0.93]	33.9%
51	380	418	470	514				0.99	[0.95; 1.04]	35.9%
Overall effect Heterogeneity: I ² = 89 ⁴	%, τ ² = 0.0164, ρ < 0.01	924		1050		-	-	0.99	[0.70; 1.39]	100.0%
122 B					8.0	1	1.25			

Figure 217 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of swordfish with wire vs. nylon leaders in shallow pelagic longlines. (Note: nylon leaders are considered the control and wire leaders the experimental leaders; a relative risk (RR) >1 indicates at-haulback mortality is higher with wire leaders).

Figure 218 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of swordfish with wire vs. nylon leaders in shallow pelagic longlines.

Figure 219 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of swordfish with wire vs. nylon leaders in shallow pelagic longlines.

		Circle hook		J-hook				
Experiment	Nr. dead at-haulback	Nr. retained	Nr. dead at-haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
24	4097	5075	3192	4109	\$T	1.04	[1.02; 1.06]	25.3%
25	36	41	30	33	+	0.97	[0.83; 1.13]	9.5%
29	210	323	133	215	*	1.05	[0.92, 1.20]	11.7%
42	32	34	2	2	63	0.94	[0.87, 1.02]	17.4%
42.1	3	3	3	3		1.00	(0.75, 1.33)	3.8%
48	2	2	4	4		1.00	[0.71; 1.40]	2.8%
45	6	6	6	7	+	1.16	[0.86, 1.57]	3.6%
49	198	250	57	67	-	0.93	[0.83; 1.05]	13.0%
49.1	123	156	30	32	13	0.84	[0.75; 0.95]	12.8%
56	1	(a	1	3		2.82	[0.63; 12.64]	0.2%
Overall effect Heterogeneity: /2 = 5	58%, τ ² = 0.0037, ρ = 0.01	5891		4475	r	0.98	[0.91; 1.05]	100.0%
27.0729.5707.0321 (-).					0.1 05 1 2	10		

Figure 220 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of albacore tuna with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 221 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of albacore tuna with circle vs. J hooks in shallow pelagic longlines.

Figure 222 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of albacore tuna with circle vs. J hooks in shallow pelagic longlines.

Experiment N	. dead at-haulback	Fish bait Nr. retained	Nr. dead at-haulback	Squid bait Nr. retained	Re	lative Risk	RI	₹ 95%-CI	Weight
42 48 49	6 2 153	6 2	34 6 255	36 6 317			1.0	3 [0.98; 1.15] 3 [0.73; 1.38] 1 [0.93; 1.10]	53.2% 3.3%
51	100	100	235	0			24.50	i (0.85, 1.10]	0.0%
Overall effect Heterogeneity: $t^2 = 0\%$, $\tau^2 = 0$), <i>p</i> = 0.73	197		359	0.8	1 1	1.0 25	4 [0.97; 1.11]	100.0%

Figure 223 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of albacore tuna with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 224 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of albacore tuna with fish vs. squid bait in shallow pelagic longlines.

Figure 225 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of albacore tuna with fish vs. squid bait in shallow pelagic longlines.

		Circle hook		J-hook				
Experiment	Nr. dead at-haulback	Nr. retained	Nr. dead at-haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
24	2978	7663	4555	9625	101	0.82	[0.79; 0.85]	32,3%
25	175	526	194	390	-	0.67	[0.57; 0.78]	12.9%
29	247	1069	186	650	*	0.81	[0.69; 0.95]	12.2%
42	388	728	164	252	-	0.82	[0.73; 0.92]	18.5%
42.1	70	144	37	51		0.67	[0.53; 0.85]	7.1%
45	19	50	18	54		1.14	[0.68; 1.91]	1.8%
48	43	87	22	32		0.72	[0.52; 0.99]	4.4%
48.1	70	124	36	52	*	0.82	[0.64; 1.03]	7.1%
49	59	105	13	36		1.56	[0.98; 2.46]	2.2%
49.1	23	48	5	7	+ + +	0.67	[0.39; 1.17]	1.6%
56	2	4	1	3		- 1,50	[0.23; 9.80]	0.1%
Overall effect Heterogeneity, 1 ² = 48	3%, r ² = 0.0037, p = 0.04	10548		11152		0.80	[0.72; 0.88]	100.0%
					0.2 0.5 1 2 5			

Figure 226 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of bigeye tuna with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 227 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of bigeye tuna with circle vs. J hooks in shallow pelagic longlines.

Figure 228 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of bigeye tuna with circle vs. J hooks in shallow pelagic longlines.

		Fish bait		Squid bait				
Experiment Nr.	dead at-haulback	Nr. retained	Nr. dead at-haulback	Nr. retained	Relative Risk	r RR	95%-CI	Weight
42	107	195	552	980		0.97	[0.85; 1.12]	50.5%
48	106	176	65	119		1.10	[0.90; 1.35]	23.6%
49	28	55	72	141		1.00	[0.73; 1.35]	10.4%
51	120	190	23	33		0.91	[0.71, 1.16]	15.6%
Overall effect Heterogeneity: $t^2 = 0\%$, $\tau^2 = 0$.	ρ = 0.66	616		1273		0.99	[0.88; 1.12]	100.0%
n son star star status or district singly					0.8 1	1.25		

Figure 229 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of bigeye tuna with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 230 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of bigeye tuna with fish vs. squid bait in shallow pelagic longlines.

Figure 231 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of bigeye tuna with fish vs. squid bait in shallow pelagic longlines.

Experiment	Nr. dead at-haulback	Nylon leader Nr. retained	Nr. dead at-haulback	Wire leader Nr. retained	Relative Risk	RR	95%-CI	Weight
201		1. 5835	5b 7		Sa (S)		82-450 (500).	an an Alexandre an A
45	16	38	21	66		1.32	[0.79; 2.21]	14.4%
50	5	13	4	6 —	•	0.58	[0.24; 1.41]	4.8%
51	43	69	100	154	- 100-	0.96	[0.77; 1.19]	80.8%
Overall effect	en 2008000 - 10000	120		226	_	0.98	[0.60; 1.62]	100.0%
Heterogeneity: $l^2 = 2l$	$5\%, \tau^2 < 0.0001, \rho = 0.26$				05 1 2			

Figure 232 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of bigeye tuna with wire vs. nylon leaders in shallow pelagic longlines. (Note: nylon leaders are considered the control and wire leaders the experimental leaders; a relative risk (RR) >1 indicates at-haulback mortality is higher with wire leaders).

Figure 233 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of bigeye tuna with wire vs. nylon leaders in shallow pelagic longlines.

Figure 234 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of bigeye tuna with wire vs. nylon leaders in shallow pelagic longlines.

		Circle hook		J-hook				
Experiment	Nr. dead at-haulback	Nr. retained	Nr. dead at-haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
24	11138	31696	12185	26915	101	0.78	[0.76; 0.79]	23.8%
25	56	128	67	105		0.69	[0.54; 0.87]	12.8%
42	167	317	62	106		0.90	[0.74; 1.09]	15.5%
42.1	77	90	51	63	101	1.06	[0.91; 1.22]	18.2%
45	5	13	10	19		0.73	[0.33; 1.64]	2.3%
48	38	93	32	54	-96	0,69	[0.50; 0.96]	9.2%
48.1	21	44	12	23		0.91	[0.56; 1.51]	5,1%
49	50	112	20	34		0.76	[0.54; 1.08]	8.6%
49.1	2	22	12	21 -		0,16	[0.04; 0.63]	0.8%
56	17	71	14	49		0.84	[0.46; 1.54]	3,7%
Overall effect Heterogeneity: / ² = 8	8%. r ² = 0.0178. <i>p</i> < 0.01	32586		27389	· · · · · · · · · · · · · · · · · · ·	0.81	[0.69; 0.95]	100.0%
2009/2008/2018/2018/2018/2018/2018/2018/2018					0.1 0.5 1 2 10	i		

Figure 235 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of yellowfin tuna with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 236 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of yellowfin tuna with circle vs. J hooks in shallow pelagic longlines.

Figure 237 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of yellowfin tuna with circle vs. J hooks in shallow pelagic longlines.

		Fish bait		Squid bait				
Experiment	Nr. dead at-haulback	Nr. retained	Nr. dead at-haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
42	128	153	229	423	1 =	1.55	[1.38; 1.73]	31.5%
48	33	67	70	147		1.03	[0.77; 1.39]	25.9%
49	14	43	70	146		0.68	[0.43; 1.08]	19.9%
51	14	21	29	50		1,15	[0.78; 1.69]	22.7%
Overall effect Heterogeneity: 1 ² = 8	3%, τ ² = 0.0861, <i>ρ</i> < 0.01	284		766	, ,	1.11	[0.65; 1.88]	100.0%
					0.5 1 2)		

Figure 238 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of yellowfin tuna with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 239 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of yellowfin tuna with fish vs. squid bait in shallow pelagic longlines.

Figure 240 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of yellowfin tuna with fish vs. squid bait in shallow pelagic longlines.

		Circle hook		J-hook				
Experiment Nr	. dead at haulback	Nr. retained	Nr. dead at haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
24	447	1563	549	1568	自	0.82	[0.74; 0.91]	60.8%
25	5	9	4	4	-	0.56	[0.32; 1.00]	2.0%
42	43	69	26	41	+	0.98	[0.73; 1.32]	7.4%
42.1	32	54	30	43	4	0.85	[0.63; 1.14]	7.4%
45	0	4	3	6		0.05	[0.00.22.98]	0.0%
48	2	10	7	9		0.26	[0.07; 0.93]	0.4%
48.1	21	31	9	15	+	1.13	[0.70; 1.82]	2.8%
49	67	138	47	70	1	0.73	[0.58; 0.93]	11.6%
49.1	43	103	50	91	*	0.76	[0.57; 1.02]	7.5%
56	0	2	2	3		0.07	[0.00; 31.25]	0.0%
Overall effect Heterogeneity $J^2 = 14\%$, $\tau^2 =$	0. ρ = 0.31	1981		1850	· · · · · ·	0.81	[0.74; 0.90]	100.0%
					0.001 0.1 1 10 1000	5		

Figure 241 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of blue marlin with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 242 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of blue marlin with circle vs. J hooks in shallow pelagic longlines.

Figure 243 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of blue marlin with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. dead at haulback	Fish bait Nr. retained	Nr. dead at haulback	Squid bait Nr. retained	Relative Risk	RR	95%-CI	Weight
42	62	97	69	110	-4-	1.02	10.83 1.251	33.4%
48	30	46	9	19		- 1.38	10.82 2.311	7,4%
49	93	194	114	206		0.87	[0.72, 1.05]	37.3%
51	16	20	37	51		1.10	[0.84, 1.45]	21.9%
Overall effect Heterogeneity: /2 = 2	6%, τ ² = 0.0054, μ = 0.25	357		386	,	1.00	[0.78; 1.27]	100.0%
	312A4 - 1.241327453 - 121267				0.5 1 2	£.		

Figure 244 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of blue marlin with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 245 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of blue marlin with fish vs. squid bait in shallow pelagic longlines.

Figure 246 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of blue marlin with fish vs. squid bait in shallow pelagic longlines.

		Wire leader		Nylon leader			
Experiment	Nr. dead at haulback	Nr. retained	Nr. dead at haulback	Nr. retained	Relative Risk	RR	95%-CI Weight
45	2	3	ું સ	7		- 4.67	[0.64; 33.91] 19.5%
50	2	3	1	3		2.00	[0.33; 11.97] 22.3%
51	18	28	35	43	**	0.79	[0.58; 1.08] 58.2%
Overall effect Heterogeneity: I ² = 4	9%, t ² = 0.4766, p = 0.14	34		53	r -then	1.37	[0.16; 11.83] 100.0%
924830349910 - 15	94800 - 2003-9409 - 2205				0.1 0.5 1 2 10		

Figure 247 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of blue marlin with wire vs. nylon leaders in shallow pelagic longlines. (Note: nylon leaders are considered the control and wire leaders the experimental leaders; a relative risk (RR) >1 indicates at-haulback mortality is higher with wire leaders).

Figure 248 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of blue marlin with wire vs. nylon leaders in shallow pelagic longlines.

Figure 249 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of blue marlin with wire vs. nylon leaders in shallow pelagic longlines.

		Circle hook		J-hook				
Experiment Nr.	dead at haulback	Nr. retained	Nr. dead at haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
24	526	1331	1201	2557	201	0.84	[0.78; 0.91]	70,5%
25	8	16	14	18		0.64	[0.37; 1.11]	1.4%
42	26	36	11	13		0.85	[0.63, 1.16]	4.5%
49	90	159	70	99	-	0.80	[0.66; 0.96]	12.4%
49.1	75	115	48	66	-14-	0.90	[0.73, 1.09]	10.9%
56	3	5	2	5		1.50	[0.41; 5.45]	0.3%
Overall effect Heterogeneity: $l^2 = 0\%$, $t^2 = 0$	ρ = 0.80	1662		2758		0.84	[0.79; 0.89]	100.0%
				0	2 0.5 1 2	5		

Figure 250- Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of white marlin with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 251 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of white marlin with circle vs. J hooks in shallow pelagic longlines.

Figure 252 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of white marlin with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. dead at haulback	Fish bait Nr. retained	Nr. dead at haulback	Squid bait Nr. retained	Relative Risk	RR	95%-CI	Weight
42	5	5	37	49		1.32	[1.13; 1.55]	33.3%
49	123	181	160	258	- 195	1.10	[0.95; 1.26]	35.3%
51	32	39	48	55		0.94	[0.79, 1.12]	31.4%
Overall effect	5% - ¹ = 0.0212 n = 0.02	225		362		- 1.11	[0.73; 1.69]	100.0%
Thereitagenerity - r - r	over the provide the product				0.75 1 1.5			

Figure 253 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of white marlin with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 254 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of white marlin with fish vs. squid bait in shallow pelagic longlines.

Figure 255 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of white marlin with fish vs. squid bait in shallow pelagic longlines.

		Circle hook		J-hook				
Experiment	Nr. dead at haulback	Nr. retained	Nr. dead at haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
21	6	22	7	10		0.39	[0.18; 0.86]	3.2%
24	4507	25956	3838	24365		1.10	[1.06, 1.15]	13,1%
25	1	34	4	35 -		0.28	[0.03; 2.19]	0.6%
29	2490	12923	1984	8761	- 83	0.85	[0.81: 0.90]	13.0%
42	104	1891	62	946	*	0.84	[0.62, 1.14]	9.1%
42.1	256	2460	149	1006		0.70	[0.58; 0.85]	11.2%
45	12	39	12	38		0.97	[0.50, 1.89]	4.2%
48	139	3378	140	1660		0.49	[0.39, 0.61]	10.5%
48.1	445	4350	221	2117	101	0.98	[0.84, 1.14]	11.8%
49	253	2451	120	888	- 101	0.76	[0.62, 0.94]	11.0%
49.1	678	4465	362	1822	10	0.72	[0.65; 0.81]	12.4%
58	1	1	0	0				0.0%
Overall effect	2-0052 001	57970		41648		0.78	[0.64; 0.94]	100.0%
meterogeneity: Y = t	3336, T = 0.0333, p < 0.01				0.1 0.5 1 2 10			

Figure 256 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of blue shark with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 257 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of blue shark with circle vs. J hooks in shallow pelagic longlines.

Figure 258 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of blue shark with circle vs. J hooks in shallow pelagic longlines.

		Fish bait		Squid bait				
Experiment	Nr. dead at haulback	Nr. retained	Nr. dead at haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
42	405	3466	166	2837	1 1	- 2.00	[1.68; 2.38]	22.1%
48	666	6467	279	5038	-100	1.88	[1.63, 2.13]	26.2%
49	1060	6287	373	3339		1.51	[1.35, 1.69]	28.9%
51	250	854	166	1003		1.58	[1.34, 1.86]	22.8%
Overall effect		17074		12217		1.71	[1.39; 2.11]	100.0%
Heterogeneity: /2 = 7	$0\%, \tau^2 = 0.0121, \rho = 0.02$				[S (S	
ANGORF.069352 - 4					0.5 1 2			

Figure 259 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of blue shark with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 260 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of blue shark with fish vs. squid bait in shallow pelagic longlines.

Figure 261 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of blue shark with fish vs. squid bait in shallow pelagic longlines.

Nr. dead at haulback	Wire leader Nr. retained	Nr. dead at haulback	Nylon leader Nr. retained	Relative Risk	RR	95%-CI	Weight
11	48	13	29		0.51	[0.26; 0.99]	4.3%
96	390	76	305		0.99	10.76: 1.28]	27.3%
247	1128	169	729	-	0.84	[0.72, 1.00]	68.4%
6, τ ² < 0.0001, ρ = 0.17	1566		1063		0.86	[0.58; 1.28]	100.0%
	Nr. dead at haulback 11 96 247 %, τ ² < 0.0001, ρ = 0.17	Wire leader Nr. dead at haulback Nr. retained 11 48 96 390 247 1128 1566 1566	Wire leader Nr. dead at haulback Nr. retained Nr. dead at haulback 11 45 13 96 390 76 247 1125 189 1566 17 17	Wire leader Nylon leader Nr. dead at haulback Nr. retained 11 48 13 29 96 390 76 305 247 1128 169 729 1566 1063 6, τ ³ < 0.0001, ρ = 0.17	Wire leader Nylon leader Nr. dead at haulback Nr. retained Nr. dead at haulback Nr. retained Relative Risk 11 48 13 29 96 390 76 305 247 1128 189 729 1566 1063 1063	Wire leader Nylon leader Nr. dead at haulback Nr. retained Nr. dead at haulback Nr. retained Relative Risk RR 11 48 13 29 0.51 0.51 96 390 76 305 0.99 247 1128 189 729 0.84 1566 1063 0.86 0.86	Wire leader Nylon leader Nr. dead at haulback Nr. retained Nr. dead at haulback Nr. retained Relative Risk RR 95%-Cl 11 45 13 29 0.51 [0.26, 0.99] 0.99 [0.76, 1.28] 96 390 76 305 0.99 [0.76, 1.28] 0.84 [0.72, 1.00] 247 1128 189 729 0.86 [0.58; 1.28] 1566 1063 0.86 [0.58; 1.28]

Figure 262 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of blue shark with wire vs. nylon leaders in shallow pelagic longlines. (Note: nylon leaders are considered the control and wire leaders the experimental leaders; a relative risk (RR) >1 indicates at-haulback mortality is higher with wire leaders).

Figure 263 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of blue shark with wire vs. nylon leaders in shallow pelagic longlines.

Figure 264 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of blue shark with wire vs. nylon leaders in shallow pelagic longlines.

		Circle hook		J-hook				
Experiment	Nr. dead at haulback	Nr. retained	Nr. dead at haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
21		5	1	1	+	0.22	[0.04; 1.13]	0.2%
24	874	3081	645	2042	(C)	0.90	[0.82, 0.98]	74.3%
25	1	4	2	2	· · · · · · · · · · · · · · · · · · ·	0.27	[0.05; 1.33]	0.2%
29	83	358	49	185	-	0.88	[0.65, 1.19]	5.8%
42	22	58	6	32	· · · · · · · · · · · · · · · · · · ·	2.02	[0.92, 4.47]	0.9%
42.1	40	120	16	35		0.73	[0.47, 1.13]	2.8%
48	29	158	21	72	-+-	0.63	[0.39, 1.02]	2.3%
48.1	38	134	17	75	· · · · · · · · · · · · · · · · · · ·	1.25	[0.76, 2.06]	2.2%
49	76	231	24	68		0.93	[0.64; 1.35]	3.9%
49.1	119	339	47	120		0.90	[0.69, 1.17]	7.6%
Overall effect		4488		2632		0.89	[0.80; 0.99]	100.0%
Heterogeneity: $l^2 = 3$	14%, τ ² < 0.0001, ρ = 0.13				1 1 1 1 1			
					0.1 0.5 1 2 10			

Figure 265 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of shortfin mako with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 266 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of shortfin mako with circle vs. J hooks in shallow pelagic longlines.

Figure 267 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of shortfin mako with circle vs. J hooks in shallow pelagic longlines.

Experiment Nr.	dead at haulback	Fish bait Nr. retained	Nr. dead at haulback	Squid bait Nr. retained	Re	lative Risk	R	R 95%-CI	Weight
1975 WE TO SEE REALT 1972									
42	56	155	28	90			- 1.1	6 [0.80, 1.68]	17.1%
48	55	209	50	230		- 18	- 1.2	1 [0.87, 1.69]	21.2%
49	166	459	100	299			1.0	8 [0.88, 1.32]	58.6%
51	5	8	4	8				5 (0.52; 3.00)	3.1%
Overall effect Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$	ρ = 0.94	831		627	r	Ó	1.1	3 [1.03; 1.24]	100.0%
	1. The Control of Cont				0.5	1.4	9		

Figure 268 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of shortfin mako with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 269 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of shortfin mako with fish vs. squid bait in shallow pelagic longlines.

Figure 270 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of shortfin mako with fish vs. squid bait in shallow pelagic longlines.

		Circle hook		J-hook				
Experiment	Nr. dead at haulback	Nr. retained	Nr. dead at haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
24	256	536	197	505	100	1.22	[1.06; 1.41]	36.9%
42	48	76	20	28		0.88	[0.66; 1.18]	10.1%
42.1	38	54	18	36		1.41	[0.97, 2.04]	6.4%
48	141	285	61	128	· · · · · · · · · · · · · · · · · · ·	1.04	[0.84; 1.29]	17.5%
48.1	143	235	86	167		1.18	[0.99, 1.41]	24.4%
49	23	37	4	13	3	- 2.02	[0.86; 4.74]	1,2%
49.1	28	49	12	30		1.43	[0.87, 2.36]	3.5%
56	0	1	0	0				0.0%
Overall effect		1273		907	\$	1.16	[1.02; 1.33]	100.0%
Heterogeneity: $l^2 = 2$	8%, τ ² = 0.0012, p = 0.22				1 1 1			
					0.5 1 2			

Figure 271 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of bigeye thresher with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 272 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of bigeye thresher with circle vs. J hooks in shallow pelagic longlines.

Figure 273 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of bigeye thresher with circle vs. J hooks in shallow pelagic longlines.

Figure 274 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of bigeye thresher with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 275 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of bigeye thresher with fish vs. squid bait in shallow pelagic longlines.

Figure 276 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of bigeye thresher with fish vs. squid bait in shallow pelagic longlines.

Figure 277 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of silky shark with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 278 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of silky shark with circle vs. J hooks in shallow pelagic longlines.

Figure 279 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of silky shark with circle vs. J hooks in shallow pelagic longlines.

		Fish bait		Squid bait				
Experiment	Nr. dead at haulback	Nr. retained	Nr. dead at haulback	Nr. retained	Relative Risk	RR	95%-CI	Weight
42	109	207	90	112		0.66	[0.56; 0.77]	35.8%
48	11	16	8	20		- 1.72	[0.92, 3.23]	23.2%
49	2	4	2	4 -		1.00	[0.25; 4.00]	9.5%
51	4	4	7	9	- 385	1.28	[0.91, 1.81]	31.5%
Overall effect Heterogeneity $J^2 = 8$	$4\% \tau^2 = 0.1731 \sigma < 0.01$	231		145		1.05	[0.52; 2.14]	100.0%
					05 1 2			

Figure 280 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of silky shark with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 281 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of silky shark with fish vs. squid bait in shallow pelagic longlines.

Figure 282 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of silky shark with fish vs. squid bait in shallow pelagic longlines.

		Circle hook		J-h	ook							
Experiment Nr	. dead at haulback	Nr. retained	Nr. dead at haulback	Nr. retai	ned		Relati	ve Risk	<u>د</u>	RR	95%-CI	Weight
42	12	32	2		10		-	li m		- 1.88	[0.50; 7.00]	18.2%
42.1	4	11	2		6	-		1	_	1.09	[0.28, 4.32]	16.7%
48	0	8	0		6						10100201100000	0.0%
48.1	7	25	8		19		- 1			0.89	[0.36; 2.21]	37.9%
49	2	4	0		0							0.0%
49.1	4	17	7		32		_			1.08	[0.37; 3.16]	27.2%
Overall effect Heterogeneity: $l^2 = 0\%$, $c^2 = 0$	ρ = 0.84	97			73	Č.		╞,		1.11	[0.68; 1.80]	100.0%
						0.2	0.5	1 2	5			

Figure 283 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of longfin mako with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 284 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of longfin mako with circle vs. J hooks in shallow pelagic longlines.

Figure 285 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of longfin mako with circle vs. J hooks in shallow pelagic longlines.

Experiment N	r. dead at haulback	Fish bait Nr. retained	Nr. dead at haulback	Squid bait Nr. retained	Relative Risk	RR	95%-C	I Weight
42 45	6 13	17 44	14	42	#	1.06 41.88	[0.49, 2.29 [0.09: 20488.29	1 57.8% 1 0.9%
49 51	11 3	49 8	2	4 2	*	0.45 0.75	0.15; 1.36 [0.14; 3.90] 28.4%] 12.9%
Overall effect Heterogeneity: $l^2 = 4\%$, $\tau^2 =$	0.0039, p = 0.37	118		62	0.001 0.1 1 10 1000	0.82	[0.31; 2.19] 100.0%

Figure 286 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of longfin mako with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 287 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of longfin mako with fish vs. squid bait in shallow pelagic longlines.

Figure 288 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of longfin mako with fish vs. squid bait in shallow pelagic longlines.

Figure 289 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of oceanic whitetip with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 290 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of oceanic whitetip with circle vs. J hooks in shallow pelagic longlines.

Figure 291 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of oceanic whitetip with circle vs. J hooks in shallow pelagic longlines.
Experiment N	r dead at haulback	Fish bait Nr. retained 1	Nr. dead at haulback	Squid bait Nr. retained	Relative Risk	RR	95%-CI	Weight
				The recently of	the server the server	3,073		
42	36	74	30	76	- 100	1.23	[0.86; 1.77]	55.9%
48	18	65	18	87		1.34	[0.76; 2.36]	22.8%
49	2	6	2	6 -		- 0.83	[0.18; 3.96]	3.0%
51	12	30	9	18		0.80	[0.42; 1.51]	18.2%
Overall effect Heterogeneity: $l^2 = 0\%$, $c^2 = 1$	0, p = 0.61	175		186	, 	1.15	[0.81; 1.62]	100.0%
	아파티는 것이라는			0	2 0.5 1 2	5		

Figure 292 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of oceanic whitetip with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 293 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of oceanic whitetip with fish vs. squid bait in shallow pelagic longlines.

Figure 294 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of oceanic whitetip with fish vs. squid bait in shallow pelagic longlines.

		Circle hook		J-hook					
Experiment N	ir. dead at haulback	Nr. retained	Nr. dead at haulback	Nr. retained	Relative Risk	RR	1	95%-CI	Weight
25	2	17	2	8		0.47	10.06;	2.76]	11.1%
42	38	714	2	348		9.26	12.25;	38.16]	13.3%
42.1	31	97	0	17		- 54.77	[0.11; 26	628.05]	1.8%
45	6	6	4	5		1.24	[0.81;	1.91]	19.6%
48	16	235	8	102		0.87	[0.38;	1.96)	17.5%
48.1	25	238	1	87		9.14	[1.26;	66,43]	10.0%
49	12	89	2	22		1.48	[0.36;	6.15]	13.3%
49.1	4	88	3	20		0.30	[0.07;	1.25]	13.3%
Overall effect		1484		609		1.52	[0.50;	4.62]	100.0%
neterogeneity: /*= 63%, t**	= 0.9500, p < 0.01				0.001 0.1 1 10 1000	2			

Figure 295 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of crocodile shark with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 296 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of crocodile shark with circle vs. J hooks in shallow pelagic longlines.

Figure 297 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of crocodile shark with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. dead at haulback	Fish bait Nr. retained	Nr. dead at haulback	Squid bait Nr. retained	Relative Risk	RR	95%-CI	Weight
42	31	114	40	1062	3_8	7.22	[4.71: 11.07]	26.6%
48	26	325	24	337		1.12	[0.66; 1.92]	26.0%
49	7	108	14	111		0.51	[0.22; 1.22]	23.8%
51	12	44	5	18		0.98	[0.40; 2.38]	23.6%
Overall effect Heterogeneity (2 = 94)	%, 1 ² = 1 2339, p < 0.01	591		1528		1.48	[0.24; 9.23]	100.0%
				0.	1 0.5 1 2	10		

Figure 298 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of crocodile shark with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 299 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of crocodile shark with fish vs. squid bait in shallow pelagic longlines.

Figure 300 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of crocodile shark with fish vs. squid bait in shallow pelagic longlines.

Figure 301 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of scalloped hammerhead with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 302 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of scalloped hammerhead with circle vs. J hooks in shallow pelagic longlines.

Figure 303 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of scalloped hammerhead with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. dead at haulback	Circle hook Nr. retained	Nr. dead at haulback	J-hook Nr. retained	Relative Risk	RR	95%-CI	Weight
42	42	52	24	26	=	0.66	10,74; 1.04	35.2%
42.1	85	107	26	40	100	1.22	0.95; 1.56	25.5%
48	48	76	24	41	-	1.08	(0.79: 1.47)	19.5%
48.1	30	48	25	38	*	0.95	[0.69; 1.30]	18.9%
49.1	14	15	1	4	+		[0.68; 20,49]	1.0%
Overall effect Heterogeneity: l ² = 4	16%, τ ² = 0.0135, ρ = 0.11	298		149	, , \$,	1.02	[0.79; 1.32]	100.0%
					01 051 2	10		

Figure 304 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of smooth hammerhead with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 305 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of smooth hammerhead with circle vs. J hooks in shallow pelagic longlines.

Figure 306 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of smooth hammerhead with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. dead at haulback	Fish bait Nr. retained N	ir. dead at haulback	Squid bait Nr. retained	Relative Risk	RR	95%-CI	Weight
42	111	147	66	78		0.89	(0.78, 1.02)	50.3%
48	55	86	72	117		1.04	[0.84; 1.29]	25.2%
49	15	19	1	1		0.79	[0.83; 1.00]	22.2%
51	5	5	2	3		- 1.48	[0.68, 3.18]	2.4%
Overall effect Heterogeneity: J ² = 34	%, r ² = 0.0028, p = 0.21	257		199	, 	0.91	[0.73; 1.14]	100.0%

Figure 307 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of smooth hammerhead with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 308 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of smooth hammerhead with fish vs. squid bait in shallow pelagic longlines.

Figure 309 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of smooth hammerhead with fish vs. squid bait in shallow pelagic longlines.

Figure 310 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of tiger shark with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 311 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of tiger shark with circle vs. J hooks in shallow pelagic longlines.

Figure 312 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of tiger shark with circle vs. J hooks in shallow pelagic longlines.

		Circle hook		J-hook			
Experiment N	r. dead at haulback	Nr. retained	Nr. dead at haulback	Nr. retained	Relative Risk	RR	95%-CI Weight
25	0	20	3	155		0.25 [0.	00; 132.86] 11.9%
42	4	40	0	90		92.12 0.1	6; 48298.32] 12.0%
42.1	2	23	0	35		31.91 [0.0	6; 17763.92] 11.7%
45	1	15	1	25		1.67 [0	11; 24.72] 64.4%
48	0	0	0	10		2 C	0.0%
48.1	0	0	0	9			0.0%
49	0	11	0	41			0.0%
49.1	0	39	0	31			0.0%
56	0	1	0	3			0.0%
Overall effect Heterogeneity: $t^2 = 0.5$, $\tau^2 = 1$	0. ρ = 0.48	149		399	, — , — ,	3.04 [0.	12; 73.81] 100.0%
	14.40: 11:12:12:12:12				0.001 0.1 1 10 10	00	

Figure 313 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of pelagic stingray with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 314 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of pelagic stingray with circle vs. J hooks in shallow pelagic longlines.

Figure 315 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of pelagic stingray with circle vs. J hooks in shallow pelagic longlines.

		Circle hook		J-hook				
Experiment	Nr. dead at haulback	Nr. retained	Nr. dead at haulback I	Nr. retained	Relative Risk	RR	95%-CI	Weight
15	0	27	2	182		0.32	[0.00; 179.73]	0.6%
17	6	86	2	87		3.03	[0.63; 14.62]	8.5%
20	3	53	9	117		0.74	[0.21; 2.61]	12.0%
24	1	329	4	504		0.38	[0.04; 3.41]	4.8%
26	4	9	2	14		3.11	[0.71; 13.62]	9.4%
42	0	3	1	7		0.21	[0.00; 117.37]	0.6%
48	1	7	0	7		- 11.00	[0.02; 6550.64]	0.6%
49	29	96	33	110	100	1.01	[0.66; 1.53]	35,4%
49.1	5	28	13	28	- 181	0.41	[0.17; 1.00]	19.3%
52.1	2	7	0	2		6.21	0.01:2923.43	0.7%
54	2	38	3	29		0.51	[0.09; 2.85]	7.3%
54.1	1	8	0	4		7.39	[0.01; 4238.57]	0.6%
Overall effect Heterogeneity: /2 = 0%	$6, \tau^2 = 0.1440, \rho = 0.44$	687		1091	· · · · · · · · · · · · · · · · · · ·	0.93	[0.56; 1.53]	100.0%
	N CONTRACTOR CONTRACTOR CONTRACTOR				0.001 0.1 1 10 10	00		

Figure 316 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of loggerhead sea turtle with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 317 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of loggerhead sea turtle with circle vs. J hooks in shallow pelagic longlines.

Figure 318 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of loggerhead sea turtle with circle vs. J hooks in shallow pelagic longlines.

Figure 319 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of loggerhead sea turtle with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 320 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of loggerhead sea turtle with fish vs. squid bait in shallow pelagic longlines.

Figure 321 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of loggerhead sea turtle with fish vs. squid bait in shallow pelagic longlines.

Experiment	Nr. dead at haulback	Circle hook Nr. retained	Nr. dead at haulback	J-hook Nr. retained	Relative Risk	RR	6	95%-CI	Weight
15	0	. 11	C	35	142.				0.0%
17	8	158	1	77		3.90	(0.50;	30.62]	13.5%
24	6	323	3	455		2.82	[0.71;	11.18]	30.1%
25	0	4	1	12	· · · · · · · · · · · · · · · · · · ·	0.27	0.00;	157.63]	1.4%
29	0	64	0	113			State-11	033345	0.0%
42	1	14	1	22		1.57	10.11;	23.14]	7.9%
48	6	47	3	45	- 1000	1.91	[0.51;	7.20]	32.6%
48.1	5	40	0	51		- 64.99	[0.13: 334	189.23]	1.5%
49	1	B	3	14		0.58	[0.07;	4.72]	13,1%
Overall effect Heterogeneity: $t^2 = 0\%$	$p_{\rm e} \tau^2 = 0, p = 0.73$	669		824		2.04	[0.99;	4.24]	100.0%

Figure 322 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of leatherback sea turtle with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 323 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of leatherback sea turtle with circle vs. J hooks in shallow pelagic longlines.

Figure 324 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of leatherback sea turtle with circle vs. J hooks in shallow pelagic longlines.

Figure 325 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of leatherback sea turtle with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 326 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of leatherback sea turtle with fish vs. squid bait in shallow pelagic longlines.

Figure 327 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of leatherback sea turtle with fish vs. squid bait in shallow pelagic longlines.

Experiment N	r. dead at haulback	Circle hook Nr. retained	Nr. dead at haulback	J-hook Nr. retained		Relative Risk	RR	•	15%-CI	Weight
17	9	17	3	10			1.76	10.62;	5.03]	15.4%
25	0	3	0	- 1						0.0%
42	16	54	17	62		100	1.08	[0.61;	1.92]	50.9%
42.1	8	18	10	27		*	1.20	10.59;	2.45	33.3%
48	1	5	0	7			- 15.31	10.03; 89	69.16]	0.4%
48.1	0	2	0	4				101251.04	0.00128	0.0%
Overall effect Heterogeneity: $I^2 = D%$, $\tau^2 =$	0. <i>p</i> = 0.74	99		111	0		1.22	[0.79;	1.88]	100.0%

Figure 328 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of olive ridley sea turtle with circle vs. J hooks in shallow pelagic longlines. (Note: J hooks are considered the control and circle hooks the experimental hook; a relative risk (RR) >1 indicates at-haulback mortality is higher with circle hooks).

Figure 329 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of olive ridley sea turtle with circle vs. J hooks in shallow pelagic longlines.

Figure 330 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of olive ridley sea turtle with circle vs. J hooks in shallow pelagic longlines.

Experiment	Nr. dead at haulback	Fish bait Nr. retained	Nr. dead at haulback	Squid bait Nr. retained	Relative Risk	RR	95%-CI	Weight
17	1	4	11	23		0.52	[0.09; 3.01]	15.3%
42	18	45	- 33	116	100 M	1.41	[0.89, 2.23]	70.9%
48	0	6	1	12		0.18	[0.00; 108.53]	1.3%
51	1	12	9	55		0.51	[0.07; 3.65]	12.5%
Overall effect Heterogeneity $t^2 = 0\%$,	τ ² = 0.1487, p = 0.50	67		206	_	1.04	[0.42; 2.56]	100.0%
	-				0.001 0.1 1 10 1	000		

Figure 328 - Forest plot of the random effects meta-analysis performed for the at-haulback mortality rates of olive ridley sea turtle with fish vs. squid bait in shallow pelagic longlines. (Note: squid bait is considered the control and fish the experimental bait; a relative risk (RR) >1 indicates at-haulback mortality is higher with fish bait).

Figure 329 - Baujat plot of the influence analysis for validating the meta-analysis performed for the at-haulback mortality rates of olive ridley sea turtle with fish vs. squid bait in shallow pelagic longlines.

Figure 330 - Leave-one-out method of the influence analysis sorted by heterogeneity for the meta-analysis performed for the at-haulback mortality rates of olive ridley sea turtle with fish vs. squid bait in shallow pelagic longlines.